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Abstra
t

We show that|unlike produ
ts of `transitive' modal logi
s whi
h are usually

unde
idable|their `expanding domain' relativisations 
an be de
idable, though not

in primitive re
ursive time. In parti
ular, we prove the de
idability and the �nite

expanding produ
t model property of bimodal logi
s interpreted in two-dimensional

stru
tures where one 
omponent|
all it the `
ow of time'|is

� a �nite linear order or a �nite transitive tree

and the other is 
omposed of stru
tures like

� transitive trees/partial orders/quasi-orders/linear orders or only �nite su
h stru
-

tures

expanding over the time. (It is known that none of these logi
s is de
idable when

interpreted in stru
tures where the se
ond 
omponent does not 
hange over time.)

The de
idability proof is based on Kruskal's tree theorem, and the proof of non-

primitive re
ursiveness is by redu
tion of the rea
hability problem for lossy 
hannel

systems. The result is used to show that the dynami
 topologi
al logi
 interpreted in

topologi
al spa
es with 
ontinuous fun
tions is de
idable (in non-primitive re
ursive

time) if the number of fun
tion iterations is assumed to be �nite.
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1 Introdu
tion

Started in the 1970s [40,41℄, the resear
h programme of investigating and using

produ
ts of modal logi
s

1

as a multi-dimensional formalism for a variety of

promising appli
ations in mathemati
al logi
, 
omputer s
ien
e and arti�
ial

intelligen
e (see, e.g., [2,36,9,4,37,13,7,45℄) has re
ently 
ulminated in a series

of interesting de
idability and 
omplexity results.

De
idability: Roughly, a two-dimensional produ
t of modal logi
s 
an be

de
idable only if, in order to 
he
k satis�ability of a formula ' in produ
t

frames for the logi
, it suÆ
es to 
onsider those of them where the depth of

one of the 
omponent frames is bounded by some �nite number depending

on '. In other words, only produ
ts of standard modal logi
s with K-like

or S5-like

2

logi
s are de
idable [13,44,11℄. Three-dimensional produ
ts and

produ
ts of transitive logi
s with arbitrary �nite or in�nite frames are not

de
idable [31,17,38,14℄.

Complexity: The 
omputational 
omplexity of de
idable produ
t logi
s turns

out to be mu
h higher than the 
omplexity of their 
omponents. For exam-

ple, it is shown in [32℄ that all produ
t logi
s between K�K and S5� S5

are 
oNExpTime-hard (while K is known to be PSpa
e-
omplete and S5


oNP-
omplete). A

ording to [33℄, even the satis�ability problem for for-

mulas of modal depth 2 inK�K-frames isNExpTime-hard. Log(N ; <)�S5

is ExpSpa
e-hard, while PTL�K is not elementary [16,18,11℄.

Su
h is the pri
e we have to pay for the strong intera
tion between the modal

operators of the 
omponent logi
s of a produ
t, whi
h is synta
ti
ally re
e
ted

by the (seemingly harmless) 
ommutativity and Chur
h{Rosser axioms

33p$ 33p and 32p! 23p:

The general resear
h problem we are fa
ing now 
an be formulated as follows:

is it possible to redu
e the 
omputational 
omplexity of produ
t logi
s by re-
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For the de�nition of produ
ts of modal logi
s see Se
tion 5 below.

2

The de�nitions of some standard modal logi
s like K, S5, et
., 
an be found in

Se
tion 2.
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laxing the intera
tion between their 
omponents and yet keeping some of the

useful and attra
tive features of the produ
t 
onstru
tion?

One approa
h to this problem is motivated by stru
tures often used in su
h

areas as temporal and modal �rst-order logi
s, temporal data or knowledge

bases (say, temporal des
ription logi
s) or logi
al modelling of dynami
al sys-

tems. What we mean is models/stru
tures with expanding domains: if at a


ertain time point (or in a world) w we have a `population' �

w

of elements

(obje
ts), then at every later point (in every a

essible world) u the popula-

tion �

u


annot be smaller but 
an grow|i.e., �

w

� �

u

. Standard produ
t

logi
s respe
t the stronger 
onstant domain assumption a

ording to whi
h

�

w

= �

u

for all u and w.

In the 
ase of dynami
 topologi
al logi
s [27,21℄, expanding domains 
orre-

spond to the 
ondition that the fun
tion des
ribing movements of points in

topologi
al spa
es is 
ontinuous (while 
onstant domains 
orrespond to home-

omorphisms).

Models with expanding domains naturally arise also in the 
ontext of tableau-

and resolution-based de
ision pro
edures that have been developed and imple-

mented for 
ertain monodi
 fragments of �rst-order temporal logi
 and some

modal des
ription logi
s [15,24,20℄ whi
h in
lude, in parti
ular, the (expand-

ing) produ
ts of the 
orresponding temporal and modal logi
s with S5. One

of the most diÆ
ult problems in the development and implementation was the


on
i
t between modularity and the ne
essity to ba
ktra
k after introdu
ing

every new element; in fa
t, the systems developed so far are 
onsiderably more

eÆ
ient for expanding domain than for 
onstant domain interpretations.

Produ
ts of modal logi
s with expanding domains were introdu
ed in [30℄,

where it was shown that they 
annot be more 
omplex than (in fa
t, are re-

du
ible to) produ
ts. But 
an they be simpler? For example, is it possible

that a produ
t logi
 is unde
idable while its expanding relativisation is de-


idable? A similar question was asked in [12℄ where it was shown that the

two-variable fragment of most �rst-order modal logi
s with 
onstant domains

is unde
idable.

The main a
hievement of this paper is the dis
overy of the �rst pairs of `stan-

dard' modal logi
s whose produ
t with expanding domains is indeed simpler

than their usual produ
t. For example, we show that the expanding produ
t

of GL:3 and GL is de
idable and has the expanding produ
t �nite model

property|in 
ontrast to the produ
t GL:3 �GL whi
h is unde
idable and

does not even have the (abstra
t) �nite model property [14℄. As a 
onsequen
e

of our results on expanding produ
ts, we also prove that the dynami
 topologi-


al logi
 with 
ontinuous fun
tions and �nitely many iterations is de
idable|

again in 
ontrast to the unde
idability in the 
ase of dynami
 topologi
al

3



stru
tures with homeomorphisms [21℄.

Our main results 
an be summarised as follows. Bimodal logi
s interpreted in

expanding produ
t frames where the �rst 
omponent 
onsists of

� �nite linear orders or �nite transitive trees

and the se
ond is 
omposed of frames like

� transitive trees/partial orders/quasi-orders/linear orders or only �nite su
h

stru
tures

are de
idable and have the expanding produ
t �nite model property. If the

se
ond (`verti
al') 
omponent is Noetherian (say, frames for GL:3 or GL),

then we may also allow in�nite Noetherian �rst (`horizontal') 
omponents.

None of these logi
s is de
idable when interpreted in models with 
onstant

domains [14℄.

The de
idability proof is based on Kruskal's tree theorem [29℄ and does not

establish any elementary upper bound for the time/spa
e 
omplexity of the

de
ision algorithm. We show that indeed no su
h upper bound exists by prov-

ing that there is no primitive re
ursive de
ision algorithm for su
h logi
s. The

proof uses a re
ent result of S
hnoebelen [39℄ a

ording to whi
h rea
habil-

ity in lossy 
hannel systems is not de
idable in time bounded by a primitive

re
ursive fun
tion. This a
tually explains why numerous attempts to prove

de
idability of expanding produ
ts failed: quite often the idea was to redu
e

the de
ision problem to S!S whi
h is not elementary yet primitive re
ursive

[6℄. As a 
onsequen
e, we also obtain that the dynami
 topologi
al logi
 with


ontinuous fun
tions 
annot be de
ided in primitive re
ursive time, no matter

whether the number of fun
tion iterations is assumed to be �nite or in�nite.

The stru
ture of the paper is as follows. In Se
tion 2 we introdu
e our 
entral

notions of two-dimensional expanding domain frames and the interpretation

of bimodal formulas in them. In Se
tion 3 we formulate and prove the main

de
idability results. This is done in three steps. First, in Se
tion 3.1, we use

the maximal point te
hnique of [10℄ to show that the logi
s under 
onsidera-

tion enjoy the expanding produ
t �nite model property. Then, in Se
tion 3.2,

Kruskal's tree theorem and K�onig's in�nity lemma are employed for proving

de
idability of these logi
s. Finally, in Se
tion 3.3, we en
ode the rea
habil-

ity problem for lossy 
hannel systems to establish the non-primitive re
ursive

lower bound. Se
tion 4 shows how the obtained results 
an be used for investi-

gating the 
omputational behaviour of dynami
 topologi
al logi
s. In Se
tion 5

we 
ompare the expanding domain produ
ts introdu
ed in Se
tion 2 with ex-

panding relativised produ
ts of [30℄. We 
on
lude in Se
tion 6 with a dis
ussion

of the obtained results and open problems.
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2 Two-dimensional frames with expanding domains

LetML

2

be the usual propositional bimodal language with two diamonds 3,

3 (and their dual boxes 2, 2) and the Boolean 
onne
tives. The intended

`expanding domain semanti
s' for this language is de�ned as follows.

Let F = (W;R) be a (`horizontal') frame

3

and let f be a fun
tion asso
iating

with every x 2 W a (`verti
al') frame

f(x) = (W

x

; R

x

)

in su
h a way that whenever xRy in F then f(x) is a subframe of f(y) in the

sense that

� W

x

� W

y

and

� for all u; v 2 W

x

, we have uR

x

v i� uR

y

v.

Then the pair H = (F; f) is 
alled an expanding domain frame, or simply an

e-frame (see Fig. 1 for an example).
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Fig. 1. An e-frame (F; f).

The following de�nition shows how to interpretML

2

-formulas in e-frames. A

valuation V in an e-frame H = (F; f) is a set (V

w

)

w2W

of valuations V

w

in

the frames f(w). The pair M = (H;V) is 
alled an expanding domain model

based on H. The truth relation (M; (x; u)) j= ', where ' 2 ML

2

, x 2 W and

u 2 W

x

, is de�ned indu
tively as follows:

� (M; (x; u)) j= p i� u 2 V

x

(p), where p is a propositional variable,

3

We remind the reader that a pair F = (W;R) is 
alled a (unimodal) Kripke frame

if W is a nonempty set and R is a binary relation on W . A valuation in F is a

fun
tion V mapping propositional variables to subsets of W .
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� (M; (x; u)) j= 3 i� there is y 2 W su
h that xRy and (M; (y; u)) j=  ,

� (M; (x; u)) j= 3 i� there is v 2 W

x

su
h that uR

x

v and (M; (x; v)) j=  

(plus the standard 
lauses for the Boolean 
onne
tives). We say that ' is valid

in H (H j= ', in symbols) if (M; (x; u)) j= ' holds for all x 2 W , u 2 W

x

and all models M based on H. Note that every e-frame validates the left


ommutativity and Chur
h{Rosser axioms

33p! 33p and 32p! 23p

but not the right 
ommutativity 33p! 33p (see Fig. 1).

