Non-primitive recursive decidability
of products of modal logics
with expanding domains

D. Gabelaia?® A. Kurucz® F. Wolter ¢ M. Zakharyaschev ¢

aDepartment of Algebra
Razmadze Mathematical Institute

1 Aleksidze Street, Thilisi 0193, Georgia

b Department of Computer Science
King’s College London
Strand, London WC2R 2LS, U.K.

¢Department of Computer Science
University of Liverpool
Liverpool L69 7ZF, U.K.
dSchool of Computer Science and Information Systems

Birkbeck College, University of London
Malet Street, London WCI1E THX, U.K.

Abstract

We show that—unlike products of ‘transitive’ modal logics which are usually
undecidable—their ‘expanding domain’ relativisations can be decidable, though not
in primitive recursive time. In particular, we prove the decidability and the finite
expanding product model property of bimodal logics interpreted in two-dimensional
structures where one component—call it the ‘flow of time'—is

e a finite linear order or a finite transitive tree
and the other is composed of structures like

e transitive trees/partial orders/quasi-orders/linear orders or only finite such struc-
tures

expanding over the time. (It is known that none of these logics is decidable when
interpreted in structures where the second component does not change over time.)
The decidability proof is based on Kruskal’s tree theorem, and the proof of non-
primitive recursiveness is by reduction of the reachability problem for lossy channel
systems. The result is used to show that the dynamic topological logic interpreted in
topological spaces with continuous functions is decidable (in non-primitive recursive
time) if the number of function iterations is assumed to be finite.
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1 Introduction

Started in the 1970s [40,41], the research programme of investigating and using
products of modal logics' as a multi-dimensional formalism for a variety of
promising applications in mathematical logic, computer science and artificial
intelligence (see, e.g., [2,36,9,4,37,13,7,45]) has recently culminated in a series
of interesting decidability and complexity results.

Decidability: Roughly, a two-dimensional product of modal logics can be
decidable only if, in order to check satisfiability of a formula ¢ in product
frames for the logic, it suffices to consider those of them where the depth of
one of the component frames is bounded by some finite number depending
on . In other words, only products of standard modal logics with K-like
or S5-like? logics are decidable [13,44,11]. Three-dimensional products and
products of transitive logics with arbitrary finite or infinite frames are not
decidable [31,17,38,14].

Complexity: The computational complexity of decidable product logics turns
out to be much higher than the complexity of their components. For exam-
ple, it is shown in [32] that all product logics between K x K and S5 x S5
are CONEXPTIME-hard (while K is known to be PSPACE-complete and S5
CONP-complete). According to [33], even the satisfiability problem for for-
mulas of modal depth 2 in K x K-frames is NExpT1IME-hard. Log(N, <) x S5
is ExPSPACE-hard, while PTL x K is not elementary [16,18,11].

Such is the price we have to pay for the strong interaction between the modal
operators of the component logics of a product, which is syntactically reflected
by the (seemingly harmless) commutativity and Church-Rosser axioms

OOp - &Op and SOp — OIS,

The general research problem we are facing now can be formulated as follows:
s it possible to reduce the computational complexity of product logics by re-
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2 The definitions of some standard modal logics like K, S5, etc., can be found in
Section 2.



laxing the interaction between their components and yet keeping some of the
useful and attractive features of the product construction?

One approach to this problem is motivated by structures often used in such
areas as temporal and modal first-order logics, temporal data or knowledge
bases (say, temporal description logics) or logical modelling of dynamical sys-
tems. What we mean is models/structures with ezpanding domains: if at a
certain time point (or in a world) w we have a ‘population’ A,, of elements
(objects), then at every later point (in every accessible world) u the popula-
tion A, cannot be smaller but can grow—i.e., A, C A,. Standard product
logics respect the stronger constant domain assumption according to which

A, = A, for all v and w.

In the case of dynamic topological logics [27,21], expanding domains corre-
spond to the condition that the function describing movements of points in
topological spaces is continuous (while constant domains correspond to home-
omorphisms).

Models with expanding domains naturally arise also in the context of tableau-
and resolution-based decision procedures that have been developed and imple-
mented for certain monodic fragments of first-order temporal logic and some
modal description logics [15,24,20] which include, in particular, the (expand-
ing) products of the corresponding temporal and modal logics with S5. One
of the most difficult problems in the development and implementation was the
conflict between modularity and the necessity to backtrack after introducing
every new element; in fact, the systems developed so far are considerably more
efficient for expanding domain than for constant domain interpretations.

Products of modal logics with expanding domains were introduced in [30],
where it was shown that they cannot be more complex than (in fact, are re-
ducible to) products. But can they be simpler? For example, is it possible
that a product logic is undecidable while its expanding relativisation is de-
cidable? A similar question was asked in [12] where it was shown that the
two-variable fragment of most first-order modal logics with constant domains
is undecidable.

The main achievement of this paper is the discovery of the first pairs of ‘stan-
dard’ modal logics whose product with expanding domains is indeed simpler
than their usual product. For example, we show that the expanding product
of GL.3 and GL is decidable and has the expanding product finite model
property—in contrast to the product GL.3 x GL which is undecidable and
does not even have the (abstract) finite model property [14]. As a consequence
of our results on expanding products, we also prove that the dynamic topologi-
cal logic with continuous functions and finitely many iterations is decidable—
again in contrast to the undecidability in the case of dynamic topological



structures with homeomorphisms [21].

Our main results can be summarised as follows. Bimodal logics interpreted in
expanding product frames where the first component consists of

e finite linear orders or finite transitive trees
and the second is composed of frames like

e transitive trees/partial orders/quasi-orders/linear orders or only finite such
structures

are decidable and have the expanding product finite model property. If the
second (‘vertical’) component is Noetherian (say, frames for GL.3 or GL),
then we may also allow infinite Noetherian first (‘horizontal’) components.
None of these logics is decidable when interpreted in models with constant
domains [14].

The decidability proof is based on Kruskal’s tree theorem [29] and does not
establish any elementary upper bound for the time/space complexity of the
decision algorithm. We show that indeed no such upper bound exists by prov-
ing that there is no primitive recursive decision algorithm for such logics. The
proof uses a recent result of Schnoebelen [39] according to which reachabil-
ity in lossy channel systems is not decidable in time bounded by a primitive
recursive function. This actually explains why numerous attempts to prove
decidability of expanding products failed: quite often the idea was to reduce
the decision problem to SwS which is not elementary yet primitive recursive
[6]. As a consequence, we also obtain that the dynamic topological logic with
continuous functions cannot be decided in primitive recursive time, no matter
whether the number of function iterations is assumed to be finite or infinite.

The structure of the paper is as follows. In Section 2 we introduce our central
notions of two-dimensional expanding domain frames and the interpretation
of bimodal formulas in them. In Section 3 we formulate and prove the main
decidability results. This is done in three steps. First, in Section 3.1, we use
the maximal point technique of [10] to show that the logics under considera-
tion enjoy the expanding product finite model property. Then, in Section 3.2,
Kruskal’s tree theorem and Konig’s infinity lemma are employed for proving
decidability of these logics. Finally, in Section 3.3, we encode the reachabil-
ity problem for lossy channel systems to establish the non-primitive recursive
lower bound. Section 4 shows how the obtained results can be used for investi-
gating the computational behaviour of dynamic topological logics. In Section 5
we compare the expanding domain products introduced in Section 2 with ex-
panding relativised products of [30]. We conclude in Section 6 with a discussion
of the obtained results and open problems.



2 Two-dimensional frames with expanding domains

Let MLy be the usual propositional bimodal language with two diamonds <,
& (and their dual boxes @, M) and the Boolean connectives. The intended
‘expanding domain semantics’ for this language is defined as follows.

Let § = (W, R) be a (‘horizontal’) frame?® and let f be a function associating
with every x € W a (‘vertical’) frame

f(x) = (W, Ry)

in such a way that whenever xRy in § then f(z) is a subframe of f(y) in the
sense that

o W, CW, and
e for all u,v € W,, we have uR,v iff uR,v.

Then the pair $ = (3, f) is called an ezpanding domain frame, or simply an
e-frame (see Fig. 1 for an example).

f(y)

/(=)

o
Y
o
Y
o

2

Fig. 1. An e-frame (5, f).

The following definition shows how to interpret M Ly-formulas in e-frames. A
valuation U in an e-frame $ = (§F, f) is a set (Vy)wew of valuations Y, in
the frames f(w). The pair M = (9, V) is called an expanding domain model
based on $. The truth relation (M, (x,u)) = ¢, where p € MLy, x € W and
u € W,, is defined inductively as follows:

e (M, (x,u)) = piff u e BV,(p), where p is a propositional variable,

3 We remind the reader that a pair § = (W, R) is called a (unimodal) Kripke frame
if W is a nonempty set and R is a binary relation on W. A waluation in § is a
function U mapping propositional variables to subsets of W.



