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Abstrat

We show that|unlike produts of `transitive' modal logis whih are usually

undeidable|their `expanding domain' relativisations an be deidable, though not

in primitive reursive time. In partiular, we prove the deidability and the �nite

expanding produt model property of bimodal logis interpreted in two-dimensional

strutures where one omponent|all it the `ow of time'|is

� a �nite linear order or a �nite transitive tree

and the other is omposed of strutures like

� transitive trees/partial orders/quasi-orders/linear orders or only �nite suh stru-

tures

expanding over the time. (It is known that none of these logis is deidable when

interpreted in strutures where the seond omponent does not hange over time.)

The deidability proof is based on Kruskal's tree theorem, and the proof of non-

primitive reursiveness is by redution of the reahability problem for lossy hannel

systems. The result is used to show that the dynami topologial logi interpreted in

topologial spaes with ontinuous funtions is deidable (in non-primitive reursive

time) if the number of funtion iterations is assumed to be �nite.
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1 Introdution

Started in the 1970s [40,41℄, the researh programme of investigating and using

produts of modal logis

1

as a multi-dimensional formalism for a variety of

promising appliations in mathematial logi, omputer siene and arti�ial

intelligene (see, e.g., [2,36,9,4,37,13,7,45℄) has reently ulminated in a series

of interesting deidability and omplexity results.

Deidability: Roughly, a two-dimensional produt of modal logis an be

deidable only if, in order to hek satis�ability of a formula ' in produt

frames for the logi, it suÆes to onsider those of them where the depth of

one of the omponent frames is bounded by some �nite number depending

on '. In other words, only produts of standard modal logis with K-like

or S5-like

2

logis are deidable [13,44,11℄. Three-dimensional produts and

produts of transitive logis with arbitrary �nite or in�nite frames are not

deidable [31,17,38,14℄.

Complexity: The omputational omplexity of deidable produt logis turns

out to be muh higher than the omplexity of their omponents. For exam-

ple, it is shown in [32℄ that all produt logis between K�K and S5� S5

are oNExpTime-hard (while K is known to be PSpae-omplete and S5

oNP-omplete). Aording to [33℄, even the satis�ability problem for for-

mulas of modal depth 2 inK�K-frames isNExpTime-hard. Log(N ; <)�S5

is ExpSpae-hard, while PTL�K is not elementary [16,18,11℄.

Suh is the prie we have to pay for the strong interation between the modal

operators of the omponent logis of a produt, whih is syntatially reeted

by the (seemingly harmless) ommutativity and Churh{Rosser axioms

33p$ 33p and 32p! 23p:

The general researh problem we are faing now an be formulated as follows:

is it possible to redue the omputational omplexity of produt logis by re-

Email addresses: gabelaia�rmi.anet.ge (D. Gabelaia), kuag�ds.kl.a.uk

(A. Kuruz), frank�s.liv.a.uk (F. Wolter), mihael�ds.bbk.a.uk

(M. Zakharyashev).
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For the de�nition of produts of modal logis see Setion 5 below.

2

The de�nitions of some standard modal logis like K, S5, et., an be found in

Setion 2.
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laxing the interation between their omponents and yet keeping some of the

useful and attrative features of the produt onstrution?

One approah to this problem is motivated by strutures often used in suh

areas as temporal and modal �rst-order logis, temporal data or knowledge

bases (say, temporal desription logis) or logial modelling of dynamial sys-

tems. What we mean is models/strutures with expanding domains: if at a

ertain time point (or in a world) w we have a `population' �

w

of elements

(objets), then at every later point (in every aessible world) u the popula-

tion �

u

annot be smaller but an grow|i.e., �

w

� �

u

. Standard produt

logis respet the stronger onstant domain assumption aording to whih

�

w

= �

u

for all u and w.

In the ase of dynami topologial logis [27,21℄, expanding domains orre-

spond to the ondition that the funtion desribing movements of points in

topologial spaes is ontinuous (while onstant domains orrespond to home-

omorphisms).

Models with expanding domains naturally arise also in the ontext of tableau-

and resolution-based deision proedures that have been developed and imple-

mented for ertain monodi fragments of �rst-order temporal logi and some

modal desription logis [15,24,20℄ whih inlude, in partiular, the (expand-

ing) produts of the orresponding temporal and modal logis with S5. One

of the most diÆult problems in the development and implementation was the

onit between modularity and the neessity to baktrak after introduing

every new element; in fat, the systems developed so far are onsiderably more

eÆient for expanding domain than for onstant domain interpretations.

Produts of modal logis with expanding domains were introdued in [30℄,

where it was shown that they annot be more omplex than (in fat, are re-

duible to) produts. But an they be simpler? For example, is it possible

that a produt logi is undeidable while its expanding relativisation is de-

idable? A similar question was asked in [12℄ where it was shown that the

two-variable fragment of most �rst-order modal logis with onstant domains

is undeidable.

The main ahievement of this paper is the disovery of the �rst pairs of `stan-

dard' modal logis whose produt with expanding domains is indeed simpler

than their usual produt. For example, we show that the expanding produt

of GL:3 and GL is deidable and has the expanding produt �nite model

property|in ontrast to the produt GL:3 �GL whih is undeidable and

does not even have the (abstrat) �nite model property [14℄. As a onsequene

of our results on expanding produts, we also prove that the dynami topologi-

al logi with ontinuous funtions and �nitely many iterations is deidable|

again in ontrast to the undeidability in the ase of dynami topologial
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strutures with homeomorphisms [21℄.

Our main results an be summarised as follows. Bimodal logis interpreted in

expanding produt frames where the �rst omponent onsists of

� �nite linear orders or �nite transitive trees

and the seond is omposed of frames like

� transitive trees/partial orders/quasi-orders/linear orders or only �nite suh

strutures

are deidable and have the expanding produt �nite model property. If the

seond (`vertial') omponent is Noetherian (say, frames for GL:3 or GL),

then we may also allow in�nite Noetherian �rst (`horizontal') omponents.

None of these logis is deidable when interpreted in models with onstant

domains [14℄.

The deidability proof is based on Kruskal's tree theorem [29℄ and does not

establish any elementary upper bound for the time/spae omplexity of the

deision algorithm. We show that indeed no suh upper bound exists by prov-

ing that there is no primitive reursive deision algorithm for suh logis. The

proof uses a reent result of Shnoebelen [39℄ aording to whih reahabil-

ity in lossy hannel systems is not deidable in time bounded by a primitive

reursive funtion. This atually explains why numerous attempts to prove

deidability of expanding produts failed: quite often the idea was to redue

the deision problem to S!S whih is not elementary yet primitive reursive

[6℄. As a onsequene, we also obtain that the dynami topologial logi with

ontinuous funtions annot be deided in primitive reursive time, no matter

whether the number of funtion iterations is assumed to be �nite or in�nite.

The struture of the paper is as follows. In Setion 2 we introdue our entral

notions of two-dimensional expanding domain frames and the interpretation

of bimodal formulas in them. In Setion 3 we formulate and prove the main

deidability results. This is done in three steps. First, in Setion 3.1, we use

the maximal point tehnique of [10℄ to show that the logis under onsidera-

tion enjoy the expanding produt �nite model property. Then, in Setion 3.2,

Kruskal's tree theorem and K�onig's in�nity lemma are employed for proving

deidability of these logis. Finally, in Setion 3.3, we enode the reahabil-

ity problem for lossy hannel systems to establish the non-primitive reursive

lower bound. Setion 4 shows how the obtained results an be used for investi-

gating the omputational behaviour of dynami topologial logis. In Setion 5

we ompare the expanding domain produts introdued in Setion 2 with ex-

panding relativised produts of [30℄. We onlude in Setion 6 with a disussion

of the obtained results and open problems.
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2 Two-dimensional frames with expanding domains

LetML

2

be the usual propositional bimodal language with two diamonds 3,

3 (and their dual boxes 2, 2) and the Boolean onnetives. The intended

`expanding domain semantis' for this language is de�ned as follows.

Let F = (W;R) be a (`horizontal') frame

3

and let f be a funtion assoiating

with every x 2 W a (`vertial') frame

f(x) = (W

x

; R

x

)

in suh a way that whenever xRy in F then f(x) is a subframe of f(y) in the

sense that

� W

x

� W

y

and

� for all u; v 2 W

x

, we have uR

x

v i� uR

y

v.

Then the pair H = (F; f) is alled an expanding domain frame, or simply an

e-frame (see Fig. 1 for an example).
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Fig. 1. An e-frame (F; f).

The following de�nition shows how to interpretML

2

-formulas in e-frames. A

valuation V in an e-frame H = (F; f) is a set (V

w

)

w2W

of valuations V

w

in

the frames f(w). The pair M = (H;V) is alled an expanding domain model

based on H. The truth relation (M; (x; u)) j= ', where ' 2 ML

2

, x 2 W and

u 2 W

x

, is de�ned indutively as follows:

� (M; (x; u)) j= p i� u 2 V

x

(p), where p is a propositional variable,

3

We remind the reader that a pair F = (W;R) is alled a (unimodal) Kripke frame

if W is a nonempty set and R is a binary relation on W . A valuation in F is a

funtion V mapping propositional variables to subsets of W .
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� (M; (x; u)) j= 3 i� there is y 2 W suh that xRy and (M; (y; u)) j=  ,

� (M; (x; u)) j= 3 i� there is v 2 W

x

suh that uR

x

v and (M; (x; v)) j=  

(plus the standard lauses for the Boolean onnetives). We say that ' is valid

in H (H j= ', in symbols) if (M; (x; u)) j= ' holds for all x 2 W , u 2 W

x

and all models M based on H. Note that every e-frame validates the left

ommutativity and Churh{Rosser axioms

33p! 33p and 32p! 23p

but not the right ommutativity 33p! 33p (see Fig. 1).

Given two lasses C

1

, C

2

of unimodal frames, denote by

(C

1

� C

2

)

e

the lass of all e-frames H = (F; f) suh that F 2 C

1

and f(x) 2 C

2

for every

point x from F, and let

Log (C

1

� C

2

)

e

= f' 2 ML

2

j 8H 2 (C

1

� C

2

)

e

H j= 'g:

Remark 1 Observe that Log (C

1

� C

2

)

e

is always a Kripke omplete normal

bimodal logi. Indeed, given an expanding domain model M = (H;V) as

above, we an `represent' it as a usual Kripke modelM = (H;V) based on the

bimodal frame

H = (f(x; u) j x 2 W; u 2 W

x

g; R

h

; R

v

);

where

(x; u)R

h

(y; v) i� u = v and xRy;

(x; u)R

v

(y; v) i� x = y and uR

x

v;

V(p) = f(x; u) j u 2 V

x

(p)g:

Then, for every ML

2

-formula ', we have (M; (x; u)) j= ' i� (M; (x; u)) j= '.