Given two 
lasses C

1

, C

2

of unimodal frames, denote by

(C

1

� C

2

)

e

the 
lass of all e-frames H = (F; f) su
h that F 2 C

1

and f(x) 2 C

2

for every

point x from F, and let

Log (C

1

� C

2

)

e

= f' 2 ML

2

j 8H 2 (C

1

� C

2

)

e

H j= 'g:

Remark 1 Observe that Log (C

1

� C

2

)

e

is always a Kripke 
omplete normal

bimodal logi
. Indeed, given an expanding domain model M = (H;V) as

above, we 
an `represent' it as a usual Kripke modelM = (H;V) based on the

bimodal frame

H = (f(x; u) j x 2 W; u 2 W

x

g; R

h

; R

v

);

where

(x; u)R

h

(y; v) i� u = v and xRy;

(x; u)R

v

(y; v) i� x = y and uR

x

v;

V(p) = f(x; u) j u 2 V

x

(p)g:

Then, for every ML

2

-formula ', we have (M; (x; u)) j= ' i� (M; (x; u)) j= '.

Note that if the e-frame H = (F; f) is su
h that f(x) = G for all x in F, then H


oin
ides with what is 
alled the produ
t of frames F and G; for more details

see Se
tion 5.

Let L

1

be a normal unimodal logi
 in the language with the diamond 3. Let

L

2

be a normal unimodal logi
 in the language with the diamond 3. Assume

also that both L

1

and L

2

are Kripke 
omplete. Then the expanding domain

produ
t (or e-produ
t, for short) of the logi
s L

1

and L

2

is

(L

1

� L

2

)

e

= Log (FrL

1

� FrL

2

)

e

;

6



where FrL

i

is the 
lass of all Kripke frames for L

i

, i = 1; 2. Note that (L

1

�L

2

)

e

is a 
onservative extension of both L

1

and L

2

.

In order to make the paper self-
ontained, here we give a list of the standard

modal logi
s we deal with. All logi
s L in this list are 
omplete with respe
t

to the 
lasses FrL of their Kripke frames:

� FrK is the 
lass of all frames (W;R),

� K4 = K � 2p ! 22p and FrK4 is the 
lass of all frames (W;R) with

transitive R,

� S4 = K4�2p! p and Fr S4 is the 
lass of frames (W;R) with transitive,

re
exive R,

� S5 = S4 � 3p ! 23p and Fr S5 is the 
lass of frames (W;R) where R is

an equivalen
e relation,

� GL = K4� 2(2p ! p) ! 2p and FrGL is the 
lass of all frames (W;R)

su
h that R is transitive, irre
exive and Noetherian in the sense that there

is no in�nite sequen
e x

0

Rx

1

Rx

2

: : : where x

i

6= x

i+1

for i < !,

� Grz = S4� 2(2(p ! 2p) ! p) ! p and FrGrz is the 
lass of all frames

(W;R) su
h that R is transitive, re
exive and Noetherian,

� K4:3 = K4�2(2

+

p! q)_2(2

+

q ! p) and FrK4:3 is the 
lass of frames

(W;R) su
h that R is transitive and weakly 
onne
ted in the sense that

whenever xRy, xRz and y 6= z then either yRz or zRy. Rooted

4

transitive

and weakly 
onne
ted frames will be 
alled linear. Note that linear frames


an have 
lusters

5

of any kind, in parti
ular, proper and degenerate ones.

The logi
s S4:3, GL:3, and Grz:3 are de�ned analogously.

Here � means `add the axiom and take the 
losure under modus ponens,

substitution and ne
essitation '=2',' and 2

+

 =  ^2 .

3 De
idability and 
omplexity

As e-produ
ts are known to be redu
ible to standard produ
t logi
s (see [11,

Theorem 9.12℄ or Proposition 5 below), e-produ
t logi
s are usually de
idable

if one of their 
omponents is an S5- or K-like logi
 [13,44,11℄. On the other

hand, produ
ts of `transitive' logi
s with frames of arbitrarily large �nite or

in�nite depth are unde
idable and do not have the �nite model property [14℄.

4

We remind the reader that a frame (W;R) is 
alled rooted if there exists r 2 W

su
h that W = fu 2W j rR

�

ug, where R

�

is the re
exive and transitive 
losure of

R.

5

Re
all that a set X �W is 
alled a 
luster in F if there is some x 2W su
h that

X = fxg [ fy 2 W j xRy and yRxg. A 
luster X is proper if jXj � 2, it is simple

if X = fxg and xRx; otherwise the 
luster is 
alled degenerate.
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In this se
tion we show that logi
s of e-frames with arbitrarily large �nite

transitive 
omponents 
an be de
idable, and 
an even have the following strong

version of the �nite model property. A bimodal logi
 L is said to have the

expanding produ
t �nite model property (e-produ
t fmp, for short) if, for every

ML

2

-formula ' =2 L, there is a �nite e-frame for L that refutes '.

The main results of this paper are the following:

Theorem 1 Let C

h

be any of the following 
lasses of frames:

(C1) all �nite transitive antisymmetri
 frames,

(C2) all re
exive or all irre
exive members of (C1),

(C3) all linear members of any of the 
lasses in (C1) and (C2).

Let C

v

be any of the 
lasses:

(C4) all transitive frames,

(C5) all re
exive and transitive frames,

(C6) all linear members of (C4) or (C5).

Then the logi
 Log(C

h

� C

v

)

e

has the e-produ
t fmp and is de
idable, but not

in time bounded by a primitive re
ursive fun
tion.

Theorem 2 Let C

h

and C

v

be any of the following 
lasses:

(C7) all Noetherian irre
exive transitive frames,

(C8) all Noetherian re
exive transitive frames,

(C9) all linear members of (C7) or (C8).

Then the logi
 Log(C

h

� C

v

)

e

has the e-produ
t fmp and is de
idable, but

not in time bounded by a primitive re
ursive fun
tion. In other words, if L

1

,

L

2

2 fGL, Grz, GL:3, Grz:3g then (L

1

� L

2

)

e

has the e-produ
t fmp and is

de
idable, but not in time bounded by a primitive re
ursive fun
tion.

We give a 
ommon proof of Theorems 1 and 2 via a sequen
e of lemmas, where

we assume C

h

and C

v

to be as in the formulations of the theorems.

3.1 The expanding domain produ
t fmp

Fix some ML

2

-formula '.

8



Lemma 2.1 If ' =2 Log(C

h

� C

v

)

e

then ' is refuted in a model M = (H;V)

based on an e-frame H = (F; f) su
h that

� F = (W;R) 2 C

h

,

� f(x) = (W

x

; R

x

) 2 C

v

(x 2 W ) and,

� for all x 2 W , v 2 W

x

and all ML

2

-formulas  with (M; (x; v)) j=  , the

set

A

x;v; 

= fu 2 W

x

j vR

x

u and (M; (x; u)) j=  g [ fvg


ontains an R

x

-maximal point (i.e., a point w su
h that if wR

x

w

0

for some

w

0

2 A

x;v; 

then w

0

R

x

w).

Proof. Clearly, the lemma holds if C

v

is as in Theorem 2 (that is, 
onsists of

Noetherian frames only). So suppose that C

h

and C

v

are as in the formulation

of Theorem 1, that is, C

h

is one of (C1){(C3) (and so 
ontains only �nite

frames) and C

v

is one of (C4){(C6).

Suppose that (N; (x

0

; v

0

)) 6j= ' for some model N = (G;U) based on an

e-frame G = (F; f), where F = (W;R) 2 C

h

, f(x) = (W

x

; R

x

) 2 C

v

, x

0

2 W

and v

0

2 W

x

0

. By Remark 1, we may assume that x

0

is a root of F and

v

0

is a root of f(x

0

). De�ne a new model M = (H;V) based on an e-frame

H = (F; f

ue

) as follows. Take the set U of ultra�lters over V =

S

x2W

W

x

, and

set f

ue

(x) = (W

ue

x

; R

ue

x

), where

W

ue

x

= fu 2 U jW

x

2 ug

and

u

1

R

ue

x

u

2

i� for all A 2 u

2

; fv 2 W

x

j 9v

0

2 A vR

x

v

0

g 2 u

1

:

It is not hard to show that H is indeed an e-frame. Note that f

ue

(x) does not

ne
essarily 
oin
ide with the usual `ultra�lter extension' of f(x), as it may


ontain several di�erent extensions of ea
h ultra�lter over W

x

. However, it

is straightforward to 
he
k that f

ue

(x) is a transitive rooted frame for every

x 2 W (the prin
ipal ultra�lter u

0


ontaining fv

0

g is a root of f

ue

(x)), and

R

ue

x

is re
exive (irre
exive, weakly 
onne
ted) if R

x

is re
exive (irre
exive,

weakly 
onne
ted). Therefore, H belongs to (C

h

� C

v

)

e

.

De�ne a valuation V as the set (U

ue

x

)

x2W

, where

U

ue

x

(p) = fu 2 W

ue

x

j U

x

(p) 2 ug:

We 
laim that, for all x 2 W , u 2 W

ue

x

, and all formulas  

(M; (x;u)) j=  i� fv 2 W

x

j (N; (x; v)) j=  g 2 u: (1)

The proof is by indu
tion on  . Here we show the only `non-standard' step

of  = 3�. Suppose �rst that (M; (x;u)) j= 3�. Then, by IH, there is some

9



y 2 W su
h that xRy and

fv 2 W

y

j (N; (y; v)) j= �g 2 u:

Sin
e u 2 W

ue

x

, we have

fv 2 W

x

j (N; (x; v)) j= 3�g � fv 2 W

x

j (N; (y; v)) j= �g 2 u;

as required. Conversely, suppose B

x;3�

= fv 2 W

x

j (N; (x; v)) j= 3�g 2 u.

Sin
e F is �nite

6

, there are y

1

; : : : ; y

n

inW su
h that, for ea
h i = 1; : : : ; n, we

have xRy

i

, B

y

i

;�

= fv 2 W

x

j (N; (y

i

; v)) j= �g 6= ; and B

x;3�

=

S

n

i=1

B

y

i

;�

.

It follows that there is some i su
h that 1 � i � n and

fv 2 W

y

i

j (N; (y

i

; v)) j= �g � B

y

i

;�

2 u;

and so, by IH, (M; (x;u)) j= 3� holds.

As a 
onsequen
e of (1) we obtain that (M; (x

0

;u

0

)) 6j= '.

The existen
e of R

ue

x

-maximal points in sets of form A

x;u; 

inM follows from

a well-known result of Fine [10℄. Here is a sket
h of the proof. Consider the

family

X = fX � A

x;u; 

j R

ue

x

\ (X�X) is linear, with smallest element ug:

Let C be a �-maximal set in X (i.e., for every C

0

2 X , C � C

0

implies

C

0

= C); its existen
e 
an be readily proved with the help of Zorn's lemma.