(M, (x,u)) E S iff there is y € W such that xRy and (M, (y,u)) = ¥,
(M, (x,u)) E O iff there is v € W, such that uR,v and (I, (z,v)) E ¢

(plus the standard clauses for the Boolean connectives). We say that ¢ is valid
in 9 (H E ¢, in symbols) if (M, (z,u)) = ¢ holds for all z € W, u € W,
and all models 9t based on $. Note that every e-frame validates the left
commutativity and Church—Rosser axioms

OOp = &Op and SOp — OSp
but not the right commutativity ©Op — &Sp (see Fig. 1).
Given two classes Cy, Cy of unimodal frames, denote by
(Cy x Cy)°

the class of all e-frames $ = (g, f) such that § € C; and f(z) € Cy for every
point x from §, and let

LOg (Cl X Cg)e = {QO € M»CQ | Vﬁ € (Cl X Cg)e 3] ): QD}

Remark 1 Observe that Log (C; x Cy)¢ is always a Kripke complete normal
bimodal logic. Indeed, given an expanding domain model M = (9,V) as
above, we can ‘represent’ it as a usual Kripke model 9 = (), 0) based on the
bimodal frame

9 ={(z,u) |z €W, ueW,}, Ry R,),
where
(x,u)Rp(y,v) iff u =v and xRy,
(z,u)Ry(y,v) iff &=y and uR,v,
B(p) = {(z,u) | u € Va(p)}.
Then, for every M Ly-formula ¢, we have (I, (z,u)) & ¢ iff (M, (z,u)) E .

Note that if the e-frame § = (§, f) is such that f(z) = & for all z in §, then §
coincides with what is called the product of frames § and &; for more details
see Section 5.

Let Ly be a normal unimodal logic in the language with the diamond <. Let
Ly be a normal unimodal logic in the language with the diamond <&. Assume
also that both L, and L, are Kripke complete. Then the expanding domain
product (or e-product, for short) of the logics L; and Ly is

(L1 X Lg)e = I_Og (Fr Ll x Fr L2)ea



where Fr L; is the class of all Kripke frames for L;, i = 1, 2. Note that (L; X Ly)®
is a conservative extension of both L; and L.

In order to make the paper self-contained, here we give a list of the standard
modal logics we deal with. All logics L in this list are complete with respect
to the classes Fr L of their Kripke frames:

e FrK is the class of all frames (W, R),

e K4 = K® Op — OOp and FrK4 is the class of all frames (W, R) with
transitive R,

e S4 =K4® Op — p and FrS4 is the class of frames (W, R) with transitive,
reflexive R,

e S5 =S84 @ Op — OCp and Fr S5 is the class of frames (W, R) where R is
an equivalence relation,

e GL =K4 ¢ 0O(Op — p) — UOp and Fr GL is the class of all frames (W, R)
such that R is transitive, irreflexive and Noetherian in the sense that there
is no infinite sequence zoRx Rzy ... where x; # x;41 for i < w,

e Grz = S4® 0O(d(p — Op) — p) — p and Fr Grz is the class of all frames
(W, R) such that R is transitive, reflexive and Noetherian,

e K43 =K40O(O"p — ¢)vO(O"qg — p) and Fr K4.3 is the class of frames
(W, R) such that R is transitive and weakly connected in the sense that
whenever 2Ry, Rz and y # z then either yRz or zRy. Rooted* transitive
and weakly connected frames will be called linear. Note that linear frames
can have clusters® of any kind, in particular, proper and degenerate ones.
The logics S4.3, GL.3, and Grz.3 are defined analogously.

Here & means ‘add the axiom and take the closure under modus ponens,
substitution and necessitation ¢/Og,” and OFp = A 0.

3 Decidability and complexity

As e-products are known to be reducible to standard product logics (see [11,
Theorem 9.12] or Proposition 5 below), e-product logics are usually decidable
if one of their components is an S5- or K-like logic [13,44,11]. On the other
hand, products of ‘transitive’ logics with frames of arbitrarily large finite or
infinite depth are undecidable and do not have the finite model property [14].

4 We remind the reader that a frame (W, R) is called rooted if there exists r € W
such that W = {u € W | rR*u}, where R* is the reflexive and transitive closure of
R.

5 Recall that a set X C W is called a cluster in § if there is some z € W such that
X ={z}U{y € W | zRy and yRz}. A cluster X is proper if |X| > 2, it is simple
if X = {z} and zRx; otherwise the cluster is called degenerate.



In this section we show that logics of e-frames with arbitrarily large finite
transitive components can be decidable, and can even have the following strong
version of the finite model property. A bimodal logic L is said to have the
expanding product finite model property (e-product fmp, for short) if, for every
MLy-formula ¢ ¢ L, there is a finite e-frame for L that refutes ¢.

The main results of this paper are the following:

Theorem 1 Let Cp, be any of the following classes of frames:
(C1) all finite transitive antisymmetric frames,

(C2) all reflexive or all irreflexive members of (C1),

(C3) all linear members of any of the classes in (C1) and (C2).
Let C, be any of the classes:

(C4) all transitive frames,

(C5) all reflexive and transitive frames,

(C6) all linear members of (C4) or (C5).

Then the logic Log(Cp, x C,)® has the e-product fmp and is decidable, but not
in time bounded by a primitive recursive function.

Theorem 2 Let Cp, and C, be any of the following classes:
(C7) all Noetherian irreflexive transitive frames,

(C8) all Noetherian reflexive transitive frames,

(C9) all linear members of (CT) or (C8).

Then the logic Log(Cy x C,)¢ has the e-product fmp and is decidable, but
not in time bounded by a primitive recursive function. In other words, if Ly,
L, € {GL, Grz, GL.3, Grz.3} then (Ly X L) has the e-product fmp and is
decidable, but not in time bounded by a primitive recursive function.

We give a common proof of Theorems 1 and 2 via a sequence of lemmas, where
we assume C;, and C, to be as in the formulations of the theorems.

3.1 The expanding domain product fmp

Fix some M/Ly-formula ¢.



Lemma 2.1 If ¢ ¢ Log(C;, x C,)® then ¢ is refuted in a model M = (5, V)
based on an e-frame $ = (§, f) such that

o §=(W,R) €Cy,
o f(x) = (W, R.) €C, (x € W) and,
o forallz e W, v e W, and all MLy-formulas ¢ with (M, (x,v)) = 1, the
set
Apow = {ue Wy |vRyu and (M, (z,u)) =} U {v}
contains an Ry-mazimal point (i.e., a point w such that if wRyw' for some
w' € Ay then w'Ryw).

Proof. Clearly, the lemma holds if C, is as in Theorem 2 (that is, consists of
Noetherian frames only). So suppose that C;, and C, are as in the formulation
of Theorem 1, that is, Cp, is one of (C1)—(C3) (and so contains only finite
frames) and C, is one of (C4)—(C6).

Suppose that (M, (zg,vy)) = ¢ for some model M = (&, 4) based on an
e-frame & = (3, f), where § = (W, R) € Cy, f(x) = (W,,R;) € Cp, kg € W
and vy € W,,. By Remark 1, we may assume that x; is a root of § and
vy is a root of f(xp). Define a new model 9 = ($,Y) based on an e-frame
H = (3, f*) as follows. Take the set U of ultrafilters over V' = U,cy Wy, and
set fU(z) = (W2, RY), where

Wy = {uelU|W, €u}
and
uy R*uy iff for all A € uy, {veW, | T € AvR'} € uy.

It is not hard to show that ) is indeed an e-frame. Note that f“*(z) does not
necessarily coincide with the usual ‘ultrafilter extension’ of f(z), as it may
contain several different extensions of each ultrafilter over W,. However, it
is straightforward to check that f“(x) is a transitive rooted frame for every
x € W (the principal ultrafilter uy containing {vy} is a root of f*(x)), and
R is reflexive (irreflexive, weakly connected) if R, is reflexive (irreflexive,
weakly connected). Therefore, $ belongs to (C, x Cy)°.

Define a valuation U as the set (4%¢),cyp, where
Wop) = {ue W [h(p) € u}.
We claim that, for all z €¢ W, v € W}, and all formulas v
M, (z,w) =y i foeWe [N, (2,0)) Fofeu (1)

The proof is by induction on . Here we show the only ‘non-standard’ step
of 1 = &x. Suppose first that (9, (z,u)) = Sx. Then, by TH, there is some



y € W such that xRy and

{veW, [ (M, (y,0)) = x} € u.

Since u € W¢, we have

{oeWe | (N (z,0) Eoxt 2 {veWe | (N (y,0)) Fx} € u,

as required. Conversely, suppose B o = {veW, | (M, (z,v) =X} €u.