Note that if the e-frame H = (F; f) is suh that f(x) = G for all x in F, then H

oinides with what is alled the produt of frames F and G; for more details

see Setion 5.

Let L

1

be a normal unimodal logi in the language with the diamond 3. Let

L

2

be a normal unimodal logi in the language with the diamond 3. Assume

also that both L

1

and L

2

are Kripke omplete. Then the expanding domain

produt (or e-produt, for short) of the logis L

1

and L

2

is

(L

1

� L

2

)

e

= Log (FrL

1

� FrL

2

)

e

;
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where FrL

i

is the lass of all Kripke frames for L

i

, i = 1; 2. Note that (L

1

�L

2

)

e

is a onservative extension of both L

1

and L

2

.

In order to make the paper self-ontained, here we give a list of the standard

modal logis we deal with. All logis L in this list are omplete with respet

to the lasses FrL of their Kripke frames:

� FrK is the lass of all frames (W;R),

� K4 = K � 2p ! 22p and FrK4 is the lass of all frames (W;R) with

transitive R,

� S4 = K4�2p! p and Fr S4 is the lass of frames (W;R) with transitive,

reexive R,

� S5 = S4 � 3p ! 23p and Fr S5 is the lass of frames (W;R) where R is

an equivalene relation,

� GL = K4� 2(2p ! p) ! 2p and FrGL is the lass of all frames (W;R)

suh that R is transitive, irreexive and Noetherian in the sense that there

is no in�nite sequene x

0

Rx

1

Rx

2

: : : where x

i

6= x

i+1

for i < !,

� Grz = S4� 2(2(p ! 2p) ! p) ! p and FrGrz is the lass of all frames

(W;R) suh that R is transitive, reexive and Noetherian,

� K4:3 = K4�2(2

+

p! q)_2(2

+

q ! p) and FrK4:3 is the lass of frames

(W;R) suh that R is transitive and weakly onneted in the sense that

whenever xRy, xRz and y 6= z then either yRz or zRy. Rooted

4

transitive

and weakly onneted frames will be alled linear. Note that linear frames

an have lusters

5

of any kind, in partiular, proper and degenerate ones.

The logis S4:3, GL:3, and Grz:3 are de�ned analogously.

Here � means `add the axiom and take the losure under modus ponens,

substitution and neessitation '=2',' and 2

+

 =  ^2 .

3 Deidability and omplexity

As e-produts are known to be reduible to standard produt logis (see [11,

Theorem 9.12℄ or Proposition 5 below), e-produt logis are usually deidable

if one of their omponents is an S5- or K-like logi [13,44,11℄. On the other

hand, produts of `transitive' logis with frames of arbitrarily large �nite or

in�nite depth are undeidable and do not have the �nite model property [14℄.

4

We remind the reader that a frame (W;R) is alled rooted if there exists r 2 W

suh that W = fu 2W j rR

�

ug, where R

�

is the reexive and transitive losure of

R.

5

Reall that a set X �W is alled a luster in F if there is some x 2W suh that

X = fxg [ fy 2 W j xRy and yRxg. A luster X is proper if jXj � 2, it is simple

if X = fxg and xRx; otherwise the luster is alled degenerate.
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In this setion we show that logis of e-frames with arbitrarily large �nite

transitive omponents an be deidable, and an even have the following strong

version of the �nite model property. A bimodal logi L is said to have the

expanding produt �nite model property (e-produt fmp, for short) if, for every

ML

2

-formula ' =2 L, there is a �nite e-frame for L that refutes '.

The main results of this paper are the following:

Theorem 1 Let C

h

be any of the following lasses of frames:

(C1) all �nite transitive antisymmetri frames,

(C2) all reexive or all irreexive members of (C1),

(C3) all linear members of any of the lasses in (C1) and (C2).

Let C

v

be any of the lasses:

(C4) all transitive frames,

(C5) all reexive and transitive frames,

(C6) all linear members of (C4) or (C5).

Then the logi Log(C

h

� C

v

)

e

has the e-produt fmp and is deidable, but not

in time bounded by a primitive reursive funtion.

Theorem 2 Let C

h

and C

v

be any of the following lasses:

(C7) all Noetherian irreexive transitive frames,

(C8) all Noetherian reexive transitive frames,

(C9) all linear members of (C7) or (C8).

Then the logi Log(C

h

� C

v

)

e

has the e-produt fmp and is deidable, but

not in time bounded by a primitive reursive funtion. In other words, if L

1

,

L

2

2 fGL, Grz, GL:3, Grz:3g then (L

1

� L

2

)

e

has the e-produt fmp and is

deidable, but not in time bounded by a primitive reursive funtion.

We give a ommon proof of Theorems 1 and 2 via a sequene of lemmas, where

we assume C

h

and C

v

to be as in the formulations of the theorems.

3.1 The expanding domain produt fmp

Fix some ML

2

-formula '.
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Lemma 2.1 If ' =2 Log(C

h

� C

v

)

e

then ' is refuted in a model M = (H;V)

based on an e-frame H = (F; f) suh that

� F = (W;R) 2 C

h

,

� f(x) = (W

x

; R

x

) 2 C

v

(x 2 W ) and,

� for all x 2 W , v 2 W

x

and all ML

2

-formulas  with (M; (x; v)) j=  , the

set

A

x;v; 

= fu 2 W

x

j vR

x

u and (M; (x; u)) j=  g [ fvg

ontains an R

x

-maximal point (i.e., a point w suh that if wR

x

w

0

for some

w

0

2 A

x;v; 

then w

0

R

x

w).

Proof. Clearly, the lemma holds if C

v

is as in Theorem 2 (that is, onsists of

Noetherian frames only). So suppose that C

h

and C

v

are as in the formulation

of Theorem 1, that is, C

h

is one of (C1){(C3) (and so ontains only �nite

frames) and C

v

is one of (C4){(C6).

Suppose that (N; (x

0

; v

0

)) 6j= ' for some model N = (G;U) based on an

e-frame G = (F; f), where F = (W;R) 2 C

h

, f(x) = (W

x

; R

x

) 2 C

v

, x

0

2 W

and v

0

2 W

x

0

. By Remark 1, we may assume that x

0

is a root of F and

v

0

is a root of f(x

0

). De�ne a new model M = (H;V) based on an e-frame

H = (F; f

ue

) as follows. Take the set U of ultra�lters over V =

S

x2W

W

x

, and

set f

ue

(x) = (W

ue

x

; R

ue

x

), where

W

ue

x

= fu 2 U jW

x

2 ug

and

u

1

R

ue

x

u

2

i� for all A 2 u

2

; fv 2 W

x

j 9v

0

2 A vR

x

v

0

g 2 u

1

:

It is not hard to show that H is indeed an e-frame. Note that f

ue

(x) does not

neessarily oinide with the usual `ultra�lter extension' of f(x), as it may

ontain several di�erent extensions of eah ultra�lter over W

x

. However, it

is straightforward to hek that f

ue

(x) is a transitive rooted frame for every

x 2 W (the prinipal ultra�lter u

0

ontaining fv

0

g is a root of f

ue

(x)), and

R

ue

x

is reexive (irreexive, weakly onneted) if R

x

is reexive (irreexive,

weakly onneted). Therefore, H belongs to (C

h

� C

v

)

e

.

De�ne a valuation V as the set (U

ue

x

)

x2W

, where

U

ue

x

(p) = fu 2 W

ue

x

j U

x

(p) 2 ug:

We laim that, for all x 2 W , u 2 W

ue

x

, and all formulas  

(M; (x;u)) j=  i� fv 2 W

x

j (N; (x; v)) j=  g 2 u: (1)

The proof is by indution on  . Here we show the only `non-standard' step

of  = 3�. Suppose �rst that (M; (x;u)) j= 3�. Then, by IH, there is some

9



y 2 W suh that xRy and

fv 2 W

y

j (N; (y; v)) j= �g 2 u:

Sine u 2 W

ue

x

, we have

fv 2 W

x

j (N; (x; v)) j= 3�g � fv 2 W

x

j (N; (y; v)) j= �g 2 u;

as required. Conversely, suppose B

x;3�

= fv 2 W

x

j (N; (x; v)) j= 3�g 2 u.

Sine F is �nite

6

, there are y

1

; : : : ; y

n

inW suh that, for eah i = 1; : : : ; n, we

have xRy

i

, B

y

i

;�

= fv 2 W

x

j (N; (y

i

; v)) j= �g 6= ; and B

x;3�

=

S

n

i=1

B

y

i

;�

.

It follows that there is some i suh that 1 � i � n and

fv 2 W

y

i

j (N; (y

i

; v)) j= �g � B

y

i

;�

2 u;

and so, by IH, (M; (x;u)) j= 3� holds.

As a onsequene of (1) we obtain that (M; (x

0

;u

0

)) 6j= '.

The existene of R

ue

x

-maximal points in sets of form A

x;u; 

inM follows from

a well-known result of Fine [10℄. Here is a sketh of the proof. Consider the

family

X = fX � A

x;u; 

j R

ue

x

\ (X�X) is linear, with smallest element ug:

Let C be a �-maximal set in X (i.e., for every C

0

2 X , C � C

0

implies

C

0

= C); its existene an be readily proved with the help of Zorn's lemma.

Now take the set

y

0

= fA � W

x

j 9z 2 C 8z

0

2 C (zR

ue

x

z

0

! A 2 z

0

)g:

This set is not empty, sine fv 2 W

x

j (N; (x; v)) j=  g 2 y

0

, and learly y

0

has the �nite intersetion property. Hene we an �nd an ultra�lter y 2 W

ue

x

ontaining y

0

. Then it is easy to see, using the de�nition of R

ue

x

, that

8z 2 C zR

ue

x

y: (2)

We laim that y is R

ue

x

-maximal in A

x;u; 

. Indeed, take some y

0

2 A

x;u; 

suh that yR

ue

x

y

0

. If y

0

2 C then y

0

R

ue

x

y holds by (2). If y

0

=2 C then, by

the �-maximality of C in X , R

ue

x

is not linear on C [ fy

0

g. Sine by (2) and

yR

ue

x

y

0

, we have zR

ue

x

y

0

for all z 2 C, there exists a z

0

2 C suh that y

0

R

ue

x

z

0

,

and so, again by (2), y

0

R

ue

x

y as required. ❑

We will use Lemma 2.1 to show that Log(C

h

�C

v

)

e

has the e-produt fmp. To

formulate the next lemma, we require the following notions.