Now take the set

y

0

= fA � W

x

j 9z 2 C 8z

0

2 C (zR

ue

x

z

0

! A 2 z

0

)g:

This set is not empty, sin
e fv 2 W

x

j (N; (x; v)) j=  g 2 y

0

, and 
learly y

0

has the �nite interse
tion property. Hen
e we 
an �nd an ultra�lter y 2 W

ue

x


ontaining y

0

. Then it is easy to see, using the de�nition of R

ue

x

, that

8z 2 C zR

ue

x

y: (2)

We 
laim that y is R

ue

x

-maximal in A

x;u; 

. Indeed, take some y

0

2 A

x;u; 

su
h that yR

ue

x

y

0

. If y

0

2 C then y

0

R

ue

x

y holds by (2). If y

0

=2 C then, by

the �-maximality of C in X , R

ue

x

is not linear on C [ fy

0

g. Sin
e by (2) and

yR

ue

x

y

0

, we have zR

ue

x

y

0

for all z 2 C, there exists a z

0

2 C su
h that y

0

R

ue

x

z

0

,

and so, again by (2), y

0

R

ue

x

y as required. ❑

We will use Lemma 2.1 to show that Log(C

h

�C

v

)

e

has the e-produ
t fmp. To

formulate the next lemma, we require the following notions.

6

This step of the proof would not work for in�nite F. In fa
t, as is shown in item 1

of Se
tion 6, Theorem 1 does not even hold in this 
ase.
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We say that a transitive frame F = (W;R) is a quasi-tree of 
lusters if F is

rooted and R is weakly 
onne
ted on the set fy 2 W j yRxg for every x 2 W .

If in addition F is antisymmetri
 (that is, does not 
ontain proper 
lusters),

then we 
all F simply a quasi-tree. If a quasi-tree of 
lusters is well-founded

(i.e., there are no in�nite des
ending R-
hains : : : Rx

2

Rx

1

Rx

0

of points from

distin
t 
lusters) then we 
all F a tree of 
lusters. Finally, a tree of 
lusters

without proper 
lusters is 
alled a tree

7

. Note that sin
e Noetherian frames

do not have proper 
lusters, a Noetherian tree (quasi-tree) of 
lusters is always

just a tree (quasi-tree).

The 
o-depth 
d(x) of a point x in a quasi-tree F is de�ned to be the R-distan
e

of x from the root. More pre
isely, the 
o-depth of the root is 0, and the 
o-

depth of immediate R-su

essors of a point of 
o-depth n is n + 1. If for no

n < ! the point x is of 
o-depth n, then we say that x is of in�nite 
o-depth.

The depth of a �nite tree F = (W;R) is the maximum of 
d(x), for x 2 W .

Remark 2 By a standard unravelling argument one 
an show that every

rooted transitive frame F that belongs to one of the 
lasses (C1){(C9) above

is a p-morphi
 image of a quasi-tree G of 
lusters belonging to the same 
lass.

It 
an also be shown that this unravelling `
ommutes' with the formation of e-

frames in both `
oordinates' in the following sense. On the one hand, if (F; f)

is an e-frame and F is the �-image of a quasi-tree G for some p-morphism

�, then (F; f) is a p-morphi
 image of the e-frame (G; g) de�ned by taking

g(x) = f(�(x)) (x in G). On the other hand, if (F; f) is a rooted e-frame then

for every x in F there exists a quasi-tree g(x) of 
lusters su
h that (F; g) is an

e-frame and (F; f) is a p-morphi
 image of it. Moreover, if (F; f) satis�es the

`maximal points' 
ondition of Lemma 2.1 then the g(x) 
an be 
hosen in su
h

a way that (F; g) satis�es this 
ondition as well.

Denote by `(') the length of ', say, `(') = jsub'j where sub' is the set of

all subformulas of '.

Lemma 2.2 If ' =2 Log(C

h

� C

v

)

e

then ' is refuted in a model M = (H;V)

based on an e-frame H = (F; f), where

� F = (W;R) 2 C

h

is a �nite transitive tree

and, for every x 2 W ,

� f(x) = (W

x

; R

x

) 2 C

v

is a �nite transitive tree of 
lusters,

� jW

x

j �

�

`(') + 1

�

!


d(x)+1

, and

� x has at most `(') �

�

`(') + 1

�

!


d(x)+1

immediate R-su

essors in F.

7

Here we slightly deviate from the usual notion of a transitive tree, as our trees

may 
ontain both re
exive and irre
exive points.
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Proof. Suppose that (M; (x; w)) 6j= ' for some model M = (H;V) based

on an e-frame H = (F; f), where F = (W;R) 2 C

h

, f(x) = (W

x

; R

x

) 2 C

v

,

x 2 W and w 2 W

x

. A

ording to Remark 2, we may assume thatM satis�es

the 
onditions of Lemma 2.1, F = (W;R) is a (possibly in�nite) Noetherian

quasi-tree, and (W

x

; R

x

) is a quasi-tree of 
lusters, for every x 2 W .

Now we take the 
losure Y of the set X = f(x; w)g under the the following

three rules:

� 3-rule: if (y; v) 2 X, (M; (y; v)) j= 3 , for some 3 2 sub', and there

is no (y

0

; v) 2 X su
h that yRy

0

and (M; (y

0

; v)) j=  , then 
hoose an

R-maximal point y

0

2 W su
h that yRy

0

, (M; (y

0

; v)) j=  (su
h a point

exists be
ause F is Noetherian), and set X := X [ f(y

0

; v)g.

� 3-rule: if (y; v) 2 X, (M; (y; v)) j= 3 , for some 3 2 sub', and there

is no (y; v

0

) 2 X su
h that vR

y

v

0

and (M; (y; v

0

)) j=  , then 
hoose an

R

y

-maximal v

0

in f(y) su
h that vR

y

v

0

, (M; (y; v

0

)) j=  (su
h a point

exists by Lemma 2.1), and set X := X [ f(y; v

0

)g.

� Square-rule: if (y; v) 2 X, yRy

0

and (y

0

; v) =2 X, then set X := X [

f(y

0

; v)g.

Consider the restri
tion H

0

= (F

0

; f

0

) of H to Y , where F

0

= (W

0

; R

0

), W

0

=

W \ fx j (x; w) 2 Y g, R

0

= R �W

0

, and f

0

(x) = (W

0

x

; R

0

x

) where W

0

x

= fv j

(x; v) 2 Y g and R

0

x

= R

x

�W

0

x

for x 2 W

0

.

Sin
e F

0

is a subframe of F, f

0

(x) is a subframe of f(x) for x 2 W

0

, and the


lasses C

h

and C

v

are 
losed under taking subframes in all the 
ases (C1){(C9),

F

0

is a Noetherian quasi-tree in C

h

and the f

0

(x) are quasi-trees of 
lusters in

C

v

.

Claim 2.2.1 If x is of �nite 
o-depth in F

0

, then jW

0

x

j �

�

`(') + 1

�

!


d(x)+1

.

Proof. The proof is by indu
tion on n. If n = 0, then by applying the 3-rule

to the root (x; w) of H

0

, we 
an obtain � `(') immediate R

0

x

-su

essors of

the form (x; v). In view of maximality, at ea
h of these points the number of

formulas of the form 3 2 sub' to whi
h the 3-rule still applies is � `(')�1.

We pro
eed with the same kind of argument and �nally get

jW

0

x

j � 1 + `(') + `(') � (`(')� 1) + � � �+ `(')! � (`(') + 1)! :

The indu
tion step for y of 
o-depth n+1 is 
onsidered analogously. The only

di�eren
e is that instead of one `starting' point in the root W

0

x

, we should

start applying the 3-rule to all points of the form (y; v) su
h that v 2 W

0

z

for

the unique point z with 
d(z) = n and zR

0

y, that is to jW

0

z

j �

�

`(') + 1

�

!

n+1

many points. ❑
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Claim 2.2.2 Every point x of �nite 
o-depth in F

0

has

� `(') �

�

`(') + 1

�

!


d(x)+1

immediate R

0

-su

essors.

Proof. Follows from the previous 
laim and the fa
t that the 3-rule 
an be

applied at most `(') times to a point (x; v). ❑

Claim 2.2.3 Every point in F

0

is of �nite 
o-depth, that is, F

0

is a tree.

Proof. Sin
e F

0

is Noetherian, we 
annot have in�nite as
ending 
hains of

distin
t points in F

0

. Suppose F

0

still 
ontains a point x of in�nite 
o-depth.

This means that there is an in�nite des
ending 
hain : : : R

0

x

2

R

0

x

1

R

0

x: Let y be

an R

0

-maximal point of �nite 
o-depth su
h that yR

0

x. It exists be
ause F

0

is

Noetherian. By Claim 2.2.1, W

0

y

is �nite. Therefore, we may apply the 3-rule

to points in W

0

y

�nitely many times only, and so there exists an immediate R

0

-

su

essor y

0

of y lo
ated properly between y and x. But then 
d(y

0

) = 
d(y)+1,

and so the 
o-depth of y

0

is �nite, whi
h is a 
ontradi
tion. ❑

Thus, F

0

is a Noetherian tree with �nite bran
hing. Therefore, by K�onig's

lemma, it must be �nite. This 
ompletes the proof of Lemma 2.2. ❑

3.2 De
idability

We are now in a position to prove that Log(C

h

� C

v

)

e

is de
idable. It is to be

noted that the e-produ
t fmp does not give de
idability automati
ally be
ause

(i) we do not have an e�e
tive upper bound for the size of a model refuting

a given formula ' =2 Log(C

h

� C

v

)

e

, nor (ii) do we know that Log(C

h

� C

v

)

e

is

�nitely axiomatisable.

We will use a version of Kruskal's tree theorem [29℄. Given a �nite set �, a

labelled �-tree is a triple T = (T;<; l), where (T;<) is a transitive tree and l

is a fun
tion from T to �. Given two �nite labelled �-trees T

i

= (T

i

; <

i

; l

i

),

i = 1; 2, we say that T

1

is embeddable into T

2

if there exists an inje
tive map

� : T

1

! T

2

su
h that, for all u; v 2 T

1

,

� u <

1

v i� �(u) <

2

�(v),

� l

2

(�(u)) = l

1

(u).

Theorem (Kruskal).

8

For every in�nite sequen
e T

1

;T

2

; : : : of �nite la-

8

In the usual treatments of Kruskal's tree theorem, trees are meant to be either

irre
exive [29℄ or re
exive [34℄. However, it is easy to see that the theorem also
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belled �-trees, there exist i < j < ! su
h that T

i

is embeddable into T

j

.

In order to use this theorem, we represent expanding domain models in a

slightly di�erent form. Roughly, the idea is as follows. By Lemma 2.2, we may

assume that the `verti
al 
omponents' of e-frames are �nite trees of 
lusters.

We take the `skeleton-tree' of su
h a tree of 
lusters, and label ea
h node of this

skeleton with the set of Boolean types of points from the 
luster represented

by the node.

To this end, denote by T

'

the set of Boolean types t over sub:', where

� : 2 t i�  =2 t, for every : 2 sub:', and

� � ^  2 t i� � 2 t and  2 t, for every � ^  2 sub:'.