Since § is finite ®, there are y1, ..., y, in W such that, foreach i = 1,...,n, we
have xRy;, By, , = v e We | (O, (yi,v)) E X} # (0 and BI7<>X = U1 By, x-
It follows that there is some 7 such that 1 <7 < n and

{veWy, [ (M (v0)) Fx} 2 By € u,
and so, by IH, (M, (z,u)) = ¢ x holds.
As a consequence of (1) we obtain that (90, (zo, ug)) = ¢.

The existence of R%-maximal points in sets of form A, , 4 in 9 follows from
a well-known result of Fine [10]. Here is a sketch of the proof. Consider the
family

X ={X C Ay | RyN(XxX) is linear, with smallest element u}.

Let C' be a C-maximal set in X (i.e., for every C' € X, C C (' implies
C'" = (); its existence can be readily proved with the help of Zorn’s lemma.
Now take the set

yo={ACW, |3z € CV2 € C (2R"2 — A€ 2}

This set is not empty, since {v € W, | (N, (z,v)) = ¢} € y,, and clearly y,
has the finite intersection property. Hence we can find an ultrafilter y € W
containing y,. Then it is easy to see, using the definition of R}, that

Vz € C zR}y. (2)

We claim that y is Ry*-maximal in A, , .. Indeed, take some y' € A,y
such that yR¥y'. If y' € C then y'R*y holds by (2). If y' ¢ C then, by
the C-maximality of C' in X', R is not linear on C'U {y'}. Since by (2) and
yR¥y', we have zR"y' for all z € C, there exists a 2’ € C such that y’R¥ 2’
and so, again by (2), y'R*y as required. W

We will use Lemma 2.1 to show that Log(Cj, x C,)¢ has the e-product fmp. To
formulate the next lemma, we require the following notions.

6 This step of the proof would not work for infinite . In fact, as is shown in item 1
of Section 6, Theorem 1 does not even hold in this case.
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We say that a transitive frame § = (W, R) is a quasi-tree of clusters if § is
rooted and R is weakly connected on the set {y € W | yRx} for every x € W.
If in addition § is antisymmetric (that is, does not contain proper clusters),
then we call § simply a quasi-tree. If a quasi-tree of clusters is well-founded
(i.e., there are no infinite descending R-chains ... Rxs Rz Rxg of points from
distinct clusters) then we call § a tree of clusters. Finally, a tree of clusters
without proper clusters is called a tree”. Note that since Noetherian frames
do not have proper clusters, a Noetherian tree (quasi-tree) of clusters is always
just a tree (quasi-tree).

The co-depth cd(x) of a point x in a quasi-tree § is defined to be the R-distance
of x from the root. More precisely, the co-depth of the root is 0, and the co-
depth of immediate R-successors of a point of co-depth n is n + 1. If for no
n < w the point x is of co-depth n, then we say that x is of infinite co-depth.
The depth of a finite tree § = (W, R) is the maximum of cd(z), for x € W.

Remark 2 By a standard unravelling argument one can show that every
rooted transitive frame § that belongs to one of the classes (C1)-(C9) above
is a p-morphic image of a quasi-tree & of clusters belonging to the same class.
It can also be shown that this unravelling ‘commutes’ with the formation of e-
frames in both ‘coordinates’ in the following sense. On the one hand, if (§, f)
is an e-frame and § is the m-image of a quasi-tree & for some p-morphism
7, then (&, f) is a p-morphic image of the e-frame (&, g) defined by taking
g(x) = f(r(z)) (z in &). On the other hand, if (F, f) is a rooted e-frame then
for every z in § there exists a quasi-tree g(x) of clusters such that (§, ¢g) is an
e-frame and (§, f) is a p-morphic image of it. Moreover, if (§, f) satisfies the
‘maximal points’ condition of Lemma 2.1 then the g(x) can be chosen in such
a way that (§, g) satisfies this condition as well.

Denote by ¢(y) the length of ¢, say, {(¢) = |subp| where suby is the set of
all subformulas of .

Lemma 2.2 If ¢ ¢ Log(C;, x C,)® then ¢ is refuted in a model M = (), V)
based on an e-frame $ = (§, f), where

e §=(W,R) €Cy is a finite transitive tree
and, for every x € W,

o f(x)= (W, R,) €C, is a finite transitive tree of clusters,
o |W,| < (é(go) + 1)!0‘1(“3)“, and

e = has at most {(yp) - (Z(cp) + 1)!0‘1(’”)Jr1 immediate R-successors in §.

7 Here we slightly deviate from the usual notion of a transitive tree, as our trees
may contain both reflexive and irreflexive points.
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Proof. Suppose that (9, (z,w)) K= ¢ for some model M = ($, V) based
on an e-frame 9 = (§, f), where § = (W,R) € Cp, f(x) = (W, R;) € Cy,
xr € W and w € W,. According to Remark 2, we may assume that 9T satisfies
the conditions of Lemma 2.1, § = (W, R) is a (possibly infinite) Noetherian
quasi-tree, and (W, R;) is a quasi-tree of clusters, for every x € W.

Now we take the closure Y of the set X = {(x,w)} under the the following
three rules:

e &-rule: if (y,v) € X, (M, (y,v)) | S, for some S € subp, and there
is no (y',v) € X such that yRy' and (M, (y',v)) E 1, then choose an
R-maximal point ¢y’ € W such that yRy', (MM, (v',v)) = ¢ (such a point
exists because § is Noetherian), and set X := X U {(y,v)}.

e O-rule: if (y,v) € X, (M, (y,v)) E O, for some Gy € subyp, and there
is no (y,v') € X such that vR,v" and (9N, (y,v")) = ¢, then choose an
R,-maximal v in f(y) such that vR, ', (9, (y,v’)) = ¢ (such a point
exists by Lemma 2.1), and set X := X U {(y,v")}.

e Square-rule: if (y,v) € X, yRy" and (y',v) ¢ X, then set X = X U

{(v/,0)}.

Consider the restriction $ = (§', f') of 9 to Y, where §F = (W', R), W' =
Wn{x | (r,w) e Y}, R = RIW', and f'(z) = (W., R},) where W, = {v |
(x,v) € Y} and R, = R, [W] for x € W'.

Since § is a subframe of §, f'(z) is a subframe of f(x) for x € W', and the
classes Cp, and C, are closed under taking subframes in all the cases (C1)—(C9),
§' is a Noetherian quasi-tree in Cj, and the f'(x) are quasi-trees of clusters in

Cy.

CLAaM 2.2.1 If x is of finite co-depth in §', then |W]| < (é(go) + 1)!Cd(’”)+1.

PRrROOF. The proof is by induction on n. If n = 0, then by applying the ®-rule
to the root (z,w) of $, we can obtain < ¢(¢) immediate R/ -successors of
the form (z,v). In view of maximality, at each of these points the number of
formulas of the form &1 € suby to which the ®-rule still applies is < /() —1.
We proceed with the same kind of argument and finally get

Wel < 1T+L(p) +L(p) - (Ulp) = 1) +--+Lp) < () + D)

The induction step for y of co-depth n+1 is considered analogously. The only
difference is that instead of one ‘starting’ point in the root W/, we should
start applying the ®-rule to all points of the form (y, v) such that v € W/ for
the unique point z with cd(z) = n and zR'y, that is to |W!| < (é(go) + 1)!’“rl
many points. U
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CLAIM 2.2.2 Ewvery point x of finite co-depth in §' has
< (@) - (L) + 1)1t

immediate R’ -successors.

ProOOF. Follows from the previous claim and the fact that the ¢-rule can be
applied at most £(p) times to a point (x,v). O

CrLAaM 2.2.3 Every point in §' is of finite co-depth, that is, § is a tree.

PROOF. Since §' is Noetherian, we cannot have infinite ascending chains of
distinct points in §'. Suppose § still contains a point x of infinite co-depth.
This means that there is an infinite descending chain ... R'zo R’z R'z. Let y be
an R'-maximal point of finite co-depth such that yR'z. It exists because §' is
Noetherian. By Claim 2.2.1, W; is finite. Therefore, we may apply the &-rule
to points in W, finitely many times only, and so there exists an immediate R'-
successor y' of y located properly between y and z. But then cd(y') = cd(y)+1,
and so the co-depth of ¢ is finite, which is a contradiction. O

Thus, § is a Noetherian tree with finite branching. Therefore, by Konig’s
lemma, it must be finite. This completes the proof of Lemma 2.2. D

3.2 Decidability

We are now in a position to prove that Log(Cp x C,)¢ is decidable. It is to be
noted that the e-product fmp does not give decidability automatically because
(i) we do not have an effective upper bound for the size of a model refuting
a given formula ¢ ¢ Log(Cj, x C,)¢, nor (ii) do we know that Log(Cy, x C,)¢ is
finitely axiomatisable.