6

This step of the proof would not work for in�nite F. In fat, as is shown in item 1

of Setion 6, Theorem 1 does not even hold in this ase.
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We say that a transitive frame F = (W;R) is a quasi-tree of lusters if F is

rooted and R is weakly onneted on the set fy 2 W j yRxg for every x 2 W .

If in addition F is antisymmetri (that is, does not ontain proper lusters),

then we all F simply a quasi-tree. If a quasi-tree of lusters is well-founded

(i.e., there are no in�nite desending R-hains : : : Rx

2

Rx

1

Rx

0

of points from

distint lusters) then we all F a tree of lusters. Finally, a tree of lusters

without proper lusters is alled a tree

7

. Note that sine Noetherian frames

do not have proper lusters, a Noetherian tree (quasi-tree) of lusters is always

just a tree (quasi-tree).

The o-depth d(x) of a point x in a quasi-tree F is de�ned to be the R-distane

of x from the root. More preisely, the o-depth of the root is 0, and the o-

depth of immediate R-suessors of a point of o-depth n is n + 1. If for no

n < ! the point x is of o-depth n, then we say that x is of in�nite o-depth.

The depth of a �nite tree F = (W;R) is the maximum of d(x), for x 2 W .

Remark 2 By a standard unravelling argument one an show that every

rooted transitive frame F that belongs to one of the lasses (C1){(C9) above

is a p-morphi image of a quasi-tree G of lusters belonging to the same lass.

It an also be shown that this unravelling `ommutes' with the formation of e-

frames in both `oordinates' in the following sense. On the one hand, if (F; f)

is an e-frame and F is the �-image of a quasi-tree G for some p-morphism

�, then (F; f) is a p-morphi image of the e-frame (G; g) de�ned by taking

g(x) = f(�(x)) (x in G). On the other hand, if (F; f) is a rooted e-frame then

for every x in F there exists a quasi-tree g(x) of lusters suh that (F; g) is an

e-frame and (F; f) is a p-morphi image of it. Moreover, if (F; f) satis�es the

`maximal points' ondition of Lemma 2.1 then the g(x) an be hosen in suh

a way that (F; g) satis�es this ondition as well.

Denote by `(') the length of ', say, `(') = jsub'j where sub' is the set of

all subformulas of '.

Lemma 2.2 If ' =2 Log(C

h

� C

v

)

e

then ' is refuted in a model M = (H;V)

based on an e-frame H = (F; f), where

� F = (W;R) 2 C

h

is a �nite transitive tree

and, for every x 2 W ,

� f(x) = (W

x

; R

x

) 2 C

v

is a �nite transitive tree of lusters,

� jW

x

j �

�

`(') + 1

�

!

d(x)+1

, and

� x has at most `(') �

�

`(') + 1

�

!

d(x)+1

immediate R-suessors in F.

7

Here we slightly deviate from the usual notion of a transitive tree, as our trees

may ontain both reexive and irreexive points.
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Proof. Suppose that (M; (x; w)) 6j= ' for some model M = (H;V) based

on an e-frame H = (F; f), where F = (W;R) 2 C

h

, f(x) = (W

x

; R

x

) 2 C

v

,

x 2 W and w 2 W

x

. Aording to Remark 2, we may assume thatM satis�es

the onditions of Lemma 2.1, F = (W;R) is a (possibly in�nite) Noetherian

quasi-tree, and (W

x

; R

x

) is a quasi-tree of lusters, for every x 2 W .

Now we take the losure Y of the set X = f(x; w)g under the the following

three rules:

� 3-rule: if (y; v) 2 X, (M; (y; v)) j= 3 , for some 3 2 sub', and there

is no (y

0

; v) 2 X suh that yRy

0

and (M; (y

0

; v)) j=  , then hoose an

R-maximal point y

0

2 W suh that yRy

0

, (M; (y

0

; v)) j=  (suh a point

exists beause F is Noetherian), and set X := X [ f(y

0

; v)g.

� 3-rule: if (y; v) 2 X, (M; (y; v)) j= 3 , for some 3 2 sub', and there

is no (y; v

0

) 2 X suh that vR

y

v

0

and (M; (y; v

0

)) j=  , then hoose an

R

y

-maximal v

0

in f(y) suh that vR

y

v

0

, (M; (y; v

0

)) j=  (suh a point

exists by Lemma 2.1), and set X := X [ f(y; v

0

)g.

� Square-rule: if (y; v) 2 X, yRy

0

and (y

0

; v) =2 X, then set X := X [

f(y

0

; v)g.

Consider the restrition H

0

= (F

0

; f

0

) of H to Y , where F

0

= (W

0

; R

0

), W

0

=

W \ fx j (x; w) 2 Y g, R

0

= R �W

0

, and f

0

(x) = (W

0

x

; R

0

x

) where W

0

x

= fv j

(x; v) 2 Y g and R

0

x

= R

x

�W

0

x

for x 2 W

0

.

Sine F

0

is a subframe of F, f

0

(x) is a subframe of f(x) for x 2 W

0

, and the

lasses C

h

and C

v

are losed under taking subframes in all the ases (C1){(C9),

F

0

is a Noetherian quasi-tree in C

h

and the f

0

(x) are quasi-trees of lusters in

C

v

.

Claim 2.2.1 If x is of �nite o-depth in F

0

, then jW

0

x

j �

�

`(') + 1

�

!

d(x)+1

.

Proof. The proof is by indution on n. If n = 0, then by applying the 3-rule

to the root (x; w) of H

0

, we an obtain � `(') immediate R

0

x

-suessors of

the form (x; v). In view of maximality, at eah of these points the number of

formulas of the form 3 2 sub' to whih the 3-rule still applies is � `(')�1.

We proeed with the same kind of argument and �nally get

jW

0

x

j � 1 + `(') + `(') � (`(')� 1) + � � �+ `(')! � (`(') + 1)! :

The indution step for y of o-depth n+1 is onsidered analogously. The only

di�erene is that instead of one `starting' point in the root W

0

x

, we should

start applying the 3-rule to all points of the form (y; v) suh that v 2 W

0

z

for

the unique point z with d(z) = n and zR

0

y, that is to jW

0

z

j �

�

`(') + 1

�

!

n+1

many points. ❑

12



Claim 2.2.2 Every point x of �nite o-depth in F

0

has

� `(') �

�

`(') + 1

�

!

d(x)+1

immediate R

0

-suessors.

Proof. Follows from the previous laim and the fat that the 3-rule an be

applied at most `(') times to a point (x; v). ❑

Claim 2.2.3 Every point in F

0

is of �nite o-depth, that is, F

0

is a tree.

Proof. Sine F

0

is Noetherian, we annot have in�nite asending hains of

distint points in F

0

. Suppose F

0

still ontains a point x of in�nite o-depth.

This means that there is an in�nite desending hain : : : R

0

x

2

R

0

x

1

R

0

x: Let y be

an R

0

-maximal point of �nite o-depth suh that yR

0

x. It exists beause F

0

is

Noetherian. By Claim 2.2.1, W

0

y

is �nite. Therefore, we may apply the 3-rule

to points in W

0

y

�nitely many times only, and so there exists an immediate R

0

-

suessor y

0

of y loated properly between y and x. But then d(y

0

) = d(y)+1,

and so the o-depth of y

0

is �nite, whih is a ontradition. ❑

Thus, F

0

is a Noetherian tree with �nite branhing. Therefore, by K�onig's

lemma, it must be �nite. This ompletes the proof of Lemma 2.2. ❑

3.2 Deidability

We are now in a position to prove that Log(C

h

� C

v

)

e

is deidable. It is to be

noted that the e-produt fmp does not give deidability automatially beause

(i) we do not have an e�etive upper bound for the size of a model refuting

a given formula ' =2 Log(C

h

� C

v

)

e

, nor (ii) do we know that Log(C

h

� C

v

)

e

is

�nitely axiomatisable.

We will use a version of Kruskal's tree theorem [29℄. Given a �nite set �, a

labelled �-tree is a triple T = (T;<; l), where (T;<) is a transitive tree and l

is a funtion from T to �. Given two �nite labelled �-trees T

i

= (T

i

; <

i

; l

i

),

i = 1; 2, we say that T

1

is embeddable into T

2

if there exists an injetive map

� : T

1

! T

2

suh that, for all u; v 2 T

1

,

� u <

1

v i� �(u) <

2

�(v),

� l

2

(�(u)) = l

1

(u).

Theorem (Kruskal).

8

For every in�nite sequene T

1

;T

2

; : : : of �nite la-

8

In the usual treatments of Kruskal's tree theorem, trees are meant to be either

irreexive [29℄ or reexive [34℄. However, it is easy to see that the theorem also
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belled �-trees, there exist i < j < ! suh that T

i

is embeddable into T

j

.

In order to use this theorem, we represent expanding domain models in a

slightly di�erent form. Roughly, the idea is as follows. By Lemma 2.2, we may

assume that the `vertial omponents' of e-frames are �nite trees of lusters.

We take the `skeleton-tree' of suh a tree of lusters, and label eah node of this

skeleton with the set of Boolean types of points from the luster represented

by the node.

To this end, denote by T

'

the set of Boolean types t over sub:', where

� : 2 t i�  =2 t, for every : 2 sub:', and

� � ^  2 t i� � 2 t and  2 t, for every � ^  2 sub:'.

Let P(T

'

)

+

be the set of all nonempty subsets of T

'

. A pair Q = (F; f) is

alled a pre-quasimodel (for ') if

� F = (W;R) is a transitive tree, and

� f(x) = (T

x

; <

x

; l

x

), for x 2 W , is a �nite labelled P(T

'

)

+

-tree.

We all suh a pre-quasimodel small if, for all x; y 2 W ,

(sm1) jT

x

j �

�

`(') + 1

�

!

d(x)+1

,

(sm2) x has at most `(') �

�

`(') + 1

�

!

d(x)+1

immediate R-suessors in F,

(sm3) if xRy and x 6= y then f(x) is not embeddable into f(y).