Let P(T

'

)

+

be the set of all nonempty subsets of T

'

. A pair Q = (F; f) is


alled a pre-quasimodel (for ') if

� F = (W;R) is a transitive tree, and

� f(x) = (T

x

; <

x

; l

x

), for x 2 W , is a �nite labelled P(T

'

)

+

-tree.

We 
all su
h a pre-quasimodel small if, for all x; y 2 W ,

(sm1) jT

x

j �

�

`(') + 1

�

!


d(x)+1

,

(sm2) x has at most `(') �

�

`(') + 1

�

!


d(x)+1

immediate R-su

essors in F,

(sm3) if xRy and x 6= y then f(x) is not embeddable into f(y).

For every n < !, let Q

n

be the set of all small pre-quasimodels (F; f) su
h

that F is a �nite tree of depth n.

Lemma 2.3 There is an n < ! su
h that Q

n

= ;, and so the set of small

pre-quasimodels for ' is �nite and 
an be 
onstru
ted e�e
tively from '.

Proof. Suppose otherwise. De�ne a relation E on the set Q of all small pre-

quasimodels as follows. For Q = (F; f), Q

0

= (F

0

; f

0

) in Q, set QEQ

0

i� F is

an `initial subtree' of F

0

and f 
oin
ides with f

0

on the points of F. Clearly,

for every Q

0

2 Q

n+1

, there is some Q 2 Q

n

su
h that QEQ

0

. Therefore, by

K�onig's in�nity lemma, there is an in�nite E-
hain Q

0

EQ

1

E : : : EQ

n

E : : : in

Q su
h that Q

n

2 Q

n

for n < !. Sin
e Q

n+1

is always an extension ofQ

n

, their

union Q =

S

n<!

Q

n

is also a pre-quasimodel. Let Q = (F; f) and F = (W;R).

Then F is an in�nite tree with �nite bran
hing. By K�onig's lemma, it must

have an in�nite bran
h x

0

Rx

1

R : : : . Then, by Kruskal's theorem, there exist

holds without any su
h restri
tion, as we 
an add the information about re
exiv-

ity/irre
exivity of a tree-node to its label.
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i < j < ! su
h that f(x

i

) is embeddable into f(x

j

). But x

i

and x

j

already

belonged to the underlying tree of Q

j

, 
ontrary to Q

j

being in Q

j

. ❑

What is left is to establish a 
onne
tion between expanding domain models

and pre-quasimodels. A run r through a pre-quasimodel (F; f) (where F =

(W;R) and f(x) = (T

x

; <

x

; l

x

), for x 2 W ) is a partial fun
tion from W into

(

S

x2W

T

x

)� T

'

su
h that, for all x 2 W ,

� if x 2 dom r and r(x) = (w

r(x)

; t

r(x)

), then w

r(x)

2 T

x

and t

r(x)

2 l

x

(w

r(x)

),

� if x 2 dom r and xRy then y 2 dom r,

� for all 3 2 sub:', we have 3 2 t

r(x)

i� there exists y 2 W su
h that

xRy and  2 t

r(y)

.

We 
all a triple (F; f;R) a (C

h

� C

v

)

e

-quasimodel (for ') if the following 
on-

ditions are satis�ed:

(q0) (F; f) is a pre-quasimodel, R is a set of runs through (F; f), F 2 C

h

and

(T

x

; <

x

) 2 C

v

for all x 2 W ;

(q1) :' 2 l

r

(w) for the root r 2 W of F and the root w of f(r);

(q2) for all x 2 W , w 2 T

x

and 3 2 sub:', the following 
onditions are

equivalent:

� there exists a t 2 l

x

(w) with 3 2 t;

� there exists a v with w <

x

v and t

0

2 l

x

(v) su
h that  2 t

0

;

(q3) for all x 2 W , w 2 T

x

and t 2 l

x

(w), there is r 2 R su
h that r(x) =

(w; t);

(q4) for all r; r

0

2 R and for all x; y 2 dom r \ dom r

0

, w

r(x)

<

x

w

r

0

(x)

i�

w

r(y)

<

y

w

r

0

(y)

.

We 
all a quasimodel small if the underlying pre-quasimodel is small.

Lemma 2.4 ' =2 Log(C

h

� C

v

)

e

i� there is a small (C

h

� C

v

)

e

-quasimodel for

'.

Proof. Suppose �rst that there is a (C

h

� C

v

)

e

-quasimodel (F; f;R) for '

(where F = (W;R) and f(x) = (T

x

; <

x

; l

x

), for x 2 W ). Then we let, for all

x 2 W ,

W

x

= fr 2 R j x 2 dom rg;

rR

x

r

0

i� w

r(x)

<

x

w

r

0

(x)

;

g(x) = (W

x

; R

x

):

It is straightforward to 
he
k that H = (F; g) is an e-frame in (C

h

� C

v

)

e

.
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Moreover, by taking, for all x 2 W and propositional variables p,

V

x

(p) = fr 2 W

x

j p 2 t

r(x)

g;

we obtain an expanding domain model (H;V) refuting '.

Conversely, suppose that ' =2 Log(C

h

�C

v

)

e

. We may assume that ' is refuted in

a modelM = (H;V) based on an e-frame H = (F; f) satisfying the 
onditions

of Lemma 2.2. We 
an turnM into a (C

h

�C

v

)

e

-quasimodel (F; g;R) as follows.

Suppose that F = (W;R) and f(x) = (W

x

; R

x

) for x 2 W . For every x 2 W ,

de�ne an equivalen
e relation �

x

on W

x

by taking, for all u; v 2 W

x

,

u �

x

v i� either u = v; or uR

x

v and vR

x

u;

that is, i� u and v are in the same R

x

-
luster. Let [u℄

x

denote the �

x

-
lass of

u. For all x 2 W , w 2 W

x

, we let

t

M

x

(w) = f 2 sub:' j (M; (x; w)) j=  g:

For every x 2 W , let g(x) = (T

x

; <

x

; l

x

), where

T

x

= f[u℄

x

j u 2 W

x

g

[u℄

x

<

x

[v℄

x

i� 9u

0

2 [u℄

x

9v

0

2 [v℄

x

u

0

R

x

v

0

l

x

([u℄

x

) = ft

M

x

(u

0

) j u

0

2 [u℄

x

g:

Finally, for every w 2

S

x2W

W

x

de�ne a run r

w

through (F; g) by taking

dom r

w

= fx 2 W j w 2 W

x

g

and for every x 2 dom r

w

,

r

w

(x) =

�

[w℄

x

; t

M

x

(w)

�

:

Let R = fr

w

j w 2

S

x2W

W

x

g. It is straightforward to 
he
k that (F; g;R)

is indeed a (C

h

� C

v

)

e

-quasimodel for '. Moreover, by the assumption on M,

the pre-quasimodel (F; g) is �nite. To show that we 
an turn it to a pre-

quasimodel satisfying (sm3), suppose that there are x; y 2 W su
h that xRy

and g(x) is embeddable into g(y) by an embedding �. Then we repla
e in F the

subtree generated by x with the subtree generated by y, thus obtaining some

tree F

0

= (W

0

; R

0

). Let g

0

be the restri
tion of g to W

0

. We de�ne new runs

through (F

0

; g

0

) by taking, for all r; r

0

2 R su
h that x 2 dom r, y 2 dom r

0

,

�(w

r(x)

) = w

r

0

(y)

, t

r(x)

= t

r

0

(y)

, and for all z 2 W

0

, z 2 dom r,

(r + r

0

)(z) =

8

>

<

>

:

r(z); if zRx;

r

0

(z); if z = y or yRz:
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LetR

0

be the 
olle
tion of these new runs together with those runs fromR that

`start at' a point z with yRz. It is straightforward to 
he
k that (F

0

; g

0

;R

0

) is a

(C

h

�C

v

)

e

-quasimodel for '. Sin
e F is �nite, after �nitely many repetitions of

this pro
edure the underlying pre-quasimodel will satisfy (sm3). To 
omply

with the 
ardinality 
onditions (sm1) and (sm2), we 
an use the 
onstru
tion

from the proof of Lemma 2.2. Then, again we 
an get rid of the embeddable

pairs as above, and so on. As at ea
h step the underlying tree 
an get only

smaller, we will end up with a small (C

h

� C

v

)

e

-quasimodel for '. ❑

Now we 
an des
ribe the de
ision algorithm for Log(C

h

�C

v

)

e

as follows. Given

a formula ', by Lemma 2.3, we 
an e�e
tively 
onstru
t the set of all small pre-

quasimodels for '. Then for ea
h su
h small pre-quasimodel, we 
he
k whether

it is a (C

h

�C

v

)

e

-quasimodel for ' (that is, whether 
onditions (q0){(q4) hold).

By Lemma 2.4, this way we �nd a quasimodel for ' i� ' =2 Log(C

h

� C

v

)

e

.

3.3 Complexity

Now we 
omplete the proof of Theorems 1 and 2 by showing that no algorithm


an de
ide whether a given ML

2

-formula ' is satis�able in an e-frame from

(C

h

�C

v

)

e

in primitive re
ursive time or spa
e. To understand the meaning of

this result, let us re
all that every primitive re
ursive fun
tion f : ! ! ! is

(eventually) dominated by one of the (primitive re
ursive) fun
tions h

n

whi
h

are de�ned indu
tively as follows

h

0

(k) = 2k; h

n+1

(k) = h

(k)

n

(1);

where h

(k)

n

denotes the result of k su

essive appli
ations of h

n

; see, e.g., [35℄

and referen
es therein. For example,

h

1

(k) = 2

k

; h

2

(k) = 2

2

���

2

o

k times

:

(In parti
ular, all elementary fun
tions are dominated by h

2

.) The diagonal

h

n

(n)|a variant of the A
kermann fun
tion|is not primitive re
ursive. We

are about to prove that the de
ision problem for our logi
s is at least as hard

as termination of Turing ma
hines running in A
kermann time or spa
e. It

seems that these expanding produ
ts as well as some relevan
e logi
s [43℄ are

the most 
omplex natural and mathemati
ally interesting de
idable theories

known so far (
f. [6℄).

We will use a redu
tion of the rea
hability problem for lossy 
hannel systems

whi
h was shown to have non-primitive re
ursive 
omplexity by S
hnoebe-

len [39℄, even for systems with a single 
hannel. A single 
hannel system is a

triple S = (Q;�;�), where Q = fq

1

; : : : ; q

n

g is a �nite set of 
ontrol states,

� = fa; b; : : : g is a �nite alphabet of messages, and � � Q�f?; !g���Q is a
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�nite set of transitions. A 
on�guration of S is a pair 
 = (q;w), where q 2 Q

and w is a �nite nonempty

9

�-word. Say that a 
on�guration 


0

= (q

0

;w

0

) is

the result of a perfe
t transition of S from 
 = (q;w) and write 


S

!

p




0

if

� there is (q; !; a; q

0

) 2 � su
h that w

0

= aw, or

� there is (q; ?; a; q

0

) 2 � su
h that w = w

0

a.

We say that 


0

is a result of a lossy transition from 
 and write 


S

!