We will use a version of Kruskal’s tree theorem [29]. Given a finite set ¥, a
labelled X-tree is a triple T = (T, <, ), where (T, <) is a transitive tree and [
is a function from 7 to ¥. Given two finite labelled X-trees ¥; = (73, <;,1;),
1 = 1,2, we say that €, is embeddable into T, if there exists an injective map
v : Ty — Ty such that, for all u,v € T},

o u <y viff 1(u) <y t(v),

o ly(e(u)) =l (u).

Theorem (Kruskal).® For every infinite sequence %1, %o,... of finite la-

8 In the usual treatments of Kruskal’s tree theorem, trees are meant to be either
irreflexive [29] or reflexive [34]. However, it is easy to see that the theorem also
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belled X-trees, there exist © < j < w such that T; is embeddable into T;.

In order to use this theorem, we represent expanding domain models in a
slightly different form. Roughly, the idea is as follows. By Lemma 2.2, we may
assume that the ‘vertical components’ of e-frames are finite trees of clusters.
We take the ‘skeleton-tree’ of such a tree of clusters, and label each node of this
skeleton with the set of Boolean types of points from the cluster represented
by the node.

To this end, denote by T',, the set of Boolean types t over sub—yp, where

e et iff ¢t for every —¢p € sub—yp, and
e YA et iff xetandet, for every x Ay € sub—p.

Let P(T,)" be the set of all nonempty subsets of T',. A pair Q = (§, f) is
called a pre-quasimodel (for @) if

e § = (W, R) is a transitive tree, and
o f(x)= (T, <s,!z), for x € W, is a finite labelled P(T,)*-tree.

We call such a pre-quasimodel small if, for all x,y € W,
(sml) [T,] < (¢() + 1)1,
(sm2) z has at most () - (E(cp) + 1)!0‘1(“7)Jrl immediate R-successors in §,

(sm3) if xRy and x # y then f(x) is not embeddable into f(y).

For every n < w, let @), be the set of all small pre-quasimodels (§, f) such
that § is a finite tree of depth n.

Lemma 2.3 There is an n < w such that Q, = 0, and so the set of small
pre-quasimodels for ¢ s finite and can be constructed effectively from .

Proof. Suppose otherwise. Define a relation £ on the set ) of all small pre-
quasimodels as follows. For Q = (3§, f), Q' = (§F', f') in Q, set QEQ' iff § is
an ‘initial subtree’ of §' and f coincides with f’ on the points of §. Clearly,
for every Q' € @11, there is some Q € ), such that QFQ'. Therefore, by
Konig’s infinity lemma, there is an infinite F-chain QoEQE... EQ,E ... in
@ such that ,, € @, for n < w. Since ,,,1 is always an extension of ,,, their
union 2 = U, ., Q, is also a pre-quasimodel. Let Q = (§, f) and § = (W, R).
Then § is an infinite tree with finite branching. By Ko6nig’s lemma, it must
have an infinite branch xoRx R .... Then, by Kruskal’s theorem, there exist

holds without any such restriction, as we can add the information about reflexiv-
ity /irreflexivity of a tree-node to its label.
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i < j < w such that f(x;) is embeddable into f(z;). But z; and z; already
belonged to the underlying tree of Q;, contrary to £, being in @);. U

What is left is to establish a connection between expanding domain models
and pre-quasimodels. A run r through a pre-quasimodel (§, f) (where § =
(W,R) and f(x) = (T}, <s,l:), for x € W) is a partial function from W into
(Ugew T) x T', such that, for all z € W,

o if v € domr and r(z) = (Wy(), tr)), then w, () € T, and t,(5) € (0 (),

e if x € domr and zRy then y € domr,

e for all Go € sub—yp, we have G € L,y iff there exists y € W such that
xRy and ¢ € t,).

We call a triple (g, f,R) a (Cj, x C,)-quasimodel (for ¢) if the following con-
ditions are satisfied:

(q0) (T, f) is a pre-quasimodel, R is a set of runs through (§, f), § € Cp, and
(T, <z) €C, for all z € W;

(al) —¢ € [,(w) for the root r € W of § and the root w of f(r);

(q2) forall x € W, w € T, and Oy € sub—yp, the following conditions are
equivalent:
e there exists a t € [,(w) with O € ¢;
e there exists a v with w <, v and ¢’ € [,(v) such that ¢ € t';

(g3) forallz € W, w € T, and t € [,(w), there is 7 € R such that r(z) =
(w, t);

(q4) for all r,7" € R and for all z,y € domr Ndom?’, wy(m) <z Wy iff
Wr(y) <y Wr'(y)-

We call a quasimodel small if the underlying pre-quasimodel is small.

Lemma 2.4 ¢ ¢ Log(C;, x C,)¢ iff there is a small (Cp, x C,)®-quasimodel for
©.

Proof. Suppose first that there is a (C, x C,)%-quasimodel (F, f,R) for ¢
(where § = (W, R) and f(x) = (T}, <4, 1), for x € W). Then we let, for all
reW,

Wy={reR|zedomr},
TRQ;T, iff Wr(z) <z Wy (),
9(@) = (Ws, Ry).
It is straightforward to check that $ = (§,g) is an e-frame in (C, x C,)°.

15



Moreover, by taking, for all z € W and propositional variables p,

mdz(p) = {T e W, | pE tr(w)};
we obtain an expanding domain model (£, ) refuting .

Conversely, suppose that ¢ ¢ Log(Cj, xC,)°®. We may assume that ¢ is refuted in
a model M = ($, V) based on an e-frame §H = (F, f) satisfying the conditions
of Lemma 2.2. We can turn 9t into a (Cj, x C, )°-quasimodel (§, g, R) as follows.
Suppose that § = (W, R) and f(x) = (W,, R,) for x € W. For every x € W,
define an equivalence relation ~, on W, by taking, for all u,v € W,

U~y U iff either u = v, or uR,v and vR,u,

that is, iff u and v are in the same R, -cluster. Let [u], denote the ~,-class of
u. Forall x €e W, w € W, we let

ty (w) = {¢ € sub—p | (M, (z,w)) £ ¥}.

For every x € W, let g(z) = (Ty, <u,l:), where

Tp =A{[uls | uw e Wi}
[uly <g [v], Mt Fu € [ul, ' € [v], v'R
lo([uls) = {5 (W) | ' € [u]s}.
Finally, for every w € U,y W, define a run r,, through (g, g) by taking
domr, = {zeW |weW,}

and for every z € domr,,,

ru(@) = ([wle, 8] (w)).

Let R = {ry | w € Ugew We}. It is straightforward to check that (§,g,R)
is indeed a (C; x C,)°-quasimodel for . Moreover, by the assumption on 9,
the pre-quasimodel (§,g) is finite. To show that we can turn it to a pre-
quasimodel satisfying (sm3), suppose that there are z,y € W such that xRy
and g(x) is embeddable into g(y) by an embedding ¢. Then we replace in § the
subtree generated by x with the subtree generated by y, thus obtaining some
tree § = (W', R'). Let ¢’ be the restriction of g to W’. We define new runs
through (g, ¢’) by taking, for all r,7" € R such that x € domr, y € dom’,
L Wr(z)) = Wi (y), tr() = tr(y), and for all z € W', 2z € domr,

r(z), if 2Rz,
r'(z), ifz=uyoryRz.

(7)) = {



Let R’ be the collection of these new runs together with those runs from R that
‘start at” a point z with yRz. It is straightforward to check that (§',¢', R') is a
(Ch, x C,)¢-quasimodel for ¢. Since § is finite, after finitely many repetitions of
this procedure the underlying pre-quasimodel will satisfy (sm3). To comply
with the cardinality conditions (sm1) and (sm2), we can use the construction
from the proof of Lemma 2.2. Then, again we can get rid of the embeddable
pairs as above, and so on. As at each step the underlying tree can get only
smaller, we will end up with a small (C;, x C,)°-quasimodel for (. O

Now we can describe the decision algorithm for Log(Cy, x C,)¢ as follows. Given
a formula ¢, by Lemma 2.3, we can effectively construct the set of all small pre-
quasimodels for . Then for each such small pre-quasimodel, we check whether
it is a (Cp, xC,)°-quasimodel for ¢ (that is, whether conditions (q0)—(q4) hold).
By Lemma 2.4, this way we find a quasimodel for ¢ iff ¢ ¢ Log(Cj, x C,)°.

3.3  Complexity

Now we complete the proof of Theorems 1 and 2 by showing that no algorithm
can decide whether a given M Ly-formula ¢ is satisfiable in an e-frame from
(Cp, x Cy)® in primitive recursive time or space. To understand the meaning of
this result, let us recall that every primitive recursive function f : w — w is
(eventually) dominated by one of the (primitive recursive) functions h,, which
are defined inductively as follows

ho(k) = 2k, hoy1 (k) = hP(1),

where hsf) denotes the result of k successive applications of h,; see, e.g., [35]
and references therein. For example,

2 .

hi (k) = 2%, hy (k) = 2 J F times.