For every n < !, let Q

n

be the set of all small pre-quasimodels (F; f) suh

that F is a �nite tree of depth n.

Lemma 2.3 There is an n < ! suh that Q

n

= ;, and so the set of small

pre-quasimodels for ' is �nite and an be onstruted e�etively from '.

Proof. Suppose otherwise. De�ne a relation E on the set Q of all small pre-

quasimodels as follows. For Q = (F; f), Q

0

= (F

0

; f

0

) in Q, set QEQ

0

i� F is

an `initial subtree' of F

0

and f oinides with f

0

on the points of F. Clearly,

for every Q

0

2 Q

n+1

, there is some Q 2 Q

n

suh that QEQ

0

. Therefore, by

K�onig's in�nity lemma, there is an in�nite E-hain Q

0

EQ

1

E : : : EQ

n

E : : : in

Q suh that Q

n

2 Q

n

for n < !. Sine Q

n+1

is always an extension ofQ

n

, their

union Q =

S

n<!

Q

n

is also a pre-quasimodel. Let Q = (F; f) and F = (W;R).

Then F is an in�nite tree with �nite branhing. By K�onig's lemma, it must

have an in�nite branh x

0

Rx

1

R : : : . Then, by Kruskal's theorem, there exist

holds without any suh restrition, as we an add the information about reexiv-

ity/irreexivity of a tree-node to its label.

14



i < j < ! suh that f(x

i

) is embeddable into f(x

j

). But x

i

and x

j

already

belonged to the underlying tree of Q

j

, ontrary to Q

j

being in Q

j

. ❑

What is left is to establish a onnetion between expanding domain models

and pre-quasimodels. A run r through a pre-quasimodel (F; f) (where F =

(W;R) and f(x) = (T

x

; <

x

; l

x

), for x 2 W ) is a partial funtion from W into

(

S

x2W

T

x

)� T

'

suh that, for all x 2 W ,

� if x 2 dom r and r(x) = (w

r(x)

; t

r(x)

), then w

r(x)

2 T

x

and t

r(x)

2 l

x

(w

r(x)

),

� if x 2 dom r and xRy then y 2 dom r,

� for all 3 2 sub:', we have 3 2 t

r(x)

i� there exists y 2 W suh that

xRy and  2 t

r(y)

.

We all a triple (F; f;R) a (C

h

� C

v

)

e

-quasimodel (for ') if the following on-

ditions are satis�ed:

(q0) (F; f) is a pre-quasimodel, R is a set of runs through (F; f), F 2 C

h

and

(T

x

; <

x

) 2 C

v

for all x 2 W ;

(q1) :' 2 l

r

(w) for the root r 2 W of F and the root w of f(r);

(q2) for all x 2 W , w 2 T

x

and 3 2 sub:', the following onditions are

equivalent:

� there exists a t 2 l

x

(w) with 3 2 t;

� there exists a v with w <

x

v and t

0

2 l

x

(v) suh that  2 t

0

;

(q3) for all x 2 W , w 2 T

x

and t 2 l

x

(w), there is r 2 R suh that r(x) =

(w; t);

(q4) for all r; r

0

2 R and for all x; y 2 dom r \ dom r

0

, w

r(x)

<

x

w

r

0

(x)

i�

w

r(y)

<

y

w

r

0

(y)

.

We all a quasimodel small if the underlying pre-quasimodel is small.

Lemma 2.4 ' =2 Log(C

h

� C

v

)

e

i� there is a small (C

h

� C

v

)

e

-quasimodel for

'.

Proof. Suppose �rst that there is a (C

h

� C

v

)

e

-quasimodel (F; f;R) for '

(where F = (W;R) and f(x) = (T

x

; <

x

; l

x

), for x 2 W ). Then we let, for all

x 2 W ,

W

x

= fr 2 R j x 2 dom rg;

rR

x

r

0

i� w

r(x)

<

x

w

r

0

(x)

;

g(x) = (W

x

; R

x

):

It is straightforward to hek that H = (F; g) is an e-frame in (C

h

� C

v

)

e

.
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Moreover, by taking, for all x 2 W and propositional variables p,

V

x

(p) = fr 2 W

x

j p 2 t

r(x)

g;

we obtain an expanding domain model (H;V) refuting '.

Conversely, suppose that ' =2 Log(C

h

�C

v

)

e

. We may assume that ' is refuted in

a modelM = (H;V) based on an e-frame H = (F; f) satisfying the onditions

of Lemma 2.2. We an turnM into a (C

h

�C

v

)

e

-quasimodel (F; g;R) as follows.

Suppose that F = (W;R) and f(x) = (W

x

; R

x

) for x 2 W . For every x 2 W ,

de�ne an equivalene relation �

x

on W

x

by taking, for all u; v 2 W

x

,

u �

x

v i� either u = v; or uR

x

v and vR

x

u;

that is, i� u and v are in the same R

x

-luster. Let [u℄

x

denote the �

x

-lass of

u. For all x 2 W , w 2 W

x

, we let

t

M

x

(w) = f 2 sub:' j (M; (x; w)) j=  g:

For every x 2 W , let g(x) = (T

x

; <

x

; l

x

), where

T

x

= f[u℄

x

j u 2 W

x

g

[u℄

x

<

x

[v℄

x

i� 9u

0

2 [u℄

x

9v

0

2 [v℄

x

u

0

R

x

v

0

l

x

([u℄

x

) = ft

M

x

(u

0

) j u

0

2 [u℄

x

g:

Finally, for every w 2

S

x2W

W

x

de�ne a run r

w

through (F; g) by taking

dom r

w

= fx 2 W j w 2 W

x

g

and for every x 2 dom r

w

,

r

w

(x) =

�

[w℄

x

; t

M

x

(w)

�

:

Let R = fr

w

j w 2

S

x2W

W

x

g. It is straightforward to hek that (F; g;R)

is indeed a (C

h

� C

v

)

e

-quasimodel for '. Moreover, by the assumption on M,

the pre-quasimodel (F; g) is �nite. To show that we an turn it to a pre-

quasimodel satisfying (sm3), suppose that there are x; y 2 W suh that xRy

and g(x) is embeddable into g(y) by an embedding �. Then we replae in F the

subtree generated by x with the subtree generated by y, thus obtaining some

tree F

0

= (W

0

; R

0

). Let g

0

be the restrition of g to W

0

. We de�ne new runs

through (F

0

; g

0

) by taking, for all r; r

0

2 R suh that x 2 dom r, y 2 dom r

0

,

�(w

r(x)

) = w

r

0

(y)

, t

r(x)

= t

r

0

(y)

, and for all z 2 W

0

, z 2 dom r,

(r + r

0

)(z) =

8

>

<

>

:

r(z); if zRx;

r

0

(z); if z = y or yRz:
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LetR

0

be the olletion of these new runs together with those runs fromR that

`start at' a point z with yRz. It is straightforward to hek that (F

0

; g

0

;R

0

) is a

(C

h

�C

v

)

e

-quasimodel for '. Sine F is �nite, after �nitely many repetitions of

this proedure the underlying pre-quasimodel will satisfy (sm3). To omply

with the ardinality onditions (sm1) and (sm2), we an use the onstrution

from the proof of Lemma 2.2. Then, again we an get rid of the embeddable

pairs as above, and so on. As at eah step the underlying tree an get only

smaller, we will end up with a small (C

h

� C

v

)

e

-quasimodel for '. ❑

Now we an desribe the deision algorithm for Log(C

h

�C

v

)

e

as follows. Given

a formula ', by Lemma 2.3, we an e�etively onstrut the set of all small pre-

quasimodels for '. Then for eah suh small pre-quasimodel, we hek whether

it is a (C

h

�C

v

)

e

-quasimodel for ' (that is, whether onditions (q0){(q4) hold).

By Lemma 2.4, this way we �nd a quasimodel for ' i� ' =2 Log(C

h

� C

v

)

e

.

3.3 Complexity

Now we omplete the proof of Theorems 1 and 2 by showing that no algorithm

an deide whether a given ML

2

-formula ' is satis�able in an e-frame from

(C

h

�C

v

)

e

in primitive reursive time or spae. To understand the meaning of

this result, let us reall that every primitive reursive funtion f : ! ! ! is

(eventually) dominated by one of the (primitive reursive) funtions h

n

whih

are de�ned indutively as follows

h

0

(k) = 2k; h

n+1

(k) = h

(k)

n

(1);

where h

(k)

n

denotes the result of k suessive appliations of h

n

; see, e.g., [35℄

and referenes therein. For example,

h

1

(k) = 2

k

; h

2

(k) = 2

2

���

2

o

k times

:

(In partiular, all elementary funtions are dominated by h

2

.) The diagonal

h

n

(n)|a variant of the Akermann funtion|is not primitive reursive. We

are about to prove that the deision problem for our logis is at least as hard

as termination of Turing mahines running in Akermann time or spae. It

seems that these expanding produts as well as some relevane logis [43℄ are

the most omplex natural and mathematially interesting deidable theories

known so far (f. [6℄).

We will use a redution of the reahability problem for lossy hannel systems

whih was shown to have non-primitive reursive omplexity by Shnoebe-

len [39℄, even for systems with a single hannel. A single hannel system is a

triple S = (Q;�;�), where Q = fq

1

; : : : ; q

n

g is a �nite set of ontrol states,

� = fa; b; : : : g is a �nite alphabet of messages, and � � Q�f?; !g���Q is a

17



�nite set of transitions. A on�guration of S is a pair  = (q;w), where q 2 Q

and w is a �nite nonempty

9

�-word. Say that a on�guration 

0

= (q

0

;w

0

) is

the result of a perfet transition of S from  = (q;w) and write 

S

!

p



0

if

� there is (q; !; a; q

0

) 2 � suh that w

0

= aw, or

� there is (q; ?; a; q

0

) 2 � suh that w = w

0

a.

We say that 

0

is a result of a lossy transition from  and write 

S

!

`



0

if

 w 

1

S

!

p



2

w 

0

for some 

1

and 

2

, where (q;w) w (q

0

;w

0

) i� w

0

is a subword of w and q = q

0

.

Denote by

S

!

�

`

and

S

!

�

p

the transitive and reexive losures of

S

!

`

and

S

!

p

,

respetively.

As was proved by Shnoebelen [39℄, the following problem is not deidable in

primitive reursive time: `given a hannel system S, two on�gurations 

0

and



f

, and any relation! in the interval

S

!

�

p

� ! �

S

!