`




0

if


 w 


1

S

!

p




2

w 


0

for some 


1

and 


2

, where (q;w) w (q

0

;w

0

) i� w

0

is a subword of w and q = q

0

.

Denote by

S

!

�

`

and

S

!

�

p

the transitive and re
exive 
losures of

S

!

`

and

S

!

p

,

respe
tively.

As was proved by S
hnoebelen [39℄, the following problem is not de
idable in

primitive re
ursive time: `given a 
hannel system S, two 
on�gurations 


0

and




f

, and any relation! in the interval

S

!

�

p

� ! �

S

!

�

`

;

de
ide whether 


0

! 


f

.' So in order to establish the non-primitive re
ursive

lower bound for our logi
s, it is enough to prove the following:

Lemma 2.5 For every 
hannel system S and all 
on�gurations 


0

, 


f

, one


an 
onstru
t an ML

2

-formula '

S;


0

;


f

whi
h is polynomial in the size of S,




0

, 


f

and satis�es the following two properties:

(a) if '

S;


0

;


f

is satis�able in an e-frame from (C

h

� C

v

)

e

then 


0

S

!

�

`




f

,

(b) if 


0

S

!

�

p




f

then '

S;


0

;


f

is satis�able in an e-frame from (C

h

� C

v

)

e

.

Proof. To 
onstru
t the required formula '

S;


0

;


f

, we will need modal op-

erators interpreted via a

essibility relations that are irre
exive on 
ertain

points of e-frames. So, similarly to the unde
idability proofs of [42,11,14,38℄,

we �x two propositional variables h and v, and de�ne new modal operators by

setting, for every ML

2

-formula  ,

3 =

h

h! 3

�

:h ^ ( _3 )

�i

^

h

:h! 3

�

h ^ ( _3 )

�i

;

3 =

h

v! 3

�

:v ^ ( _3 )

�i

^

h

:v! 3

�

v ^ ( _3 )

�i

;

2 = :3: ; and 2 = :3: :

9

In the standard de�nition, empty words are permitted. However, it is not hard

to see that the 
omputational behaviour of 
hannel systems does not depend on

whether empty words are permitted or not.
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We will use the following abbreviations. For every formula  , 2 2 f2;2g,

and every n < !,

2

+

 =  ^ 2 ;

3

0

 = 2

0

 =  ; 3

n+1

 = 33

n

 ;

2

n+1

 = 22

n

 ; 3

=n

 = 3

n

 ^ 2

n+1

: :

The last formula says: `see  verti
ally in n steps, but not in n+ 1 steps.'

With a slight abuse of notation, we also introdu
e propositional variables

� Æ, for every transition Æ 2 �,

� a, for every a 2 �,

� q, for every q 2 Q,

and use the abbreviation w$

W

a2�

a.

Now suppose that a 
hannel system S and two 
on�gurations




0

= (q

0

; b

1

: : : b

k

); 


f

= (q

f

; a

1

: : : a

m

)

are given. De�ne '

S;


0

;


f

to be the 
onjun
tion of formulas (3){(12):

2

+

�

(h! 2h) ^ (:h! 2:h)

�

(3)

2

+

2

+

�

(v! 2v) ^ (:v! 2:v)

�

(4)

2

+

2

+

�

(w! 2w) ^ (:w! 2:w)

�

(5)

2

+

2

+

�

^

a2�

�

a! 2(w! a)

�

^

^

a6=a

0

(a! :a

0

)

�

(6)

2

+

2

+

�

_

q2Q

q ^

^

q 6=q

0

(q ! :q

0

) ^

^

q2Q

(q ! 2q)

�

(7)

2

+

2

+

�

3> !

�

_

Æ2�

Æ ^

^

Æ 6=Æ

0

(Æ ! :Æ

0

) ^

^

Æ2�

(Æ ! 2Æ)

��

(8)

q

f

^ :w ^3

=m

> ^2

^

0�i<m

(3

=i

> ! a

m�i

) (9)

2

�

2? !

�

q

0

^2

+

�

(3

k

> ! :w) ^

^

0�i<k

(3

=i

> ! b

k�i

)

�

��

(10)

^

Æ=(q;!;a;q

0

)

2

+

2

+

�

Æ !

�

q

0

^

�

w! 23(w ^ q)

�

^

�

w ^ 2? ! 3(w ^ q)

�

^

�

w ^ :3(w ^ q)! a

�

��

(11)
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^

Æ=(q;?;a;q

0

)

2

+

2

+

�

Æ !

�

q

0

^

�

w! 3

�

w ^ q ^2

+

(2? ! a)

��

^2

+

(2? ! 23>)

��

(12)

The intended meaning of these 
onjun
ts will be 
lear from the proof below.

Proof of (a). Suppose that '

S;


0

;


f

is satis�ed at some point (x

0

; u

0

) of an

expanding domain modelM = (H;V) that is based on an e-frame H = (F; f)

from (C

h

� C

v

)

e

, where F = (W;R) and f(x) = (W

x

; R

x

), for x 2 W . By

Lemma 2.2, we may assume that H is �nite, and (x

0

; u

0

) is a root of H.

De�ne new relations

�

R and

�

R

x

(x 2 W ) by taking, for all y; y

0

2 W , u; u

0

2 W

x

,

y

�

Ry

0

i� 9y

00

2 W

h

yRy

00

and (13)

�

(M; (y; u

0

)) j= h () (M; (y

00

; u

0

)) j= :h

�

and

(either y

00

= y

0

or y

00

Ry

0

)

i

;

u

�

R

x

u

0

i� 9u

00

2 W

x

h

uR

x

u

00

and (14)

�

(M; (x; u)) j= v () (M; (x; u

00

)) j= :v

�

and

(either u

00

= u

0

or u

00

R

x

u

0

)

i

:

It is readily 
he
ked that all of the

�

R and

�

R

x

, x 2 W , are transitive,

�

R � R,

�

R

x

� R

x

, and for all x 2 W , u 2 W

x

,

(M; (x; u)) j= 3 i� 9y 2 W (x

�

Ry and (M; (y; u)) j=  );

(M; (x; u)) j= 3 i� 9v 2 W

x

(u

�

R

x

v and (M; (x; v)) j=  ):

Note that ((W;

�

R);

�

f) where

�

f = (W

x

;

�

R

x

) (x 2 W ) is not ne
essarily an e-

frame, be
ause we 
an have x; y 2 W , u; v 2 W

x

su
h that x

�

Ry, u

�

R

y

v, but

u is not

�

R

x

-related to v. Nevertheless, for all x; y 2 W , u; v 2 W

x

, we always

have that

if x

�

Ry and u

�

R

x

v then u

�

R

y

v: (15)

Sin
e there are no proper 
lusters in F,

�

R is irre
exive. The

�

R

x

are not ne
-

essarily irre
exive, but all non-degenerate

�

R

x

-
lusters are ne
essarily `blank'

(i.e., make :w true):

Claim 2.5.1 Let y 2 W and v 2 W

y

be su
h that (M; (y; v)) j= w. Then

v

�

R

y

v does not hold.

Proof. Suppose otherwise, that is v

�

R

y

v and (M; (y; v)) j= w. Then we have

(M; (y; v)) j= 3>, sin
e otherwise (M; (y; u

0

)) j= 2? would hold, and so
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(M; (y; v)) j= :w by (10). Hen
e it follows from (8) that (M; (y; v)) j= Æ

for some Æ 2 �. Now we obtain (M; (y; v)) j= 3(w ^ q), by (11) and (12).

Thus there exists y

1

2 W su
h that y

�

Ry

1

and (M; (y

1

; v)) j= w. Sin
e

�

R is

irre
exive, y

1

6= y. By (15), we have v

�

R

y

1

v. By repeating the above argument,

we must have (M; (y

1

; v)) j= 3> again. Therefore, we 
an 
ontinue in this

manner to obtain an in�nite as
ending 
hain y

�

Ry

1

�

Ry

2

: : : , 
ontrary to F being

Noetherian. ❑

For a �nite sequen
e ~v = (v

1

; v

2

; : : : ; v

n

) of elements of W

y

with v

i

�

R

y

v

i+1

and

y 2 W , we write

val

y

(~v) = d

1

: : : d

n

if, for all i, 1 � i � n, we have (M; (y; v

i

)) j= d

i

for some d

i

2 � [ f:wg.

Say that ~u = (u

1

; u

2

; : : : ; u

r

) is an extension of ~v, if u

i

2 W

y

, u

i

�

R

y

u

i+1

, and

there are i

1

< i

2

< � � � < i

n

� r su
h that u

i

j

= v

j

for 1 � j � n. Say that ~v


arries a �-word in y if there are d

1

; : : : ; d

n

2 � su
h that val

y

(~v) = d

1

: : : d

n

.

A sequen
e ~v is said to be maximal 
arrying a �-word in y if no extension of

~v 
arries a �-word in y.

Claim 2.5.2 For all x 2 W and q

0

2 Q su
h that (M; (x; u

0

)) j= q

0

^ 3>,

if a nonempty sequen
e ~v is maximal 
arrying a �-word in x then there exist

y 2 W , q 2 Q, and a nonempty sequen
e ~u that is maximal 
arrying a �-word

in y su
h that x

�

Ry, (M; (y; u

0

)) j= q, and

(q; val

y

(~u))

S

!

`

(q

0

; val

x

(~v)):

Proof. Suppose that ~v = (v

1

; : : : ; v

n

) and val

x

(~v) = 


1

: : : 


n

for some 


i

2 �.

By (8), there exists a unique Æ 2 � su
h that (M; (x; u

0

)) j= Æ. By (11) and

(12), Æ is of the form (q; !; a; q

0

) or (q; ?; a; q

0

) for some q 2 Q, a 2 �.