(In particular, all elementary functions are dominated by hy.) The diagonal
h,,(n)—a variant of the Ackermann function—is not primitive recursive. We
are about to prove that the decision problem for our logics is at least as hard
as termination of Turing machines running in Ackermann time or space. It
seems that these expanding products as well as some relevance logics [43] are
the most complex natural and mathematically interesting decidable theories
known so far (cf. [6]).

We will use a reduction of the reachability problem for lossy channel systems
which was shown to have non-primitive recursive complexity by Schnoebe-
len [39], even for systems with a single channel. A single channel system is a
triple S = (@, %, A), where @ = {q1,...,¢,} is a finite set of control states,
¥ ={a,b,...}is afinite alphabet of messages, and A C Q x{?,!} xExQ isa
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finite set of transitions. A configuration of S is a pair v = (¢, w), where ¢ € Q
and w is a finite nonempty ® X-word. Say that a configuration 7/ = (¢/, w’) is
the result of a perfect transition of S from v = (¢, w) and write y=», o/ if

e there is (¢,!,a,¢') € A such that w' = aw, or
e there is (¢,7,a,¢') € A such that w = w'a.

We say that 7/ is a result of a lossy transition from ~ and write v,/ if

v 4 71£>p72 J 4

for some 1 and 7, where (¢, w) 3 (¢, w') iff w' is a subword of w and ¢ = ¢'.
Denote by %7 and %7 the transitive and reflexive closures of £, and 23,
respectively.

As was proved by Schnoebelen [39], the following problem is not decidable in
primitive recursive time: ‘given a channel system S, two configurations 7, and
7f, and any relation — in the interval

S.

S C = C B

*
p
decide whether vy — ~¢.” So in order to establish the non-primitive recursive
lower bound for our logics, it is enough to prove the following:

Lemma 2.5 For every channel system S and all configurations vy, ¢, one
can construct an MLy-formula @s , -, which is polynomial in the size of S,
Y, v and satisfies the following two properties:

a) if ps is satisfiable in an e-frame from (Cp, x C,)¢ then 79255 vy,
»Y0,Yf ¢ f

(b) if Yo 5 then sy, is satisfiable in an e-frame from (Cj x Cy)°.

Proof. To construct the required formula ¢g,,,, we will need modal op-
erators interpreted via accessibility relations that are irreflexive on certain
points of e-frames. So, similarly to the undecidability proofs of [42,11,14,38];
we fix two propositional variables h and v, and define new modal operators by
setting, for every M Lo-formula 1),

¢y =[h—=o(-hA@voey))|Al-h—=<o(ha@v o))
= [vo O(wA @V OP)|A[w— O (vA (v o)),
H) = &), and @Y =P,

9 In the standard definition, empty words are permitted. However, it is not hard
to see that the computational behaviour of channel systems does not depend on
whether empty words are permitted or not.
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We will use the following abbreviations. For every formula ¢, O € {d, 0},
and every n < w,

D% = ¢ A DOy,
0y =y =y, LY = SOy,
n—l—lw _ nw7 @:nw — an A n+1_lw‘

The last formula says: ‘see 1 vertically in n steps, but not in n + 1 steps.’
With a slight abuse of notation, we also introduce propositional variables
e 0, for every transition § € A,

e q, for every a € ¥,

e ¢, for every q € Q,

and use the abbreviation w <V cx a.

Now suppose that a channel system S and two configurations

Yo = (qo,b1...bg), v = (gqpa1...am)

are given. Define ¢g to be the conjunction of formulas (3)-(12):
g Y0,V f

3% ((h — Dh) A (—h — O=h)) (3)
B30T ((v = BY) A (v = B-w)) (4)
E+EI+((W — Ow) A (-w — E—w)) (5)
oA (o> 8w @) A A 0 -a)) (6)
acX aZa’
=0t (V an Ala= ) A Al - Do) 7
qeq a#q q€Q
E+EI+[OT—> ( V IA N (6= =) A /\(5—>E|5)>] (8)
0EA 0F£d! 0EA
g A—wASTET A /\ (7T = ami) (9)
= {u N (qo A m+((<>7°T W) A A (05T b,H-)))] (10)
A BTOF 5 — <q' A (W — Q(w;\ q))/\
5=(g10.0')
(W/\L—>Q(W/\q))/\(W/\—IQ(W/\q)—ML))] (11)

19



A\ E+m+[5 —

6:(q7?’a7q,)

<q' Aw— S(wAgADHEL - a)) AT (@L - <>T)>] (12)

The intended meaning of these conjuncts will be clear from the proof below.

Proof of (a). Suppose that g, -, is satisfied at some point (zo,ug) of an
expanding domain model I = ($, V) that is based on an e-frame $H = (F, f)
from (Cp, x C,)¢, where § = (W, R) and f(z) = (W,, R,), for x € W. By
Lemma 2.2, we may assume that §) is finite, and (zo, ug) is a root of §.

Define new relations R and R, (x € W) by taking, for all y,y’ € W, u,u' € W,,

yRy iff I ew [yRy" and (13)
((ma (y,u0)) Eh <= (M, (y", w)) = —|h) and
(either " =y’ or y"Ry')],
uRyu'  iff F e W, [quu" and (14)
(0, (2,u) Ev <= (M, (z,u")) = ~v) and
(either u” = u' or u”RIu’)].

It is readily checked that all of the R and R,, x € W, are transitive, R C R,
R, C Ry, and for all z € W, u € W,,

(O, (z,u)) =&y iff Ty e W (aRy and (M, (y,u)) F ¥),
(M, (z,u)) E @y iff  Fve W, (uRyv and (M, (z,v)) = ).

Note that ((W, R), f) where f = (W,, R,) (z € W) is not necessarily an e-
frame, because we can have z,y € W, u,v € W, such that xRy, uRyv, but
u is not Ry-related to v. Nevertheless, for all z,y € W, u,v € W,, we always
have that

if zRy and uR,v then uR,v. (15)

Since there are no proper clusters in §, R is irreflexive. The R, are not nec-
essarily irreflexive, but all non-degenerate R, -clusters are necessarily ‘blank’
(i.e., make —w true):

CramM 2.5.1 Let y € W and v € W, be such that (I, (y,v)) = w. Then
vR,v does not hold.

PROOF. Suppose otherwise, that is vR,v and (9, (y,v)) E w. Then we have
(M, (y,v)) = @T, since otherwise (M, (y,uop)) = | would hold, and so
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(M, (y,v)) E —w by (10). Hence it follows from (8) that (M, (y,v)) = §
for some § € A. Now we obtain (I, (y,v)) = €(w A ¢), by (11) and (12).
Thus there exists y; € W such that yRy, and (9, (y1,v)) = w. Since R is
irreflexive, y; # y. By (15), we have vR,,v. By repeating the above argument,
we must have (9, (y1,v)) E €T again. Therefore, we can continue in this

manner to obtain an infinite ascending chain y Ry, Rys . . ., contrary to § being
Noetherian. U
For a finite sequence @ = (v, vs,...,v,) of elements of W, with v;R,v;11 and

y € W, we write
valy(0) = dy...d,

if, for all i, 1 <4 < n, we have (9, (y,v;)) = d; for some d; € X U {-w}.

Say that @ = (uy,ug,...,u,) is an extension of v, if u; € Wy, u;Ryu41, and
there are 4; < iy <--- <1, <1 such that u;; =v; for 1 < j < n. Say that U
carries a Y-word in y if there are dy, ..., d, € ¥ such that val, (V) = d; ...d,.

A sequence ¥ is said to be mazximal carrying a X-word in y if no extension of
U carries a Y-word in y.

CLAIM 2.5.2 For all x € W and ¢ € Q such that (M, (x,u0)) E ¢ N&T,
if a nonempty sequence U is maximal carrying o X-word in x then there exist

y €W, q € Q, and a nonempty sequence u that is mazimal carrying a Y-word
in y such that xRy, (M, (y,w)) = q, and

(g,val, (@) 2 (¢, val,(7)).

PROOF. Suppose that 7 = (vy,...,v,) and val, (V) = ¢; ... ¢, for some ¢; € .
By (8), there exists a unique 6 € A such that (9, (z,up)) = J. By (11) and
(12), 6 is of the form (q,!,a,q’) or (¢,?,a,q’) for some ¢ € Q, a € X.

Case 1: § = (q,!,a,¢'). Then, by (11),

(9, (z,01)) = WS (w A g)
and there exists a minimal ¢ < n such that

(O, (z,v1)) = &(w A g).

Clearly, 1 < i < 2. Take y such that xRy and (90, (y,vi)) EwAg. By (5), we
have (M, (y,v;)) = w, for all j > i. As we have v; R, ... Ryv, by (15),

valy(vi, ..., v,) = valy(vi,...,vy).

follows from (6). Take any maximal extension @ of (vj,...,v,) carrying a
Y-word in y. That such an extension exists in the finite e-frame (g, f) fol-
lows from Claim 2.5.1. Assume first that ¢ = 2. Then, by (11), we have
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(M, (x,v1)) = a. It follows that

(q,val, (@) 3 (g,valy(ve,...,vn))>, (¢ avaly(ve,. .. v,)) = (¢, valy(7)).