�

`

;

deide whether 

0

! 

f

.' So in order to establish the non-primitive reursive

lower bound for our logis, it is enough to prove the following:

Lemma 2.5 For every hannel system S and all on�gurations 

0

, 

f

, one

an onstrut an ML

2

-formula '

S;

0

;

f

whih is polynomial in the size of S,



0

, 

f

and satis�es the following two properties:

(a) if '

S;

0

;

f

is satis�able in an e-frame from (C

h

� C

v

)

e

then 

0

S

!

�

`



f

,

(b) if 

0

S

!

�

p



f

then '

S;

0

;

f

is satis�able in an e-frame from (C

h

� C

v

)

e

.

Proof. To onstrut the required formula '

S;

0

;

f

, we will need modal op-

erators interpreted via aessibility relations that are irreexive on ertain

points of e-frames. So, similarly to the undeidability proofs of [42,11,14,38℄,

we �x two propositional variables h and v, and de�ne new modal operators by

setting, for every ML

2

-formula  ,

3 =

h

h! 3

�

:h ^ ( _3 )

�i

^

h

:h! 3

�

h ^ ( _3 )

�i

;

3 =

h

v! 3

�

:v ^ ( _3 )

�i

^

h

:v! 3

�

v ^ ( _3 )

�i

;

2 = :3: ; and 2 = :3: :

9

In the standard de�nition, empty words are permitted. However, it is not hard

to see that the omputational behaviour of hannel systems does not depend on

whether empty words are permitted or not.
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We will use the following abbreviations. For every formula  , 2 2 f2;2g,

and every n < !,

2

+

 =  ^ 2 ;

3

0

 = 2

0

 =  ; 3

n+1

 = 33

n

 ;

2

n+1

 = 22

n

 ; 3

=n

 = 3

n

 ^ 2

n+1

: :

The last formula says: `see  vertially in n steps, but not in n+ 1 steps.'

With a slight abuse of notation, we also introdue propositional variables

� Æ, for every transition Æ 2 �,

� a, for every a 2 �,

� q, for every q 2 Q,

and use the abbreviation w$

W

a2�

a.

Now suppose that a hannel system S and two on�gurations



0

= (q

0

; b

1

: : : b

k

); 

f

= (q

f

; a

1

: : : a

m

)

are given. De�ne '

S;

0

;

f

to be the onjuntion of formulas (3){(12):

2

+

�

(h! 2h) ^ (:h! 2:h)

�

(3)

2

+

2

+

�

(v! 2v) ^ (:v! 2:v)

�

(4)

2

+

2

+

�

(w! 2w) ^ (:w! 2:w)

�

(5)

2

+

2

+

�

^

a2�

�

a! 2(w! a)

�

^

^

a6=a

0

(a! :a

0

)

�

(6)

2

+

2

+

�

_

q2Q

q ^

^

q 6=q

0

(q ! :q

0

) ^

^

q2Q

(q ! 2q)

�

(7)

2

+

2

+

�

3> !

�

_

Æ2�

Æ ^

^

Æ 6=Æ

0

(Æ ! :Æ

0

) ^

^

Æ2�

(Æ ! 2Æ)

��

(8)

q

f

^ :w ^3

=m

> ^2

^

0�i<m

(3

=i

> ! a

m�i

) (9)

2

�

2? !

�

q

0

^2

+

�

(3

k

> ! :w) ^

^

0�i<k

(3

=i

> ! b

k�i

)

�

��

(10)

^

Æ=(q;!;a;q

0

)

2

+

2

+

�

Æ !

�

q

0

^

�

w! 23(w ^ q)

�

^

�

w ^ 2? ! 3(w ^ q)

�

^

�

w ^ :3(w ^ q)! a

�

��

(11)

19



^

Æ=(q;?;a;q

0

)

2

+

2

+

�

Æ !

�

q

0

^

�

w! 3

�

w ^ q ^2

+

(2? ! a)

��

^2

+

(2? ! 23>)

��

(12)

The intended meaning of these onjunts will be lear from the proof below.

Proof of (a). Suppose that '

S;

0

;

f

is satis�ed at some point (x

0

; u

0

) of an

expanding domain modelM = (H;V) that is based on an e-frame H = (F; f)

from (C

h

� C

v

)

e

, where F = (W;R) and f(x) = (W

x

; R

x

), for x 2 W . By

Lemma 2.2, we may assume that H is �nite, and (x

0

; u

0

) is a root of H.

De�ne new relations

�

R and

�

R

x

(x 2 W ) by taking, for all y; y

0

2 W , u; u

0

2 W

x

,

y

�

Ry

0

i� 9y

00

2 W

h

yRy

00

and (13)

�

(M; (y; u

0

)) j= h () (M; (y

00

; u

0

)) j= :h

�

and

(either y

00

= y

0

or y

00

Ry

0

)

i

;

u

�

R

x

u

0

i� 9u

00

2 W

x

h

uR

x

u

00

and (14)

�

(M; (x; u)) j= v () (M; (x; u

00

)) j= :v

�

and

(either u

00

= u

0

or u

00

R

x

u

0

)

i

:

It is readily heked that all of the

�

R and

�

R

x

, x 2 W , are transitive,

�

R � R,

�

R

x

� R

x

, and for all x 2 W , u 2 W

x

,

(M; (x; u)) j= 3 i� 9y 2 W (x

�

Ry and (M; (y; u)) j=  );

(M; (x; u)) j= 3 i� 9v 2 W

x

(u

�

R

x

v and (M; (x; v)) j=  ):

Note that ((W;

�

R);

�

f) where

�

f = (W

x

;

�

R

x

) (x 2 W ) is not neessarily an e-

frame, beause we an have x; y 2 W , u; v 2 W

x

suh that x

�

Ry, u

�

R

y

v, but

u is not

�

R

x

-related to v. Nevertheless, for all x; y 2 W , u; v 2 W

x

, we always

have that

if x

�

Ry and u

�

R

x

v then u

�

R

y

v: (15)

Sine there are no proper lusters in F,

�

R is irreexive. The

�

R

x

are not ne-

essarily irreexive, but all non-degenerate

�

R

x

-lusters are neessarily `blank'

(i.e., make :w true):

Claim 2.5.1 Let y 2 W and v 2 W

y

be suh that (M; (y; v)) j= w. Then

v

�

R

y

v does not hold.

Proof. Suppose otherwise, that is v

�

R

y

v and (M; (y; v)) j= w. Then we have

(M; (y; v)) j= 3>, sine otherwise (M; (y; u

0

)) j= 2? would hold, and so
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(M; (y; v)) j= :w by (10). Hene it follows from (8) that (M; (y; v)) j= Æ

for some Æ 2 �. Now we obtain (M; (y; v)) j= 3(w ^ q), by (11) and (12).

Thus there exists y

1

2 W suh that y

�

Ry

1

and (M; (y

1

; v)) j= w. Sine

�

R is

irreexive, y

1

6= y. By (15), we have v

�

R

y

1

v. By repeating the above argument,

we must have (M; (y

1

; v)) j= 3> again. Therefore, we an ontinue in this

manner to obtain an in�nite asending hain y

�

Ry

1

�

Ry

2

: : : , ontrary to F being

Noetherian. ❑

For a �nite sequene ~v = (v

1

; v

2

; : : : ; v

n

) of elements of W

y

with v

i

�

R

y

v

i+1

and

y 2 W , we write

val

y

(~v) = d

1

: : : d

n

if, for all i, 1 � i � n, we have (M; (y; v

i

)) j= d

i

for some d

i

2 � [ f:wg.

Say that ~u = (u

1

; u

2

; : : : ; u

r

) is an extension of ~v, if u

i

2 W

y

, u

i

�

R

y

u

i+1

, and

there are i

1

< i

2

< � � � < i

n

� r suh that u

i

j

= v

j

for 1 � j � n. Say that ~v

arries a �-word in y if there are d

1

; : : : ; d

n

2 � suh that val

y

(~v) = d

1

: : : d

n

.

A sequene ~v is said to be maximal arrying a �-word in y if no extension of

~v arries a �-word in y.

Claim 2.5.2 For all x 2 W and q

0

2 Q suh that (M; (x; u

0

)) j= q

0

^ 3>,

if a nonempty sequene ~v is maximal arrying a �-word in x then there exist

y 2 W , q 2 Q, and a nonempty sequene ~u that is maximal arrying a �-word

in y suh that x

�

Ry, (M; (y; u

0

)) j= q, and

(q; val

y

(~u))

S

!

`

(q

0

; val

x

(~v)):

Proof. Suppose that ~v = (v

1

; : : : ; v

n

) and val

x

(~v) = 

1

: : : 

n

for some 

i

2 �.

By (8), there exists a unique Æ 2 � suh that (M; (x; u

0

)) j= Æ. By (11) and

(12), Æ is of the form (q; !; a; q

0

) or (q; ?; a; q

0

) for some q 2 Q, a 2 �.