Case 1: Æ = (q; !; a; q

0

). Then, by (11),

(M; (x; v

1

)) j= 23(w ^ q)

and there exists a minimal i � n su
h that

(M; (x; v

i

)) j= 3(w ^ q):

Clearly, 1 � i � 2. Take y su
h that x

�

Ry and (M; (y; v

i

)) j= w ^ q. By (5), we

have (M; (y; v

j

)) j= w, for all j � i. As we have v

i

�

R

y

: : :

�

R

y

v

n

by (15),

val

x

(v

i

; : : : ; v

n

) = val

y

(v

i

; : : : ; v

n

):

follows from (6). Take any maximal extension ~u of (v

i

; : : : ; v

n

) 
arrying a

�-word in y. That su
h an extension exists in the �nite e-frame (F; f) fol-

lows from Claim 2.5.1. Assume �rst that i = 2. Then, by (11), we have
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(M; (x; v

1

)) j= a. It follows that

(q; val

y

(~u)) w (q; val

y

(v

2

; : : : ; v

n

))

S

!

p

(q

0

; a val

y

(v

2

; : : : ; v

n

)) = (q

0

; val

x

(~v)):

If i = 1 then

(q; val

y

(~u))

S

!

p

(q

0

; a val

y

(~u)) w (q

0

; val

y

(~v)) = (q

0

; val

x

(~v)):

Case 2: Æ = (q; ?; a; q

0

). By (12), there exists y 2 W su
h that x

�

Ry and

(M; (y; v

1

)) j= w ^ q ^ 2

+

(2? ! a):

By (5) and Claim 2.5.1, (M; (x; v

n

)) j= 2?. Therefore, by (12), we have

(M; (y; v

n

)) j= 3>. Sin
e W

y

is �nite, by (5) and Claim 2.5.1 again, we

�nd v

n+1

2 W

y

with v

n

�

R

y

v

n+1

and (M; (y; v

n+1

)) j= 2?. By (12), we have

(M; (y; v

n+1

)) j= a. By (15), we have v

1

�

R

y

: : :

�

R

y

v

n

. Therefore, by (5), we have

val

x

(~v) = val

y

(~v). Take any maximal extension ~u of (v

1

; : : : ; v

n

; v

n+1

) 
arrying

a �-word in y. By Claim 2.5.1, su
h an extension exists and

val

y

(~u) = wa

for some �-word w having val

y

(~v) as a subword. But then

(q; val

y

(~u))

S

!

p

(q

0

; w) w (q

0

; val

y

(~v)) = (q

0

; val

x

(~v));

whi
h 
ompletes the proof of Claim 2.5.2. ❑

Now we 
an �nd a `lossy run' from 


0

to 


f

as follows. By (9), we have

(M; (x

0

; u

0

)) j= q

f

, and there exists a sequen
e ~w that is maximal 
arrying a

�-word in x

0

and su
h that

val

x

0

(~w) = a

1

: : : a

k

:

Sin
e F is �nite and

�

R is irre
exive, it follows from Claim 2.5.2 that there

exist x

1

; : : : ; x

n

2 W , q

1

; : : : ; q

n

2 Q, nonempty sequen
es ~w

1

; : : : ; ~w

n

su
h

that x

0

�

Rx

1

�

R : : :

�

Rx

n

, (M; (x

i

; u

0

)) j= q

i

, ~w

i

is maximal 
arrying a �-word in

x

i

, 1 � i � n,

(q

n

; val

x

n

( ~w

n

))

S

!

`

: : :

S

!

`

(q

1

; val

x

1

( ~w

1

))

S

!

`

(q

f

; val

x

0

(~w)) = 


f

and (M; (x

n

; u

0

)) j= 2?. By (10), q

n

= q

0

and val

x

n

( ~w

n

) is a subword of

b

1

: : : b

k

. Therefore, (q

0

; b

1

: : : b

k

)

S

!

`

(q

n�1

; val

x

n�1

( ~w

n�1

)), and so 


0

S

!

�

`




f

.

Proof of (b). Suppose that 


0

S

!

�

p




f

, i.e., there exists a �nite sequen
e




0

S

!

p




1

S

!

p

: : :

S

!

p




n

= 


f
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of perfe
t transitions, where 


i

= (q

i

; d

i

1

: : : d

i

`

i

), for i � n. Let Æ

i

denote the

transition from 


i�1

to 


i

, 1 � i � n, that is,

Æ

i

=

8

>

<

>

:

(q

i�1

; !; a; q

i

); if d

i

1

: : : d

i

`

i

= ad

i�1

1

: : : d

i�1

`

i�1

;

(q

i�1

; ?; a; q

i

); if d

i�1

1

: : : d

i�1

`

i�1

= d

i

1

: : : d

i

`

i

a:

We show that the formula '

S;


0

;


f

is satis�able in an e-frame from (C

h

� C

v

)

e

.

First, for ea
h i � n, we de�ne indu
tively a number N

i

< ! by takingN

0

= `

n

and, for 0 < i � n,

N

i

=

8

>

<

>

:

N

i�1

; if Æ

n�i+1

= (q

n�i

; !; a; q

n�i+1

) 2 � for some a 2 �;

N

i�1

+ 1; if Æ

n�i+1

= (q

n�i

; ?; a; q

n�i+1

) 2 � for some a 2 �:

Now we de�ne an e-frame H = (F; f) as follows. Let W = f0; : : : ; ng and let

F = (W;�) if C

h


ontains only re
exive frames, and F = (W;<) otherwise.

For ea
h i 2 W , let W

i

= f0; : : : ; N

i

g and f(i) = (W

i

;�) if C

v


ontains

only re
exive frames, and f(i) = (W

i

; <) otherwise. De�ne valuations for the

propositional variables by taking, for i � n, a 2 �, q 2 Q, Æ 2 �,

V

i

(h) =

8

>

<

>

:

W

i

; if i is even;

;; if i is odd;

V

i

(v) = fj � N

i

j j is eveng;

V

i

(a) = fN

i

� `

n�i

+ j j 1 � j � `

n�i

; d

n�i

j

= ag;

V

i

(q) =

8

>

<

>

:

W

i

; if q = q

n�i

;

;; otherwise;

V

i

(Æ) =

8

>

<

>

:

W

i

; if i < n and Æ = Æ

n�i

;

;; otherwise:

Finally, let M = (H; (V

i

)

i�n

). It is easy to 
he
k that (M; (0; 0)) j= '

S;


0

;


f

holds. ❑

4 An appli
ation to dynami
 topologi
al logi


Dynami
 topologi
al logi
 was introdu
ed in 1997 (see, e.g., [25,26,28,3,27℄) as

a logi
al formalism for des
ribing the behaviour of dynami
al systems, e.g., in
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order to spe
ify liveness and safety properties of hybrid systems [8℄. Roughly,

the idea is to model (some aspe
ts of) these systems by means of dynami


topologi
al stru
tures (DTS) D = (T; g), where T = (�; I) is a topologi
al

spa
e with an interior operator I and g is a 
ontinuous

10

fun
tion on T whi
h

`moves' the points of T in ea
h dis
rete unit of time. What we are interested

in is the asymptoti
 behaviour of iterations of g, in parti
ular, the orbits

fw; g(w); g

2

(w); : : :g of states w 2 �. A natural formalism for speaking about

su
h iterations is obtained by interpreting the previously introdu
ed modal

operator 2 as `always in the future,' its dual 3 as `eventually,' the operator

2 as topologi
al interior and 3 as topologi
al 
losure, by taking, for every

X � �,

2X =

T

0<n<!

g

�n

(X); 3X =

S

0<n<!

g

�n

(X);

2X = IX; 3X = �� I(��X)

and adding the `next time' operator

f

:

f

X = g

�1

(X):

The resulting language will be denoted by ML

Æ

2

.

By a dynami
 topologi
al model with N � ! iterations (DTM

N

, for short)

we understand a triple M = (D;V; N), where D = (T; g) is a DTS with

T = (�; I), and V, a valuation, asso
iates with ea
h propositional variable p

a subset V(p) of �. The truth of a formula ' at a state w depends on how

many iterations of g we 
onsider and at whi
h iteration step we evaluate '.

Let N

0

= N + 1 if N < ! and N

0

= ! otherwise. For every m < N

0

, de�ne

indu
tively the truth relation (M; w) j=

m

' (`in modelM, ' is true at w after

m iterations of g') as follows:

(M; w) j=

m

p i� w 2 V(p); p a propositional variable,

(M; w) j=

m

2' i� w 2 Ifv 2 � j (M; v) j=

m

'g;

(M; w) j=

m

3' i� w 2 C fv 2 � j (M; v) j=

m

'g;

(M; w) j=

m

f

' i� m+ 1 < N

0

and (M; g(w)) j=

m+1

';

(M; w) j=

m

2' i� (M; g

n

(w)) j=

m+n

' for all n > 0 with m+ n < N

0

;

(M; w) j=

m

3' i� (M; g

n

(w)) j=

m+n

' for some n > 0 with m+ n < N

0

:

Here g

n

(w) =

n

z }| {

g : : : g(w) and C is the 
losure operator on T. Note that if a

formula  
ontains no `temporal' operators or if N = ! then the truth relation

(M; w) j=

m

 does not depend on m. Say that ' is satis�able if there exist a

10

Re
all that a set X � � is 
alled open in T if IX = X. A fun
tion g between

topologi
al spa
es is 
alled 
ontinuous if the inverse image g

�1

(X) of every open

set X is open.
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DTM

N

M and a state w in it su
h that (M; w) j=

0

'. We also say that ' is

satis�able in models with �nite iterations if ' is satis�ed in a DTM

N

for some

N < !. It is worth noting that for various natural properties it is suÆ
ient to


onsider �nitely many iterations only. For example, a safety property like `w

will never visit some danger zone P ' is satis�able i� it is satis�able in models

with �nite iterations.

The language ML

Æ

2


an also be interpreted in expanding domain models N

based on e-frames H = (F; f), where F = (W;<) is a �nite stri
t linear order

(that is, a �nite irre
exive linear frame) and, for every x 2 W , f(x) = (�

x

; R

x

)

is a re
exive and transitive frame. Indeed, given su
h an N, we set

� (N; (x; u)) j=

f

' i� there exists an immediate <-su

essor x

0

of x and

(N; (x

0

; u)) j= ',

and leave all the other truth 
onditions from Se
tion 2 un
hanged. Then it is

not hard to see that the proof of Theorem 1 
an be generalised to show the

following:

Theorem 3 Let C

h

be the 
lass of all �nite stri
t linear orders and let C

v

be

the 
lass of all transitive and re
exive frames. Then the logi


f' 2 ML

Æ

2

j 8H 2 (C

1

� C

2

)

e

H j= 'g

has the e-produ
t fmp and is de
idable, but not in time bounded by a primitive

re
ursive fun
tion.

It is a 
hallenging open question whether the satis�ability problem forML

Æ

2

-

formulas in dynami
 topologi
al stru
tures is de
idable. The known partial

results are as follows. In [21℄ it is proved that the problem is unde
idable, even

for models with �nite iterations, if we 
onsider DTSs with homeomorphisms.

In [22℄ it is shown that the problem is again unde
idable if we 
onsider DTSs

with 
ontinuous mappings but based on Aleksandrov topologi
al spa
es only

(see below for de�nition). Here we prove|using Theorem 3 above|that the

satis�ability problem for ML

Æ

2

-formulas in models with �nite iterations is

de
idable, but not in primitive re
ursive time. It is not hard to see (using the

relativisation te
hnique of, say, [11℄) that satis�ability in models with �nite

iterations is polynomially redu
ible to general satis�ability. Thus we obtain

that the general satis�ability problem 
annot be de
ided in primitive re
ursive

time either.

Theorem 4 The satis�ability problem for ML

Æ

2

-formulas in dynami
 topo-

logi
al models with �nite iterations is de
idable, but not in primitive re
ursive

time.

Proof. We remind the reader that every re
exive and transitive frame (i.e.,
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frame for modal logi
 S4) G = (�; R) gives rise to a topologi
al spa
e T

G

=

(�; I

G

), where, for every X � �,

I

G

(X) = fx 2 X j 8y 2 � (xRy ! y 2 X)g:

Su
h spa
es are known as Aleksandrov spa
es. Alternatively they 
an be de-

�ned as topologi
al spa
es where arbitrary (not only �nite) interse
tions of

open sets are open; for details see [1,5℄. The next lemma follows immediately

from [3,28,27℄:

Lemma 4.1 For every N < !, an ML

Æ

2

-formula is satis�able in a DTM

N

i�

it is satis�able in a DTM

N

that is based on a (�nite) Aleksandrov spa
e.