If i =1 then
(q,val, (@), (¢',aval, (@) T (¢,val,(V)) = (¢,val.(7)).
Case 2: 0 = (q,7,a,q'). By (12), there exists y € W such that xRy and
(DM, (y,v1)) EwAgATT (ML — a).

By (5) and Claim 2.5.1, (9, (z,v,)) = @L. Therefore, by (12), we have
(M, (y,vn)) = ®T. Since W, is finite, by (5) and Claim 2.5.1 again, we
find v, 1 € W, with v, R,v,11 and (9, (y,v,41)) E @L. By (12), we have
(M, (y, vn11)) E a. By (15), we have v R, . .. R,v,. Therefore, by (5), we have
val,(0) = val, (7). Take any maximal extension @ of (vy,. .., vy, Uyt1) carrying
a Y-word in y. By Claim 2.5.1, such an extension exists and

val,(@) = wa
for some ¥-word w having val,(v) as a subword. But then

(0,00l (D) 5, (¢, w) T (d0aly(®) = (¢, val,(¥).
which completes the proof of Claim 2.5.2. U

Now we can find a ‘lossy run’ from vy to 7y as follows. By (9), we have
(M, (zo, up)) = ¢y, and there exists a sequence & that is maximal carrying a
Y-word in xy and such that

valy, (W) = ay...ay.

Since § is finite and R is irreflexive, it follows from Claim 2.5.2 that there
exist x1,...,2, € W, ¢1,...,q, € @, nonempty sequences uy,...,w, such
that zoRx 1 R. .. Rx,, (M, (15, u9)) = ¢, W; is maximal carrying a YX-word in
z;,, 1 <1< n,

(Gn, valy, (Wy,)) S 0Dy (g1, valy, (wh)) 5, (g7, valy, (W) = ¢

and (M, (z,,up)) = ™ML, By (10), ¢, = ¢o and val,, (wy,) is a subword of
by ...bg. Therefore, (qo,b1...bk) 2 (qn-1,valy, ,(wy—1)), and so 725 ;.

Proof of (b). Suppose that v, i)Z V¢, i.e., there exists a finite sequence

'YOi)p VIip i)p Yn = Vf

22



of perfect transitions, where v; = (¢;,d} ...d}, ), for i < n. Let ¢; denote the
transition from v;_; to v;, 1 <7 < n, that is,

(qiz1, ), a,q;), if di .. d;l =ad .. .d!

i—1’

(qi—b ?7 a, ql)a if di_l Tt déi__ll = dll Tt d;za

We show that the formula pg, ,, is satisfiable in an e-frame from (Cj x C,)*.
First, for each i < n, we define inductively a number N; < w by taking Ny = ¢,
and, for 0 < i < n,

Nifla if 6n7i+1 = (qnfia !7 a, qn7i+1) € A for some a € Ea
Ni —
Nii+1, if i1 = (quoi, 7 0y qn_it1) € A for some a € .

Now we define an e-frame $ = (3, f) as follows. Let W = {0,...,n} and let
§ = (W, <) if Cp, contains only reflexive frames, and § = (W, <) otherwise.
For each i € W, let W; = {0,...,N;} and f(i) = (W;,<) if C, contains
only reflexive frames, and f(i) = (W, <) otherwise. Define valuations for the
propositional variables by taking, for i <mn, a € X, ¢ € @, § € A,

W;, if i is even,
B;(h) =

0, if 7 is odd;
U;(v) = {j < N;|jiseven};

Bi(a) = {N; =l +j |1 <j < lyy, df7" =al;

Wi; ]-f q - qTL—iJ
Vi(q) =

(), otherwise;

Wi, ifi <nand d =9, 4,
0,;(0) =

0, otherwise.

Finally, let 90t = (9, (U;)i<n). It is easy to check that (90, (0,0)) = @50,
holds. 0]

4 An application to dynamic topological logic

Dynamic topological logic was introduced in 1997 (see, e.g., [25,26,28,3,27]) as
a logical formalism for describing the behaviour of dynamical systems, e.g., in
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order to specify liveness and safety properties of hybrid systems [8]. Roughly,
the idea is to model (some aspects of) these systems by means of dynamic
topological structures (DTS) © = (%, g), where T = (A,I) is a topological
space with an interior operator I and ¢ is a continuous ' function on T which
‘moves’ the points of ¥ in each discrete unit of time. What we are interested
in is the asymptotic behaviour of iterations of ¢, in particular, the orbits
{w, g(w), g*(w), ...} of states w € A. A natural formalism for speaking about
such iterations is obtained by interpreting the previously introduced modal
operator @ as ‘always in the future,” its dual & as ‘eventually,” the operator

0 as topological interior and <& as topological closure, by taking, for every
X CA,

BX = Nocncwg "(X), X = Uocncw g "(X),
OxX = IX, SX = A-[(A-X)
and adding the ‘next time’ operator O:
OX = g 'X).
The resulting language will be denoted by MLs.

By a dynamic topological model with N < w iterations (DTMy, for short)
we understand a triple 9 = (D,U0, N), where © = (%,¢g) is a DTS with
T = (A,I), and U, a valuation, associates with each propositional variable p
a subset U(p) of A. The truth of a formula ¢ at a state w depends on how
many iterations of g we consider and at which iteration step we evaluate .
Let N'=N+4+1if N < w and N' = w otherwise. For every m < N’, define
inductively the truth relation (9, w) =, ¢ (‘in model M, ¢ is true at w after
m iterations of ¢’) as follows:

(M, w) = p iff w € Y(p), p a propositional variable,

(M, w) =, Dp  iff wel{veA| (M, v) En ¢}

(M, w) Em Oy iff weC{veA| () En el

(M, w) Ep Op it m+1< N and (M, g(w)) Emsr @,

(M, w) =, B it (M, g"(w)) Emin ¢ for all n > 0 with m +n < N',
(M, w) Ep ©p it (M, ¢"(w)) Emn ¢ for some n > 0 with m +n < N'.
Here ¢"(w) = 7...9(w) and C is the closure operator on ¥. Note that if a

formula v contains no ‘temporal’ operators or if N = w then the truth relation
(M, w) = ¥ does not depend on m. Say that ¢ is satisfiable if there exist a

10 Recall that a set X C A is called open in T if IX = X. A function g between
topological spaces is called continuous if the inverse image g~ !(X) of every open
set X is open.
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DTMy 9 and a state w in it such that (9%, w) =¢ ¢. We also say that ¢ is
satisfiable in models with finite iterations if ¢ is satisfied in a DTM y for some
N < w. It is worth noting that for various natural properties it is sufficient to
consider finitely many iterations only. For example, a safety property like ‘w
will never visit some danger zone P’ is satisfiable iff it is satisfiable in models
with finite iterations.

The language ML; can also be interpreted in expanding domain models N
based on e-frames $ = (F, f), where § = (W, <) is a finite strict linear order
(that is, a finite irreflexive linear frame) and, for every x € W, f(z) = (A,, R,)
is a reflexive and transitive frame. Indeed, given such an 0, we set

e M, (z,u)) E Op iff there exists an immediate <-successor z' of x and

(9, (2", u)) = ¢,

and leave all the other truth conditions from Section 2 unchanged. Then it is
not hard to see that the proof of Theorem 1 can be generalised to show the
following:

Theorem 3 Let Cp, be the class of all finite strict linear orders and let C, be
the class of all transitive and reflexive frames. Then the logic

{pe ML [VH € (C1 xCa2)* H = ¢}

has the e-product fmp and is decidable, but not in time bounded by a primitive
recursive function.

It is a challenging open question whether the satisfiability problem for M/L5-
formulas in dynamic topological structures is decidable. The known partial
results are as follows. In [21] it is proved that the problem is undecidable, even
for models with finite iterations, if we consider DTSs with homeomorphisms.
In [22] it is shown that the problem is again undecidable if we consider DTSs
with continuous mappings but based on Aleksandrov topological spaces only
(see below for definition). Here we prove—using Theorem 3 above—that the
satisfiability problem for M/Lj-formulas in models with finite iterations is
decidable, but not in primitive recursive time. It is not hard to see (using the
relativisation technique of, say, [11]) that satisfiability in models with finite
iterations is polynomially reducible to general satisfiability. Thus we obtain
that the general satisfiability problem cannot be decided in primitive recursive
time either.

Theorem 4 The satisfiability problem for MLS-formulas in dynamic topo-
logical models with finite iterations is decidable, but not in primitive recursive
time.

Proof. We remind the reader that every reflexive and transitive frame (i.e.,
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frame for modal logic S4) & = (A, R) gives rise to a topological space Tp =
(A, L), where, for every X C A,

I[s(X) = {z€eX|VyeA (zRy —ye X)}.