Case 1: Æ = (q; !; a; q

0

). Then, by (11),

(M; (x; v

1

)) j= 23(w ^ q)

and there exists a minimal i � n suh that

(M; (x; v

i

)) j= 3(w ^ q):

Clearly, 1 � i � 2. Take y suh that x

�

Ry and (M; (y; v

i

)) j= w ^ q. By (5), we

have (M; (y; v

j

)) j= w, for all j � i. As we have v

i

�

R

y

: : :

�

R

y

v

n

by (15),

val

x

(v

i

; : : : ; v

n

) = val

y

(v

i

; : : : ; v

n

):

follows from (6). Take any maximal extension ~u of (v

i

; : : : ; v

n

) arrying a

�-word in y. That suh an extension exists in the �nite e-frame (F; f) fol-

lows from Claim 2.5.1. Assume �rst that i = 2. Then, by (11), we have
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(M; (x; v

1

)) j= a. It follows that

(q; val

y

(~u)) w (q; val

y

(v

2

; : : : ; v

n

))

S

!

p

(q

0

; a val

y

(v

2

; : : : ; v

n

)) = (q

0

; val

x

(~v)):

If i = 1 then

(q; val

y

(~u))

S

!

p

(q

0

; a val

y

(~u)) w (q

0

; val

y

(~v)) = (q

0

; val

x

(~v)):

Case 2: Æ = (q; ?; a; q

0

). By (12), there exists y 2 W suh that x

�

Ry and

(M; (y; v

1

)) j= w ^ q ^ 2

+

(2? ! a):

By (5) and Claim 2.5.1, (M; (x; v

n

)) j= 2?. Therefore, by (12), we have

(M; (y; v

n

)) j= 3>. Sine W

y

is �nite, by (5) and Claim 2.5.1 again, we

�nd v

n+1

2 W

y

with v

n

�

R

y

v

n+1

and (M; (y; v

n+1

)) j= 2?. By (12), we have

(M; (y; v

n+1

)) j= a. By (15), we have v

1

�

R

y

: : :

�

R

y

v

n

. Therefore, by (5), we have

val

x

(~v) = val

y

(~v). Take any maximal extension ~u of (v

1

; : : : ; v

n

; v

n+1

) arrying

a �-word in y. By Claim 2.5.1, suh an extension exists and

val

y

(~u) = wa

for some �-word w having val

y

(~v) as a subword. But then

(q; val

y

(~u))

S

!

p

(q

0

; w) w (q

0

; val

y

(~v)) = (q

0

; val

x

(~v));

whih ompletes the proof of Claim 2.5.2. ❑

Now we an �nd a `lossy run' from 

0

to 

f

as follows. By (9), we have

(M; (x

0

; u

0

)) j= q

f

, and there exists a sequene ~w that is maximal arrying a

�-word in x

0

and suh that

val

x

0

(~w) = a

1

: : : a

k

:

Sine F is �nite and

�

R is irreexive, it follows from Claim 2.5.2 that there

exist x

1

; : : : ; x

n

2 W , q

1

; : : : ; q

n

2 Q, nonempty sequenes ~w

1

; : : : ; ~w

n

suh

that x

0

�

Rx

1

�

R : : :

�

Rx

n

, (M; (x

i

; u

0

)) j= q

i

, ~w

i

is maximal arrying a �-word in

x

i

, 1 � i � n,

(q

n

; val

x

n

( ~w

n

))

S

!

`

: : :

S

!

`

(q

1

; val

x

1

( ~w

1

))

S

!

`

(q

f

; val

x

0

(~w)) = 

f

and (M; (x

n

; u

0

)) j= 2?. By (10), q

n

= q

0

and val

x

n

( ~w

n

) is a subword of

b

1

: : : b

k

. Therefore, (q

0

; b

1

: : : b

k

)

S

!

`

(q

n�1

; val

x

n�1

( ~w

n�1

)), and so 

0

S

!

�

`



f

.

Proof of (b). Suppose that 

0

S

!

�

p



f

, i.e., there exists a �nite sequene



0

S

!

p



1

S

!

p

: : :

S

!

p



n

= 

f
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of perfet transitions, where 

i

= (q

i

; d

i

1

: : : d

i

`

i

), for i � n. Let Æ

i

denote the

transition from 

i�1

to 

i

, 1 � i � n, that is,

Æ

i

=

8

>

<

>

:

(q

i�1

; !; a; q

i

); if d

i

1

: : : d

i

`

i

= ad

i�1

1

: : : d

i�1

`

i�1

;

(q

i�1

; ?; a; q

i

); if d

i�1

1

: : : d

i�1

`

i�1

= d

i

1

: : : d

i

`

i

a:

We show that the formula '

S;

0

;

f

is satis�able in an e-frame from (C

h

� C

v

)

e

.

First, for eah i � n, we de�ne indutively a number N

i

< ! by takingN

0

= `

n

and, for 0 < i � n,

N

i

=

8

>

<

>

:

N

i�1

; if Æ

n�i+1

= (q

n�i

; !; a; q

n�i+1

) 2 � for some a 2 �;

N

i�1

+ 1; if Æ

n�i+1

= (q

n�i

; ?; a; q

n�i+1

) 2 � for some a 2 �:

Now we de�ne an e-frame H = (F; f) as follows. Let W = f0; : : : ; ng and let

F = (W;�) if C

h

ontains only reexive frames, and F = (W;<) otherwise.

For eah i 2 W , let W

i

= f0; : : : ; N

i

g and f(i) = (W

i

;�) if C

v

ontains

only reexive frames, and f(i) = (W

i

; <) otherwise. De�ne valuations for the

propositional variables by taking, for i � n, a 2 �, q 2 Q, Æ 2 �,

V

i

(h) =

8

>

<

>

:

W

i

; if i is even;

;; if i is odd;

V

i

(v) = fj � N

i

j j is eveng;

V

i

(a) = fN

i

� `

n�i

+ j j 1 � j � `

n�i

; d

n�i

j

= ag;

V

i

(q) =

8

>

<

>

:

W

i

; if q = q

n�i

;

;; otherwise;

V

i

(Æ) =

8

>

<

>

:

W

i

; if i < n and Æ = Æ

n�i

;

;; otherwise:

Finally, let M = (H; (V

i

)

i�n

). It is easy to hek that (M; (0; 0)) j= '

S;

0

;

f

holds. ❑

4 An appliation to dynami topologial logi

Dynami topologial logi was introdued in 1997 (see, e.g., [25,26,28,3,27℄) as

a logial formalism for desribing the behaviour of dynamial systems, e.g., in
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order to speify liveness and safety properties of hybrid systems [8℄. Roughly,

the idea is to model (some aspets of) these systems by means of dynami

topologial strutures (DTS) D = (T; g), where T = (�; I) is a topologial

spae with an interior operator I and g is a ontinuous

10

funtion on T whih

`moves' the points of T in eah disrete unit of time. What we are interested

in is the asymptoti behaviour of iterations of g, in partiular, the orbits

fw; g(w); g

2

(w); : : :g of states w 2 �. A natural formalism for speaking about

suh iterations is obtained by interpreting the previously introdued modal

operator 2 as `always in the future,' its dual 3 as `eventually,' the operator

2 as topologial interior and 3 as topologial losure, by taking, for every

X � �,

2X =

T

0<n<!

g

�n

(X); 3X =

S

0<n<!

g

�n

(X);

2X = IX; 3X = �� I(��X)

and adding the `next time' operator

f

:

f

X = g

�1

(X):

The resulting language will be denoted by ML

Æ

2

.

By a dynami topologial model with N � ! iterations (DTM

N

, for short)

we understand a triple M = (D;V; N), where D = (T; g) is a DTS with

T = (�; I), and V, a valuation, assoiates with eah propositional variable p

a subset V(p) of �. The truth of a formula ' at a state w depends on how

many iterations of g we onsider and at whih iteration step we evaluate '.

Let N

0

= N + 1 if N < ! and N

0

= ! otherwise. For every m < N

0

, de�ne

indutively the truth relation (M; w) j=

m

' (`in modelM, ' is true at w after

m iterations of g') as follows:

(M; w) j=

m

p i� w 2 V(p); p a propositional variable,

(M; w) j=

m

2' i� w 2 Ifv 2 � j (M; v) j=

m

'g;

(M; w) j=

m

3' i� w 2 C fv 2 � j (M; v) j=

m

'g;

(M; w) j=

m

f

' i� m+ 1 < N

0

and (M; g(w)) j=

m+1

';

(M; w) j=

m

2' i� (M; g

n

(w)) j=

m+n

' for all n > 0 with m+ n < N

0

;

(M; w) j=

m

3' i� (M; g

n

(w)) j=

m+n

' for some n > 0 with m+ n < N

0

:

Here g

n

(w) =

n

z }| {

g : : : g(w) and C is the losure operator on T. Note that if a

formula  ontains no `temporal' operators or if N = ! then the truth relation

(M; w) j=

m

 does not depend on m. Say that ' is satis�able if there exist a

10

Reall that a set X � � is alled open in T if IX = X. A funtion g between

topologial spaes is alled ontinuous if the inverse image g

�1

(X) of every open

set X is open.
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DTM

N

M and a state w in it suh that (M; w) j=

0

'. We also say that ' is

satis�able in models with �nite iterations if ' is satis�ed in a DTM

N

for some

N < !. It is worth noting that for various natural properties it is suÆient to

onsider �nitely many iterations only. For example, a safety property like `w

will never visit some danger zone P ' is satis�able i� it is satis�able in models

with �nite iterations.

The language ML

Æ

2

an also be interpreted in expanding domain models N

based on e-frames H = (F; f), where F = (W;<) is a �nite strit linear order

(that is, a �nite irreexive linear frame) and, for every x 2 W , f(x) = (�

x

; R

x

)

is a reexive and transitive frame. Indeed, given suh an N, we set

� (N; (x; u)) j=

f

' i� there exists an immediate <-suessor x

0

of x and

(N; (x

0

; u)) j= ',

and leave all the other truth onditions from Setion 2 unhanged. Then it is

not hard to see that the proof of Theorem 1 an be generalised to show the

following:

Theorem 3 Let C

h

be the lass of all �nite strit linear orders and let C

v

be

the lass of all transitive and reexive frames. Then the logi

f' 2 ML

Æ

2

j 8H 2 (C

1

� C

2

)

e

H j= 'g

has the e-produt fmp and is deidable, but not in time bounded by a primitive

reursive funtion.

It is a hallenging open question whether the satis�ability problem forML

Æ

2

-

formulas in dynami topologial strutures is deidable. The known partial

results are as follows. In [21℄ it is proved that the problem is undeidable, even

for models with �nite iterations, if we onsider DTSs with homeomorphisms.

In [22℄ it is shown that the problem is again undeidable if we onsider DTSs

with ontinuous mappings but based on Aleksandrov topologial spaes only

(see below for de�nition). Here we prove|using Theorem 3 above|that the

satis�ability problem for ML

Æ

2

-formulas in models with �nite iterations is

deidable, but not in primitive reursive time. It is not hard to see (using the

relativisation tehnique of, say, [11℄) that satis�ability in models with �nite

iterations is polynomially reduible to general satis�ability. Thus we obtain

that the general satis�ability problem annot be deided in primitive reursive

time either.

Theorem 4 The satis�ability problem for ML

Æ

2

-formulas in dynami topo-

logial models with �nite iterations is deidable, but not in primitive reursive

time.

Proof. We remind the reader that every reexive and transitive frame (i.e.,
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frame for modal logi S4) G = (�; R) gives rise to a topologial spae T

G

=

(�; I

G

), where, for every X � �,

I

G

(X) = fx 2 X j 8y 2 � (xRy ! y 2 X)g:

Suh spaes are known as Aleksandrov spaes. Alternatively they an be de-

�ned as topologial spaes where arbitrary (not only �nite) intersetions of

open sets are open; for details see [1,5℄. The next lemma follows immediately

from [3,28,27℄:

Lemma 4.1 For every N < !, an ML

Æ

2

-formula is satis�able in a DTM

N

i�

it is satis�able in a DTM

N

that is based on a (�nite) Aleksandrov spae.