Thus, it is enough to 
onsider DTMs of the formM = ((T

G

; g);V; N), where

G = (�; R) is a re
exive and transitive frame. In this 
ase we 
an rewrite the

truth 
onditions for the operators 2 and 3 in a more familiar way:

(M; w) j=

m

2' i� (M; v) j=

m

' for every v 2 � with wRv;

(M; w) j=

m

3' i� (M; v) j=

m

' for some v 2 � su
h that wRv:

It is not hard to sees that for any fun
tion g : �! �,

g is 
ontinuous on T

G

i� 8w; v 2 �

�

wRv ! g(w)Rg(v)

�

: (16)

Indeed, suppose �rst that g is 
ontinuous and wRv. Then

w 2 fu 2 � j g(w)Rg(u)g = g

�1

�

fu 2 � j g(w)Rug

�

is open, and so g(w)Rg(v) follows. Conversely, take any open set X in T

G

and

let w 2 g

�1

(X), wRv. Then g(w) 2 X and g(w)Rg(v), from whi
h g(v) 2 X

follows.

Moreover, we have the following:

Lemma 4.2 AnML

Æ

2

-formula ' is satis�able in an e-frame H = (F; f) where

F is a �nite stri
t linear order and the f(x) are re
exive and transitive frames

i� ' is satis�able in some DTM

N

with N < !.

Proof. ()) Suppose that ' is satis�ed in a model N = (H;V) based on an

e-frame H = (F; f), where F = (W;<) is a �nite stri
t linear order and ea
h

f(x) = (�

x

; R

x

) is a re
exive and transitive frame, for x 2 W . We may assume

that

F = (f0; : : : ; Ng; <)

for some N < !, and (N; (0; r)) j= ' for a root r of f(0). De�ne a DTM

N

M = (D;U; N) based on the DTS D = ((�; I

G

); g) with G = (�; R) and the
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valuation V by taking

� =

[

n�N

(fng ��

n

);

for ea
h (n; w) 2 �

g(n; w) =

8

<

:

(n + 1; w); if n < N ,

(n; w); if n = N ,

for all (n

1

; w

1

); (n

2

; w

2

) 2 �

(n

1

; w

1

)R(n

2

; w

2

) i� n

1

= n

2

and w

1

R

n

1

w

2

;

and, for every propositional variable p,

U(p) = f(n; w) 2 � j w 2 V

n

(p)g:

Clearly,M is a DTM

N

(in parti
ular, g is 
ontinuous by (16)). Moreover, it is

easy to show by indu
tion that for every ML

Æ

2

-formula  , every n � N and

every w 2 �

n

,

(N; (n; w)) j=  i� (M; (n; w)) j=

n

 :

(() Conversely, by Lemma 4.1 we may suppose that ' is satis�ed in a DTM

N

M = ((T

G

; g);V; N);

where N < ! and G = (�; R) is a re
exive and transitive frame. So, we 
an

�nd a v

0

2 � su
h that (M; v

0

) j=

0

'.

Note �rst that without loss of generality we may assume that g is `onto.'

Indeed, if this is not the 
ase, then we take the modelM

0

= ((T

G

0

; g

0

);V

0

; N)

with G

0

= (�

0

; R

0

), where

� �

0

= N ��;

� (n

1

; w

1

)R

0

(n

2

; w

2

) i� n

1

= n

2

and w

1

Rw

2

;

� g

0

(0; w) = (0; g(w)) and, for any n 2 N , g

0

(n+ 1; w) = (n; w);

� (M

0

; (n; w)) j= p i� (M; w) j= p.

Then, for every  and every m � N , we have

(M

0

; (0; w)) j=

m

 i� (M; w) j=

m

 :

Now, for every n � N and every propositional variable p, let

� �

n

= �,
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� uR

n

v i� g

n

(u)Rg

n

(v),

� U

n

(p) = f(n; w) j g

n

(w) 2 V(p)g,

and let H = ((f0; : : : ; Ng; <); f) with f(n) = (�

n

; R

n

), andN = (H; (U

n

)

n�N

).

It is not diÆ
ult to prove by indu
tion that, for all w 2 � and m � N ,

(M; g

m

(w)) j=

m

 i� (N; (m;w)) j=  :

Note that we use that g is `onto' in the indu
tion step for 2.

In general, H is not an e-frame be
ause, in view of (16), we only have uR

n

v !

uR

n+1

v but not the other way round. However, we 
an take the transitive

unravelling f

�

(n) = (�

�

n

; R

�

n

) of f(n) = (�

n

; R

n

), where

�

�

n

= f(v

0

; v

1

; : : : ; v

k

) j v

i

R

n

v

i+1

and v

i

6= v

i+1

g

and R

�

n

is the transitive and re
exive 
losure of the relation R

0

n

de�ned by

taking

(v

0

; : : : ; v

k

)R

0

n

(v

0

; : : : ; v

k

; v

k+1

) i� v

k

R

n

v

k+1

:

The frame H

�

= ((f0; : : : ; Ng; <); f

�

) is an e-frame. Indeed, suppose that both

(v

0

; : : : ; v

k

) and (v

0

; : : : ; v

k

; v

k+1

; : : : ; v

m

) are inW

�

n

. Then, by the de�nition of

R

�

n

, we have v

k

R

n

v

k+1

R

n

: : : R

n

v

m

and so (v

0

; : : : ; v

k

)R

�

n

(v

0

; : : : ; v

k

; v

k+1

; : : : ; v

m

).

Now 
onsider the model N

�

= (H

�

;U

�

), where U

�

= (U

�

n

)

n�N

and

U

�

n

(p) = f(v

0

; v

1

; : : : ; v

m

) 2 W

�

n

j v

m

2 U

n

(p)g:

By the unravelling theorem of 
lassi
al modal logi
, we have

(N; (n; v

0

)) j=  i� (N

�

; (n; (v

0

))) j=  

for every formula  . ❑

Now Theorem 4 follows immediately from Lemma 4.2 and Theorem 3. ❑

5 Expanding domain produ
ts vs expanding relativisations

The original de�nition of `expanding produ
t' frames and logi
s from [30℄ was

motivated by the idea of relativising the standard produ
t 
onstru
tion.

Given unimodal Kripke frames F

1

= (W

1

; R

1

) and F

2

= (W

2

; R

2

), their produ
t

is de�ned to be the bimodal frame

F

1

� F

2

= (W

1

�W

2

;

�

R

1

;

�

R

2

);
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where W

1

�W

2

is the Cartesian produ
t of W

1

and W

2

and, for all u; u

0

2 W

1

,

v; v

0

2 W

2

,

(u; v)

�

R

1

(u

0

; v

0

) i� uR

1

u

0

and v = v

0

;

(u; v)

�

R

2

(u

0

; v

0

) i� vR

2

v

0

and u = u

0

:

Let L

1

be a normal modal logi
 in the language with 2, 3 and let L

2

be a

normal modal logi
 in the language with 2, 3. Assume also that both L

1

and

L

2

are Kripke 
omplete. Then the produ
t of L

1

and L

2

is the normal bimodal

logi
 L

1

� L

2

in the language ML

2

with the boxes 2; 2 and the diamonds

3; 3 whi
h is 
hara
terised by the 
lass of produ
t frames F

1

� F

2

, where F

i

is a frame for L

i

, i = 1; 2. (Here we assume that 2 and 3 are interpreted by

�

R

1

, while 2 and 3 are interpreted by

�

R

2

.)

A

ording to the de�nition in [30℄, a frame G = (W;R

0

1

; R

0

2

) is an expanding

relativised produ
t frame if there exist frames F

1

= (U

1

; R

1

) and F

2

= (U

2

; R

2

)

su
h that

� G is a subframe of F

1

� F

2

(that is, W � U

1

� U

2

and R

0

i

=

�

R

i

�W for

i = 1; 2), and

� for all (w

1

; w

2

) 2 W and u 2 U

1

, if w

1

R

1

u then (u; w

2

) 2 W .

Given two 
lasses C

1

, C

2

of unimodal frames, denote by

(C

1

� C

2

)

ex

the 
lass of all expanding relativised produ
t frames that are subframes of

some F

1

� F

2

, for some F

i

2 C

i

, i = 1; 2, and let

Log (C

1

� C

2

)

ex

= f' 2 ML

2

j 8G 2 (C

1

� C

2

)

ex

G j= 'g:

Given Kripke 
omplete unimodal logi
s L

1

and L

2

, let

(L

1

� L

2

)

ex

= Log (FrL

1

� FrL

2

)

ex

be the expanding relativised produ
t of L

1

and L

2

. We obviously have

(L

1

� L

2

)

ex

� L

1

� L

2

:

As is shown in [30℄, if both L

1

and L

2

are subframe logi
s (that is, ea
h FrL

i

is 
losed under|not ne
essarily generated|subframes), then (L

1

� L

2

)

ex

is a


onservative extension of both L

1

and L

2

. Note that all of the logi
s listed at

the end of Se
tion 2 are subframe logi
s.

Further, it is not hard to see that expanding relativised produ
ts are redu
ible

to produ
ts. Indeed, let ' be an ML

2

-formula and e a propositional variable
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whi
h does not o

ur in '. De�ne by indu
tion on the 
onstru
tion of ' an

ML

2

-formula '

e

as follows:

p

e

= p (p a propositional variable);

( ^ �)

e

=  

e

^ �

e

;

(: )

e

= : 

e

;

(2 )

e

= 2 

e

;

(2 )

e

= 2(e!  

e

):

Letmd(') denote the modal depth of ', that is, the maximal number of nested

modal operators in '. By a stru
tural indu
tion on ', one 
an easily prove

the following:

Proposition 5 For all Kripke 
omplete unimodal logi
s L

1

and L

2

and all

ML

2

-formulas ',

' 2 (L

1

� L

2

)

ex

i�

�

e ^2

�md(')

2

�md(')

(e! 2e)

�

! '

e

2 L

1

� L

2

;

where 2

�n

 =

V

k�n

2

k

 , for 2 2 f2;2g.

The following proposition 
onne
ts expanding domain produ
ts with expand-

ing domain relativisations:

Proposition 6

(i) If both C

h

and C

v

are 
losed under subframes then

Log(C

h

� C

v

)

e

� Log(C

h

� C

v

)

ex

:

(ii) Let C

h

and C

v

be as in the formulations of Theorems 1 or 2. Then

Log(C

h

� C

v

)

e

= Log(C

h

� C

v

)

ex

:

Proof. To prove (i), let us assume that a formula ' is refuted in an expanding

relativised produ
t frame G � F

1

�F

2

su
h that F

1

2 C

h

and F

2

2 C

v

. Assume

also that G = (W;R

0

1

; R

0

2

) and F

i

= (U

i

; R

i

), i = 1; 2. Now let

X = fu 2 U

1

j 9v 2 U

2

(u; v) 2 Wg;

F =

�

X;R

1

\ (X �X)

�

:
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For every x 2 X, let

W

x

= fv 2 U

2

j (x; v) 2 Wg;

f(x) =

�

W

x

; R

2

\ (W

x

�W

x

)

�

:

Sin
e both C

h

and C

v

are 
losed under subframes, it is straightforward to see

that (F; f) is an e-frame in (C

h

� C

v

)

e

and ' 
an be refuted in it.