Such spaces are known as Aleksandrov spaces. Alternatively they can be de-
fined as topological spaces where arbitrary (not only finite) intersections of
open sets are open; for details see [1,5]. The next lemma follows immediately
from [3,28,27]:

Lemma 4.1 For every N < w, an ML;-formula is satisfiable in a DTMy iff
it is satisfiable in a DTMy that is based on a (finite) Aleksandrov space.

Thus, it is enough to consider DTMs of the form MM = ((Ts, g), Y, N), where
® = (A, R) is a reflexive and transitive frame. In this case we can rewrite the
truth conditions for the operators M and < in a more familiar way:

(M, w) =, Do iff (M, v) E, ¢ for every v € A with wRuv,
(M, w) =, Cp ifft (M, v) E, @ for some v € A such that wRv.

It is not hard to sees that for any function g: A — A,
g is continuous on T iff Vw,v e A (va — g(w)Rg(v)). (16)
Indeed, suppose first that ¢ is continuous and wRv. Then
we {u€A|g(wRg()} = g7 ({ue Al g(w)Ru})

is open, and so g(w)Rg(v) follows. Conversely, take any open set X in T and
let w € g }(X), wRv. Then g(w) € X and g(w)Rg(v), from which g(v) € X
follows.

Moreover, we have the following:

Lemma 4.2 An ML;-formula ¢ is satisfiable in an e-frame $ = (§, f) where
§ is a finite strict linear order and the f(x) are reflexive and transitive frames
iff ¢ is satisfiable in some DTMy with N < w.

Proof. (=) Suppose that ¢ is satisfied in a model M = (9, V) based on an
e-frame 9 = (§, f), where § = (W, <) is a finite strict linear order and each
f(z) = (A, Ry) is areflexive and transitive frame, for x € . We may assume
that

§ = ({0,...,N},<)
for some N < w, and (M, (0,7)) = ¢ for a root r of f(0). Define a DTMy
M = (D, U, N) based on the DTS © = ((A,Ig), g) with & = (A, R) and the

26



valuation U by taking

n<N
for each (n,w) € A
(n+1,w), if n <N,
g(n,w) = .
(n,w), if n=0N,
for all (ny,wy), (ng, ws) € A
(n1, wy)R(ng, ws) iff ny =ny and wiR,, we,

and, for every propositional variable p,
U(p) = {(n,w) € Al w e Bn(p)}.

Clearly, 9t is a DTMy (in particular, g is continuous by (16)). Moreover, it is
easy to show by induction that for every M/LJ-formula 1, every n < N and
every w € A,

O, (n,w)) =y iff (I, (n, w)) = ¢

(<) Conversely, by Lemma 4.1 we may suppose that ¢ is satisfied in a DTM y
M = ((K’@, g)7 EU: N)a

where N < w and & = (A, R) is a reflexive and transitive frame. So, we can
find a vg € A such that (9, vy) o ¢.

Note first that without loss of generality we may assume that g is ‘onto.’
Indeed, if this is not the case, then we take the model MM = ((Te/, ¢'), V', N)
with & = (A, R'), where

A'=Nx A;

(n1, wy) R (ng, we) iff ny = ny and wy Rwy;

¢'(0,w) = (0,g(w)) and, for any n € N, ¢'(n + 1,w) = (n, w);
(D, (n, w)) | piff (M, w) = p.

Then, for every ¢) and every m < N, we have

@, (0,w)) Em M (MM, w) Ew Y

Now, for every n < N and every propositional variable p, let

o A, =A
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e uR,v iff g"(u)Rg"™(v),
o Un(p) = {(n,w) [ g"(w) € V(p)},

and let = (({0,..., N}, <), f) with f(n) = (Ay, Ry), and 9 = (9, (Un)n<n)-
It is not difficult to prove by induction that, for all w € A and m < N,

O, g"(w)) Fm (N, (m,w)) = .
Note that we use that ¢ is ‘onto’ in the induction step for .

In general, §) is not an e-frame because, in view of (16), we only have uR,v —
ult,1v but not the other way round. However, we can take the transitive
unravelling f*(n) = (A}, R}) of f(n) = (A,, R,,), where

A;kl = {(’Uo, U1y e v ny ’Uk) | UiRnUi—i—l and (% §£ Ui—l—l}

and R is the transitive and reflexive closure of the relation R], defined by
taking

(Uo, Ceey Uk)R;(Uo, v ooy Uk, Uk+1) iff UkRnUk+1.
The frame H* = (({0,..., N}, <), f*) is an e-frame. Indeed, suppose that both
(vo,...,vx) and (vg, ..., Vk, Ugs1, ..., V) are in W, Then, by the definition of
R}, we have v R v 1Ry - . . Ryvy, and so (vg, . .., vk ) RE(Vgy -« o, Uk, Ukt 1y -« 5 Upn)-

Now consider the model 9" = ($*, 4*), where U* = (), <y and
W(p) = {(vo,v1,...,vm) € W) | vy € Un(p)}.
By the unravelling theorem of classical modal logic, we have
(O, (n, )y ifE (9, (1, (w))) = ¢
for every formula 1. U

Now Theorem 4 follows immediately from Lemma 4.2 and Theorem 3. U

5 Expanding domain products vs expanding relativisations

The original definition of ‘expanding product’ frames and logics from [30] was
motivated by the idea of relativising the standard product construction.

Given unimodal Kripke frames §; = (W3, R;) and 2 = (W, Ry), their product
is defined to be the bimodal frame

S1 X8 = (W1 X W2,R1,R2),
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where Wy x W, is the Cartesian product of W and W5 and, for all u, v’ € W,
v, v € W,

(u,v)Ry(u',v") iff wRyu' and v =1,
(u,v)Ro(u/,0") iff  wRyw' and u=u'.

Let L; be a normal modal logic in the language with @, & and let Ly be a
normal modal logic in the language with M, &. Assume also that both L; and
L, are Kripke complete. Then the product of L, and L, is the normal bimodal
logic Ly X Lo in the language MLy with the boxes @, @ and the diamonds
&, <& which is characterised by the class of product frames §; X §2, where §;
is a frame for L;, i = 1,2. (Here we assume that 3 and < are interpreted by
Ry, while M and ¢ are interpreted by R».)

According to the definition in [30], a frame & = (W, R}, R),) is an ezpanding
relativised product frame if there exist frames §; = (U1, Ry) and §o = (Us, Rs)
such that

e & is a subframe of § x §, (that is, W C U; x Uy and R}, = R; [ W for
i=1,2), and

e for all (wy,wy) € W and u € Uy, if wiRyu then (u,wy) € W.

Given two classes Cy, Cy of unimodal frames, denote by

(Cl X C2)ex

the class of all expanding relativised product frames that are subframes of
some §1 X §o, for some §; € C;, © = 1,2, and let

LOg (Cl X C2)ex = {QO S M»CQ |VQ§ € (Cl X C2)ex ) ): (,0}
Given Kripke complete unimodal logics L; and Lo, let
(L1 X Lg)ex = LOg (Fr L1 x Fr Lg)ex
be the expanding relativised product of L; and Ly. We obviously have
(L1 X Lg)ex C L1 X LQ.

As is shown in [30], if both L; and Ly are subframe logics (that is, each Fr L;
is closed under—not necessarily generated—subframes), then (L; x L)® is a
conservative extension of both L; and Ly. Note that all of the logics listed at

the end of Section 2 are subframe logics.

Further, it is not hard to see that expanding relativised products are reducible
to products. Indeed, let ¢ be an M Ls-formula and e a propositional variable
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which does not occur in ¢. Define by induction on the construction of ¢ an
M Ls-formula ¢¢ as follows:

p° =p (p a propositional variable),
(Y AX) =P AXE,
(mp)e = v,
(@) = By~
(@) = DO(e — ¢°).

Let md(y) denote the modal depth of ¢, that is, the maximal number of nested
modal operators in ¢. By a structural induction on ¢, one can easily prove
the following:

Proposition 5 For all Kripke complete unimodal logics Ly and Lo and all
ML,-formulas @,

p € (L x Ly)™ iff (e ABS"ImTO (e — Be)) —» ¢° € Ly x Ly,
where O™ = Ao, D%, for O € {3, 0},

The following proposition connects expanding domain products with expand-
ing domain relativisations:

Proposition 6
(i) If both Cy, and C, are closed under subframes then

Log(Ch, x C,)® C Log(Cp x C,)*.

(ii) Let Cy and C, be as in the formulations of Theorems 1 or 2. Then

Log(Ch, x Cp)¢ = Log(Cp x Cy)*.