Thus, it is enough to onsider DTMs of the formM = ((T

G

; g);V; N), where

G = (�; R) is a reexive and transitive frame. In this ase we an rewrite the

truth onditions for the operators 2 and 3 in a more familiar way:

(M; w) j=

m

2' i� (M; v) j=

m

' for every v 2 � with wRv;

(M; w) j=

m

3' i� (M; v) j=

m

' for some v 2 � suh that wRv:

It is not hard to sees that for any funtion g : �! �,

g is ontinuous on T

G

i� 8w; v 2 �

�

wRv ! g(w)Rg(v)

�

: (16)

Indeed, suppose �rst that g is ontinuous and wRv. Then

w 2 fu 2 � j g(w)Rg(u)g = g

�1

�

fu 2 � j g(w)Rug

�

is open, and so g(w)Rg(v) follows. Conversely, take any open set X in T

G

and

let w 2 g

�1

(X), wRv. Then g(w) 2 X and g(w)Rg(v), from whih g(v) 2 X

follows.

Moreover, we have the following:

Lemma 4.2 AnML

Æ

2

-formula ' is satis�able in an e-frame H = (F; f) where

F is a �nite strit linear order and the f(x) are reexive and transitive frames

i� ' is satis�able in some DTM

N

with N < !.

Proof. ()) Suppose that ' is satis�ed in a model N = (H;V) based on an

e-frame H = (F; f), where F = (W;<) is a �nite strit linear order and eah

f(x) = (�

x

; R

x

) is a reexive and transitive frame, for x 2 W . We may assume

that

F = (f0; : : : ; Ng; <)

for some N < !, and (N; (0; r)) j= ' for a root r of f(0). De�ne a DTM

N

M = (D;U; N) based on the DTS D = ((�; I

G

); g) with G = (�; R) and the
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valuation V by taking

� =

[

n�N

(fng ��

n

);

for eah (n; w) 2 �

g(n; w) =

8

<

:

(n + 1; w); if n < N ,

(n; w); if n = N ,

for all (n

1

; w

1

); (n

2

; w

2

) 2 �

(n

1

; w

1

)R(n

2

; w

2

) i� n

1

= n

2

and w

1

R

n

1

w

2

;

and, for every propositional variable p,

U(p) = f(n; w) 2 � j w 2 V

n

(p)g:

Clearly,M is a DTM

N

(in partiular, g is ontinuous by (16)). Moreover, it is

easy to show by indution that for every ML

Æ

2

-formula  , every n � N and

every w 2 �

n

,

(N; (n; w)) j=  i� (M; (n; w)) j=

n

 :

(() Conversely, by Lemma 4.1 we may suppose that ' is satis�ed in a DTM

N

M = ((T

G

; g);V; N);

where N < ! and G = (�; R) is a reexive and transitive frame. So, we an

�nd a v

0

2 � suh that (M; v

0

) j=

0

'.

Note �rst that without loss of generality we may assume that g is `onto.'

Indeed, if this is not the ase, then we take the modelM

0

= ((T

G

0

; g

0

);V

0

; N)

with G

0

= (�

0

; R

0

), where

� �

0

= N ��;

� (n

1

; w

1

)R

0

(n

2

; w

2

) i� n

1

= n

2

and w

1

Rw

2

;

� g

0

(0; w) = (0; g(w)) and, for any n 2 N , g

0

(n+ 1; w) = (n; w);

� (M

0

; (n; w)) j= p i� (M; w) j= p.

Then, for every  and every m � N , we have

(M

0

; (0; w)) j=

m

 i� (M; w) j=

m

 :

Now, for every n � N and every propositional variable p, let

� �

n

= �,
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� uR

n

v i� g

n

(u)Rg

n

(v),

� U

n

(p) = f(n; w) j g

n

(w) 2 V(p)g,

and let H = ((f0; : : : ; Ng; <); f) with f(n) = (�

n

; R

n

), andN = (H; (U

n

)

n�N

).

It is not diÆult to prove by indution that, for all w 2 � and m � N ,

(M; g

m

(w)) j=

m

 i� (N; (m;w)) j=  :

Note that we use that g is `onto' in the indution step for 2.

In general, H is not an e-frame beause, in view of (16), we only have uR

n

v !

uR

n+1

v but not the other way round. However, we an take the transitive

unravelling f

�

(n) = (�

�

n

; R

�

n

) of f(n) = (�

n

; R

n

), where

�

�

n

= f(v

0

; v

1

; : : : ; v

k

) j v

i

R

n

v

i+1

and v

i

6= v

i+1

g

and R

�

n

is the transitive and reexive losure of the relation R

0

n

de�ned by

taking

(v

0

; : : : ; v

k

)R

0

n

(v

0

; : : : ; v

k

; v

k+1

) i� v

k

R

n

v

k+1

:

The frame H

�

= ((f0; : : : ; Ng; <); f

�

) is an e-frame. Indeed, suppose that both

(v

0

; : : : ; v

k

) and (v

0

; : : : ; v

k

; v

k+1

; : : : ; v

m

) are inW

�

n

. Then, by the de�nition of

R

�

n

, we have v

k

R

n

v

k+1

R

n

: : : R

n

v

m

and so (v

0

; : : : ; v

k

)R

�

n

(v

0

; : : : ; v

k

; v

k+1

; : : : ; v

m

).

Now onsider the model N

�

= (H

�

;U

�

), where U

�

= (U

�

n

)

n�N

and

U

�

n

(p) = f(v

0

; v

1

; : : : ; v

m

) 2 W

�

n

j v

m

2 U

n

(p)g:

By the unravelling theorem of lassial modal logi, we have

(N; (n; v

0

)) j=  i� (N

�

; (n; (v

0

))) j=  

for every formula  . ❑

Now Theorem 4 follows immediately from Lemma 4.2 and Theorem 3. ❑

5 Expanding domain produts vs expanding relativisations

The original de�nition of `expanding produt' frames and logis from [30℄ was

motivated by the idea of relativising the standard produt onstrution.

Given unimodal Kripke frames F

1

= (W

1

; R

1

) and F

2

= (W

2

; R

2

), their produt

is de�ned to be the bimodal frame

F

1

� F

2

= (W

1

�W

2

;

�

R

1

;

�

R

2

);
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where W

1

�W

2

is the Cartesian produt of W

1

and W

2

and, for all u; u

0

2 W

1

,

v; v

0

2 W

2

,

(u; v)

�

R

1

(u

0

; v

0

) i� uR

1

u

0

and v = v

0

;

(u; v)

�

R

2

(u

0

; v

0

) i� vR

2

v

0

and u = u

0

:

Let L

1

be a normal modal logi in the language with 2, 3 and let L

2

be a

normal modal logi in the language with 2, 3. Assume also that both L

1

and

L

2

are Kripke omplete. Then the produt of L

1

and L

2

is the normal bimodal

logi L

1

� L

2

in the language ML

2

with the boxes 2; 2 and the diamonds

3; 3 whih is haraterised by the lass of produt frames F

1

� F

2

, where F

i

is a frame for L

i

, i = 1; 2. (Here we assume that 2 and 3 are interpreted by

�

R

1

, while 2 and 3 are interpreted by

�

R

2

.)

Aording to the de�nition in [30℄, a frame G = (W;R

0

1

; R

0

2

) is an expanding

relativised produt frame if there exist frames F

1

= (U

1

; R

1

) and F

2

= (U

2

; R

2

)

suh that

� G is a subframe of F

1

� F

2

(that is, W � U

1

� U

2

and R

0

i

=

�

R

i

�W for

i = 1; 2), and

� for all (w

1

; w

2

) 2 W and u 2 U

1

, if w

1

R

1

u then (u; w

2

) 2 W .

Given two lasses C

1

, C

2

of unimodal frames, denote by

(C

1

� C

2

)

ex

the lass of all expanding relativised produt frames that are subframes of

some F

1

� F

2

, for some F

i

2 C

i

, i = 1; 2, and let

Log (C

1

� C

2

)

ex

= f' 2 ML

2

j 8G 2 (C

1

� C

2

)

ex

G j= 'g:

Given Kripke omplete unimodal logis L

1

and L

2

, let

(L

1

� L

2

)

ex

= Log (FrL

1

� FrL

2

)

ex

be the expanding relativised produt of L

1

and L

2

. We obviously have

(L

1

� L

2

)

ex

� L

1

� L

2

:

As is shown in [30℄, if both L

1

and L

2

are subframe logis (that is, eah FrL

i

is losed under|not neessarily generated|subframes), then (L

1

� L

2

)

ex

is a

onservative extension of both L

1

and L

2

. Note that all of the logis listed at

the end of Setion 2 are subframe logis.

Further, it is not hard to see that expanding relativised produts are reduible

to produts. Indeed, let ' be an ML

2

-formula and e a propositional variable
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whih does not our in '. De�ne by indution on the onstrution of ' an

ML

2

-formula '

e

as follows:

p

e

= p (p a propositional variable);

( ^ �)

e

=  

e

^ �

e

;

(: )

e

= : 

e

;

(2 )

e

= 2 

e

;

(2 )

e

= 2(e!  

e

):

Letmd(') denote the modal depth of ', that is, the maximal number of nested

modal operators in '. By a strutural indution on ', one an easily prove

the following:

Proposition 5 For all Kripke omplete unimodal logis L

1

and L

2

and all

ML

2

-formulas ',

' 2 (L

1

� L

2

)

ex

i�

�

e ^2

�md(')

2

�md(')

(e! 2e)

�

! '

e

2 L

1

� L

2

;

where 2

�n

 =

V

k�n

2

k

 , for 2 2 f2;2g.