The in
lusion � of (ii) follows from (i) and from the fa
t that all the 
lasses

in the formulations of Theorems 1 and 2 are 
losed under subframes. To prove

�, let us assume that some formula ' is refuted in an e-frame (F; f), where

F = (W;R) 2 C

h

, and f(x) = (W

x

; R

x

) 2 C

v

for all x 2 W . By Lemma 2.2, we

may assume that F is a (�nite) transitive tree. It is not hard to see (using the

fa
t that F is a tree) that by renaming the points of the frames f(x), x 2 W ,

we 
an always end up with an e-frame having the following property: for all

x 6= y 2 W , u 2 W

x

\W

y

,

either xRy or yRx or there is z 2 W su
h that zRx, zRy and u 2 W

z

: (17)

Now if C

v

is not a 
lass of linear frames (that is, it is not like in the 
ases

(C6) of Theorem 1 or (C9) of Theorem 2), then de�ne a frame G = (U; S)

by taking U =

S

x2W

W

x

and S to be the transitive 
losure of

S

x2W

R

x

. If C

v

is as in (C6) or (C9), then de�ne S to be the minimal transitive and linear

extension of

S

x2W

R

x

instead.

Claim 6.1 For all x 2 W , u; v 2 W

x

,

uSv i� uR

x

v:

Proof. The (() dire
tion is obvious. The proof of the ()) dire
tion is by

indu
tion on the length n of a minimal 
hain

uR

x

1

u

1

R

x

2

: : : R

x

n

u

n

= v: (18)

We prove the general 
ase only, and leave its modi�
ation to the linear 
ase

to the reader. The 
ase n = 1 follows by (17), given that (F; f) is an e-frame

and F is a tree. Now suppose that n > 1 and the 
laim holds for all k < n.

If x = x

1

then u

1

2 W

x

, so uR

x

v follows by IH and transitivity of R

x

. So

suppose x 6= x

1

. As u 2 W

x

\W

x

1

, we 
an apply (17). There are several 
ases,

we dis
uss only the most 
omplex one, that is, when there is z 2 W su
h that

zRx, zRx

1

and u 2 W

z

. By the minimality of the 
hain (18), we have x

1

6= x

2

.

As u

1

2 W

x

1

\W

x

2

, we 
an apply (17) again. Again, we 
onsider only the 
ase

when there is z

0

2 W su
h that z

0

Rx

1

, z

0

Rx

2

and u

1

2 W

z

0

. As F is a tree,
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either z = z

0

, or zRz

0

or z

0

Rz. The �rst two 
ases 
annot happen, otherwise

uR

x

2

u

2

whi
h 
ontradi
ts the minimality of the 
hain (18). Thus z

0

Rz, and so

we have uR

x

u

1

be
ause (F; f) is an e-frame. Finally, uR

x

v follows by IH and

transitivity of R

x

. ❑

By Claim 6.1, the representation H of the e-frame H de�ned in Remark 1 is

a subframe of F�G. It remains to show that G belongs to C

v

. By de�nition,

G is transitive. By Claim 6.1, G is re
exive (irre
exive, linear) i� all the f(x)

(x 2 W ) are re
exive (irre
exive, linear). So we only need to show that G is

Noetherian whenever all the f(x) (x 2 W ) are Noetherian. Sin
e U is �nite,

it is enough to show that there are no proper S-
lusters in G.

Suppose otherwise, that is there are u 6= v 2 U , x 2 W su
h that uSvR

x

u.

By Claim 6.1, we have uR

x

v, whi
h is a 
ontradi
tion as there are no proper

R

x

-
lusters in f(x). ❑

As a 
onsequen
e of Proposition 6 (i) we obtain that if both L

1

and L

2

are

subframe logi
s then

(L

1

� L

2

)

e

� (L

1

� L

2

)

ex

:

Moreover, a proof similar to that of Proposition 6 (ii) shows that in fa
t

(L

1

� L

2

)

e

= (L

1

� L

2

)

ex

;

whenever L

1

; L

2

2 fK;K4;S4;S5;K4:3;S4:3g.

It is to be noted, however, that Proposition 6 does not hold for arbitrary

subframe logi
s L

1

and L

2

. Consider, for example, the formula

� = 2? ^2

+

2

+

(2? ! 332?) (19)

It is 
learly satis�ed (under any valuation) in the e-frame (F; f) in whi
h

F = (N ; <) and f(n) = (f0; 1; : : : ; ng; <). Obviously, F j= K4 and f(n) j= GL

for ea
h n 2 N . However it is impossible to `embed' (F; f) into a real prod-

u
t without an in�nite as
ending 
hain in the verti
al 
omponent (although

all the verti
al 
omponents f(n) of (F; f) itself are �nite). In fa
t, one 
an

readily show that if � is satis�ed in an expanding relativised produ
t frame

G = (W;R

1

; R

2

) where R

1

is transitive and R

2

is irre
exive, then W 
ontains

an in�nite as
ending R

2

-
hain. This means that � is not satis�able in any

expanding relativised produ
t frame for (K4�GL)

ex

, and so

(K4�GL)

e

6= (K4�GL)

ex

:
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6 Dis
ussion

In this paper, we have presented �rst examples of produ
ts of modal logi
s

with expanding domains whi
h are

� de
idable, but

� not in primitive re
ursive time,

while the 
orresponding produ
t logi
s (with 
onstant domains) are

� unde
idable.

Numerous interesting problems 
on
erning logi
s of expanding domain frames

remain open:

1. Our de
idability proofs make use of the e-produ
t fmp. Unfortunately, if we

relax the 
onditions of Theorems 1 and 2, then the resulting logi
s do not have

the e-produ
t fmp any more. It is easy to see using, for instan
e, the formula

2

+

3> ^ 2

+

3(p ^2:p) (20)

that (GL�K4)

e

does not have the e-produ
t fmp. In fa
t, a similar formula

that has 3 and 2 (see the proof of Lemma 2.5) in pla
e of 3 and 2 shows

the la
k of the e-produ
t fmp for (L

1

� L

2

)

e

, whenever L

1

is any logi
 that

has a frame 
ontaining a point with in�nitely many su

essors, and FrL

2

is

any 
lass of transitive frames 
ontaining an in�nite as
ending 
hain of distin
t

points. Note that GL is determined by the 
lass C of all �nite irre
exive

and transitive frames, and so Log (C � FrK4)

e

has the e-produ
t fmp (and is

de
idable) by Theorem 1. Thus (20) also shows that even if ea
h 
omponent

logi
 L

i

is determined by a 
lass C

i

of frames (i = 1; 2), the logi
s (L

1

�L

2

)

e

=

Log (FrL

1

� FrL

2

)

e

and Log (C

1

� C

2

)

e

are not ne
essarily the same.

It is also possible to `for
e' an in�nite as
ending 
hain `horizontally:' the for-

mula

2

+

3(p ^32

+

:p)

shows the la
k of e-produ
t fmp for (L

1

� L

2

)

e

, whenever FrL

1

is any 
lass

of transitive frames 
ontaining an in�nite as
ending 
hain of distin
t points,

and L

2

is any logi
 that has a frame 
ontaining a point with in�nitely many

su

essors.

Moreover, as is shown in [22℄, the logi


Log

�

f(N; <)g � C

�

e

be
omes unde
idable, whenever C is any of the 
lasses (C1){(C6) listed in

Theorem 1 above. It follows that the satis�ability problem forML

Æ

2

-formulas
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in DTM

!

s based on Aleksandrov spa
es with 
ontinuous mappings is unde
id-

able as well. De
idability of other e-produ
ts without the the e-produ
t fmp

(su
h as, say, (K4�K4)

e

and (K4:3�K4:3)

e

) remains open.

2. As is shown in [11, Se
tion 9.1℄, logi
s of the form (L � (S5 � S5))

ex

are

redu
ible to the two-variable fragment of quanti�ed L with expanding do-

mains. A

ording to [23℄, these �rst-order modal logi
 fragments are a
tually

unde
idable, whenever L has a frame 
ontaining a point with in�nitely many

su

essors. (For the 
onstant domain 
ase this was proved in [12℄.) We 
on-

je
ture that the proof te
hniques of [23℄ and [19℄ 
an be 
ombined to show

unde
idability of all logi
s of the form (L

1

� (L

2

� L

3

))

ex

, where L

1

, L

2

and

L

3

are any Kripke 
omplete modal logi
s between K and S5.

3. We did not 
onsider the problem of �nding axiomatisations for e-produ
t

logi
s. Here we just list a sele
tion of open questions. Denote by [L

1

; L

2

℄

e

the

bimodal logi
 obtained by adding to the independent fusion of L

1

and L

2

the

axioms

33p! 33p and 32p! 23p;

and 
all it the expanding 
ommutator of L

1

and L

2

. It is easy to see that

[L

1

; L

2

℄

e

� (L

1

� L

2

)

e

;

and if L

1

and L

2

are subframe logi
s then

[L

1

; L

2

℄

e

� (L

1

� L

2

)

ex

:

As is shown in [11, Theorem 9.10℄, (L

1

� L

2

)

ex

= [L

1

; L

2

℄

e

whenever L

1

2

fK;K4;S4;S5g and L

2

is axiomatisable by modal formulas with a universal

Horn �rst-order translation. It would be interesting to �nd pairs of logi
s su
h

that (L

1

� L

2

)

ex

6= [L

1

; L

2

℄

e

, but (L

1

� L

2

)

ex

(or (L

1

� L

2

)

e

) is still �nitely

axiomatisable. Are there any pairs of logi
s su
h that

(L

1

� L

2

)

ex

= [L

1

; L

2

℄

e

; but (L

1

� L

2

) 6= [L

1

; L

2

℄;

where [L

1

; L

2

℄ = ( [L

1

; L

2

℄

e

+ 33p! 33p )?

Further, as is shown in [14℄, the produ
t logi
s (su
h as, say, GL�GL) whose

`expanding domain' versions are de
idable by Theorem 2 are not even re
ur-

sively enumerable. It is also shown in [14℄ that 
ommutators like [GL;GL℄

are (though also unde
idable) Kripke in
omplete, so 
annot 
oin
ide with the


orresponding produ
t logi
s (whi
h are Kripke 
omplete by de�nition). Does

any of these de
idable e-produ
ts 
oin
ide with the 
orresponding expanding


ommutator? If not, are they �nitely axiomatisable? Are these expanding 
om-

mutators de
idable or Kripke 
omplete? Note that the formula (19) a
tually

shows that

[K4;GL℄

e

6= (K4�GL)

ex

;

but it is not known whether [K4;GL℄

e

and (K4�GL)

e

are di�erent.
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