Proof. To prove (i), let us assume that a formula ¢ is refuted in an expanding
relativised product frame & C §; X §» such that §; € C;, and 2 € C,. Assume
also that & = (W, R{, R}) and §; = (U;, R;), i = 1,2. Now let

X={uelU |IelU; (uv)e W},
§=(X,Rin(XxX)).
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For every x € X, let

W, ={velU| (z,v) € W},
f(x) = (Wa, R (W x W2)).

Since both Cj, and C, are closed under subframes, it is straightforward to see
that (§, f) is an e-frame in (C, x C,)¢ and ¢ can be refuted in it.

The inclusion C of (ii) follows from (i) and from the fact that all the classes
in the formulations of Theorems 1 and 2 are closed under subframes. To prove
D, let us assume that some formula ¢ is refuted in an e-frame (§, f), where
§=(W,R) € Cy, and f(x) = (W,, R,) € C, for all x € W. By Lemma 2.2, we
may assume that § is a (finite) transitive tree. It is not hard to see (using the
fact that § is a tree) that by renaming the points of the frames f(x), x € W,
we can always end up with an e-frame having the following property: for all
rFyeW,ueW,NW,,

either Ry or yRx or there is z € W such that zRx, zRy and v € W,. (17)

Now if C, is not a class of linear frames (that is, it is not like in the cases
(C6) of Theorem 1 or (C9) of Theorem 2), then define a frame & = (U, S)
by taking U = U,ew W, and S to be the transitive closure of U,cw R.. If C,
is as in (C6) or (C9), then define S to be the minimal transitive and linear
extension of Uzey Ry instead.

Cra 6.1 Forallz e W, u,v € W,

uSv iff uR,v.

PROOF. The (<) direction is obvious. The proof of the (=) direction is by
induction on the length n of a minimal chain

uRy uy Ry, ... Ry uy = . (18)

We prove the general case only, and leave its modification to the linear case
to the reader. The case n = 1 follows by (17), given that (§, f) is an e-frame
and § is a tree. Now suppose that n > 1 and the claim holds for all £ < n.
If x = x; then u; € W, so uR,v follows by TH and transitivity of R,. So
suppose T # 1. As u € W, NW,,, we can apply (17). There are several cases,
we discuss only the most complex one, that is, when there is z € W such that
zRz, zRxy and u € W,. By the minimality of the chain (18), we have x; # 5.
As uy € W, "W,,, we can apply (17) again. Again, we consider only the case
when there is 2’ € W such that 2’ Rz, 2’ Rry and u; € W,. As § is a tree,
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either z = 2/, or zRz' or 2’ Rz. The first two cases cannot happen, otherwise
uR,,us which contradicts the minimality of the chain (18). Thus 2’ Rz, and so
we have uR,u; because (§, f) is an e-frame. Finally, uR,v follows by IH and
transitivity of R,. O

By Claim 6.1, the representation $ of the e-frame $) defined in Remark 1 is
a subframe of § x &. It remains to show that & belongs to C,. By definition,
& is transitive. By Claim 6.1, & is reflexive (irreflexive, linear) iff all the f(x)
(x € W) are reflexive (irreflexive, linear). So we only need to show that & is
Noetherian whenever all the f(z) (x € W) are Noetherian. Since U is finite,
it is enough to show that there are no proper S-clusters in &.

Suppose otherwise, that is there are u # v € U, x € W such that uSvR,u.
By Claim 6.1, we have uR,v, which is a contradiction as there are no proper

R,-clusters in f(z). 0

As a consequence of Proposition 6 (i) we obtain that if both L; and Ly are
subframe logics then

(L1 X Lg)e C (L1 X L2)ex‘
Moreover, a proof similar to that of Proposition 6 (ii) shows that in fact
(L1 X L2)e = (L1 X Lg)ex,

whenever Ly, L, € {K,K4,54,S5 K4.3,S4.3}.

It is to be noted, however, that Proposition 6 does not hold for arbitrary
subframe logics L; and L. Consider, for example, the formula

x = OLAE DY OL - ooml) (19)

It is clearly satisfied (under any valuation) in the e-frame (§, f) in which
§=(N,<) and f(n) = ({0,1,...,n},<). Obviously, § = K4 and f(n) F GL
for each n € N. However it is impossible to ‘embed’ (F, f) into a real prod-
uct without an infinite ascending chain in the vertical component (although
all the vertical components f(n) of (g, f) itself are finite). In fact, one can
readily show that if y is satisfied in an expanding relativised product frame
& = (W, Ry, Ry) where R; is transitive and Ry is irreflexive, then W contains
an infinite ascending Ry-chain. This means that x is not satisfiable in any
expanding relativised product frame for (K4 x GL)®, and so

(K4 x GL)® # (K4 x GL)*.
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6 Discussion

In this paper, we have presented first examples of products of modal logics
with expanding domains which are

e decidable, but
e not in primitive recursive time,

while the corresponding product logics (with constant domains) are
e undecidable.

Numerous interesting problems concerning logics of expanding domain frames
remain open:

1. Our decidability proofs make use of the e-product fmp. Unfortunately, if we
relax the conditions of Theorems 1 and 2, then the resulting logics do not have
the e-product fmp any more. It is easy to see using, for instance, the formula

OFOT A DTS (p A D-p) (20)

that (GL x K4)¢ does not have the e-product fmp. In fact, a similar formula
that has & and @ (see the proof of Lemma 2.5) in place of & and @ shows
the lack of the e-product fmp for (L; x Ly)¢, whenever L; is any logic that
has a frame containing a point with infinitely many successors, and Fr Lo is
any class of transitive frames containing an infinite ascending chain of distinct
points. Note that GL is determined by the class C of all finite irreflexive
and transitive frames, and so Log (C x Fr K4)® has the e-product fmp (and is
decidable) by Theorem 1. Thus (20) also shows that even if each component
logic L; is determined by a class C; of frames (i = 1, 2), the logics (L; X L9)® =
Log (Fr Ly x Fr L9)® and Log (C; x C3)¢ are not necessarily the same.

It is also possible to ‘force’ an infinite ascending chain ‘horizontally:’ the for-
mula

3TO(p A SE p)
shows the lack of e-product fmp for (L; x Lg)¢, whenever Fr L; is any class
of transitive frames containing an infinite ascending chain of distinct points,
and L is any logic that has a frame containing a point with infinitely many
SUCCessors.

Moreover, as is shown in [22], the logic

Log ({(N, <)} x €)°

becomes undecidable, whenever C is any of the classes (C1)—(C6) listed in
Theorem 1 above. It follows that the satisfiability problem for M L5-formulas
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in DTM,s based on Aleksandrov spaces with continuous mappings is undecid-
able as well. Decidability of other e-products without the the e-product fmp
(such as, say, (K4 x K4)® and (K4.3 x K4.3)¢) remains open.

2. As is shown in [11, Section 9.1], logics of the form (L x (S5 x S5))® are
reducible to the two-variable fragment of quantified L with expanding do-
mains. According to [23], these first-order modal logic fragments are actually
undecidable, whenever L has a frame containing a point with infinitely many
successors. (For the constant domain case this was proved in [12].) We con-
jecture that the proof techniques of [23] and [19] can be combined to show
undecidability of all logics of the form (L; x (Ly x L3))®, where Ly, Ly and
L3 are any Kripke complete modal logics between K and S5.

3. We did not consider the problem of finding axiomatisations for e-product
logics. Here we just list a selection of open questions. Denote by [L;, Ls|® the
bimodal logic obtained by adding to the independent fusion of L; and L, the
axioms

OOp — SOp and SOp — M6,

and call it the expanding commutator of Ly and L. It is easy to see that
Ly, Lo]® C (Ly x Ly)S,

and if L, and Ly are subframe logics then
[L1, Ly]® C (L x Lo)*.

As is shown in [11, Theorem 9.10], (Ly X L9)®* = [Ly, Ly]® whenever L; €
{K,K4,S4,S5} and L, is axiomatisable by modal formulas with a universal
Horn first-order translation. It would be interesting to find pairs of logics such
that (L; X L9)® # [Li, Lo]¢, but (L x L9)® (or (L; X L)®) is still finitely
axiomatisable. Are there any pairs of logics such that

(L1 X Lg)ex = [Ll, Lg]e, but (L1 X LQ) §£ [Ll, LQ],
where [Ly1, Ly] = ([Ly, Lo]® + ©Op — OOp)?

Further, as is shown in [14], the product logics (such as, say, GL x GL) whose
‘expanding domain’ versions are decidable by Theorem 2 are not even recur-
sively enumerable. It is also shown in [14] that commutators like [GL, GL]
are (though also undecidable) Kripke incomplete, so cannot coincide with the
corresponding product logics (which are Kripke complete by definition). Does
any of these decidable e-products coincide with the corresponding expanding
commutator? If not, are they finitely axiomatisable? Are these expanding com-
mutators decidable or Kripke complete? Note that the formula (19) actually
shows that
K4,GL]* # (K4 x GL)*,
but it is not known whether [K4, GL]® and (K4 x GL)® are different.
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