The following proposition onnets expanding domain produts with expand-

ing domain relativisations:

Proposition 6

(i) If both C

h

and C

v

are losed under subframes then

Log(C

h

� C

v

)

e

� Log(C

h

� C

v

)

ex

:

(ii) Let C

h

and C

v

be as in the formulations of Theorems 1 or 2. Then

Log(C

h

� C

v

)

e

= Log(C

h

� C

v

)

ex

:

Proof. To prove (i), let us assume that a formula ' is refuted in an expanding

relativised produt frame G � F

1

�F

2

suh that F

1

2 C

h

and F

2

2 C

v

. Assume

also that G = (W;R

0

1

; R

0

2

) and F

i

= (U

i

; R

i

), i = 1; 2. Now let

X = fu 2 U

1

j 9v 2 U

2

(u; v) 2 Wg;

F =

�

X;R

1

\ (X �X)

�

:
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For every x 2 X, let

W

x

= fv 2 U

2

j (x; v) 2 Wg;

f(x) =

�

W

x

; R

2

\ (W

x

�W

x

)

�

:

Sine both C

h

and C

v

are losed under subframes, it is straightforward to see

that (F; f) is an e-frame in (C

h

� C

v

)

e

and ' an be refuted in it.

The inlusion � of (ii) follows from (i) and from the fat that all the lasses

in the formulations of Theorems 1 and 2 are losed under subframes. To prove

�, let us assume that some formula ' is refuted in an e-frame (F; f), where

F = (W;R) 2 C

h

, and f(x) = (W

x

; R

x

) 2 C

v

for all x 2 W . By Lemma 2.2, we

may assume that F is a (�nite) transitive tree. It is not hard to see (using the

fat that F is a tree) that by renaming the points of the frames f(x), x 2 W ,

we an always end up with an e-frame having the following property: for all

x 6= y 2 W , u 2 W

x

\W

y

,

either xRy or yRx or there is z 2 W suh that zRx, zRy and u 2 W

z

: (17)

Now if C

v

is not a lass of linear frames (that is, it is not like in the ases

(C6) of Theorem 1 or (C9) of Theorem 2), then de�ne a frame G = (U; S)

by taking U =

S

x2W

W

x

and S to be the transitive losure of

S

x2W

R

x

. If C

v

is as in (C6) or (C9), then de�ne S to be the minimal transitive and linear

extension of

S

x2W

R

x

instead.

Claim 6.1 For all x 2 W , u; v 2 W

x

,

uSv i� uR

x

v:

Proof. The (() diretion is obvious. The proof of the ()) diretion is by

indution on the length n of a minimal hain

uR

x

1

u

1

R

x

2

: : : R

x

n

u

n

= v: (18)

We prove the general ase only, and leave its modi�ation to the linear ase

to the reader. The ase n = 1 follows by (17), given that (F; f) is an e-frame

and F is a tree. Now suppose that n > 1 and the laim holds for all k < n.

If x = x

1

then u

1

2 W

x

, so uR

x

v follows by IH and transitivity of R

x

. So

suppose x 6= x

1

. As u 2 W

x

\W

x

1

, we an apply (17). There are several ases,

we disuss only the most omplex one, that is, when there is z 2 W suh that

zRx, zRx

1

and u 2 W

z

. By the minimality of the hain (18), we have x

1

6= x

2

.

As u

1

2 W

x

1

\W

x

2

, we an apply (17) again. Again, we onsider only the ase

when there is z

0

2 W suh that z

0

Rx

1

, z

0

Rx

2

and u

1

2 W

z

0

. As F is a tree,
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either z = z

0

, or zRz

0

or z

0

Rz. The �rst two ases annot happen, otherwise

uR

x

2

u

2

whih ontradits the minimality of the hain (18). Thus z

0

Rz, and so

we have uR

x

u

1

beause (F; f) is an e-frame. Finally, uR

x

v follows by IH and

transitivity of R

x

. ❑

By Claim 6.1, the representation H of the e-frame H de�ned in Remark 1 is

a subframe of F�G. It remains to show that G belongs to C

v

. By de�nition,

G is transitive. By Claim 6.1, G is reexive (irreexive, linear) i� all the f(x)

(x 2 W ) are reexive (irreexive, linear). So we only need to show that G is

Noetherian whenever all the f(x) (x 2 W ) are Noetherian. Sine U is �nite,

it is enough to show that there are no proper S-lusters in G.

Suppose otherwise, that is there are u 6= v 2 U , x 2 W suh that uSvR

x

u.

By Claim 6.1, we have uR

x

v, whih is a ontradition as there are no proper

R

x

-lusters in f(x). ❑

As a onsequene of Proposition 6 (i) we obtain that if both L

1

and L

2

are

subframe logis then

(L

1

� L

2

)

e

� (L

1

� L

2

)

ex

:

Moreover, a proof similar to that of Proposition 6 (ii) shows that in fat

(L

1

� L

2

)

e

= (L

1

� L

2

)

ex

;

whenever L

1

; L

2

2 fK;K4;S4;S5;K4:3;S4:3g.

It is to be noted, however, that Proposition 6 does not hold for arbitrary

subframe logis L

1

and L

2

. Consider, for example, the formula

� = 2? ^2

+

2

+

(2? ! 332?) (19)

It is learly satis�ed (under any valuation) in the e-frame (F; f) in whih

F = (N ; <) and f(n) = (f0; 1; : : : ; ng; <). Obviously, F j= K4 and f(n) j= GL

for eah n 2 N . However it is impossible to `embed' (F; f) into a real prod-

ut without an in�nite asending hain in the vertial omponent (although

all the vertial omponents f(n) of (F; f) itself are �nite). In fat, one an

readily show that if � is satis�ed in an expanding relativised produt frame

G = (W;R

1

; R

2

) where R

1

is transitive and R

2

is irreexive, then W ontains

an in�nite asending R

2

-hain. This means that � is not satis�able in any

expanding relativised produt frame for (K4�GL)

ex

, and so

(K4�GL)

e

6= (K4�GL)

ex

:
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6 Disussion

In this paper, we have presented �rst examples of produts of modal logis

with expanding domains whih are

� deidable, but

� not in primitive reursive time,

while the orresponding produt logis (with onstant domains) are

� undeidable.

Numerous interesting problems onerning logis of expanding domain frames

remain open:

1. Our deidability proofs make use of the e-produt fmp. Unfortunately, if we

relax the onditions of Theorems 1 and 2, then the resulting logis do not have

the e-produt fmp any more. It is easy to see using, for instane, the formula

2

+

3> ^ 2

+

3(p ^2:p) (20)

that (GL�K4)

e

does not have the e-produt fmp. In fat, a similar formula

that has 3 and 2 (see the proof of Lemma 2.5) in plae of 3 and 2 shows

the lak of the e-produt fmp for (L

1

� L

2

)

e

, whenever L

1

is any logi that

has a frame ontaining a point with in�nitely many suessors, and FrL

2

is

any lass of transitive frames ontaining an in�nite asending hain of distint

points. Note that GL is determined by the lass C of all �nite irreexive

and transitive frames, and so Log (C � FrK4)

e

has the e-produt fmp (and is

deidable) by Theorem 1. Thus (20) also shows that even if eah omponent

logi L

i

is determined by a lass C

i

of frames (i = 1; 2), the logis (L

1

�L

2

)

e

=

Log (FrL

1

� FrL

2

)

e

and Log (C

1

� C

2

)

e

are not neessarily the same.

It is also possible to `fore' an in�nite asending hain `horizontally:' the for-

mula

2

+

3(p ^32

+

:p)

shows the lak of e-produt fmp for (L

1

� L

2

)

e

, whenever FrL

1

is any lass

of transitive frames ontaining an in�nite asending hain of distint points,

and L

2

is any logi that has a frame ontaining a point with in�nitely many

suessors.

Moreover, as is shown in [22℄, the logi

Log

�

f(N; <)g � C

�

e

beomes undeidable, whenever C is any of the lasses (C1){(C6) listed in

Theorem 1 above. It follows that the satis�ability problem forML

Æ

2

-formulas
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in DTM

!

s based on Aleksandrov spaes with ontinuous mappings is undeid-

able as well. Deidability of other e-produts without the the e-produt fmp

(suh as, say, (K4�K4)

e

and (K4:3�K4:3)

e

) remains open.

2. As is shown in [11, Setion 9.1℄, logis of the form (L � (S5 � S5))

ex

are

reduible to the two-variable fragment of quanti�ed L with expanding do-

mains. Aording to [23℄, these �rst-order modal logi fragments are atually

undeidable, whenever L has a frame ontaining a point with in�nitely many

suessors. (For the onstant domain ase this was proved in [12℄.) We on-

jeture that the proof tehniques of [23℄ and [19℄ an be ombined to show

undeidability of all logis of the form (L

1

� (L

2

� L

3

))

ex

, where L

1

, L

2

and

L

3

are any Kripke omplete modal logis between K and S5.

3. We did not onsider the problem of �nding axiomatisations for e-produt

logis. Here we just list a seletion of open questions. Denote by [L

1

; L

2

℄

e

the

bimodal logi obtained by adding to the independent fusion of L

1

and L

2

the

axioms

33p! 33p and 32p! 23p;

and all it the expanding ommutator of L

1

and L

2

. It is easy to see that

[L

1

; L

2

℄

e

� (L

1

� L

2

)

e

;

and if L

1

and L

2

are subframe logis then

[L

1

; L

2

℄

e

� (L

1

� L

2

)

ex

:

As is shown in [11, Theorem 9.10℄, (L

1

� L

2

)

ex

= [L

1

; L

2

℄

e

whenever L

1

2

fK;K4;S4;S5g and L

2

is axiomatisable by modal formulas with a universal

Horn �rst-order translation. It would be interesting to �nd pairs of logis suh

that (L

1

� L

2

)

ex

6= [L

1

; L

2

℄

e

, but (L

1

� L

2

)

ex

(or (L

1

� L

2

)

e

) is still �nitely

axiomatisable. Are there any pairs of logis suh that

(L

1

� L

2

)

ex

= [L

1

; L

2

℄

e

; but (L

1

� L

2

) 6= [L

1

; L

2

℄;

where [L

1

; L

2

℄ = ( [L

1

; L

2

℄

e

+ 33p! 33p )?

Further, as is shown in [14℄, the produt logis (suh as, say, GL�GL) whose

`expanding domain' versions are deidable by Theorem 2 are not even reur-

sively enumerable. It is also shown in [14℄ that ommutators like [GL;GL℄

are (though also undeidable) Kripke inomplete, so annot oinide with the

orresponding produt logis (whih are Kripke omplete by de�nition). Does

any of these deidable e-produts oinide with the orresponding expanding

ommutator? If not, are they �nitely axiomatisable? Are these expanding om-

mutators deidable or Kripke omplete? Note that the formula (19) atually

shows that

[K4;GL℄

e

6= (K4�GL)

ex

;

but it is not known whether [K4;GL℄

e

and (K4�GL)

e

are di�erent.
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