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Abstra
t. The paper sets out to o�er an alternative to the fun
tion/argument

approa
h to the most essential aspe
ts of natural language meanings. That is, we

question the assumption that semanti
 
ompleteness (of, e.g., propositions) or in-


ompleteness (of, e.g., predi
ates) exa
tly repli
ate the 
orresponding grammati
al


on
epts (of, e.g., senten
es and verbs, respe
tively). We argue that even if one gives

up this assumption, it is still possible to keep the 
ompositionality of the semanti


interpretation of simple predi
ate/argument stru
tures. In our opinion, 
omposi-

tionality presupposes that we are able to 
ompare arbitrary meanings in term of

information 
ontent. This is why our proposal relies on an `intrinsi
ally' type free

algebrai
 semanti
 theory. The basi
 entities in our models are neither individuals,

nor eventualities, nor their properties, but `pie
es of eviden
e' for believing in the

`truth' or `existen
e' or `identity' of any kind of phenomenon. Our formal language


ontains a single binary non-asso
iative 
onstru
tor used for 
reating stru
tured


omplex terms representing arbitrary phenomena. We give a �nite Hilbert-style

axiomatisation and a de
ision algorithm for the entailment problem of the suggested

system.

Keywords: 
ompleteness, 
ompositionality, de
ision algorithm, �nite axiomatis-

ability, �nite entailment problem, fun
tion/argument metaphor, measurements, nat-

ural language semanti
s, pie
es of eviden
e

1. Introdu
tion

The 
ornerstones of the Fregean approa
h (Frege, 1984) to linguis-

ti
 and semanti
 stru
ture are the distin
tion between `
omplete' and

`in
omplete' expressions and meanings, on the one hand, and the as-

sumption that these two are entirely parallel, on the other. Whatever

is linguisti
ally 
omplete (in
omplete) is also semanti
ally 
omplete

(in
omplete). The linguisti
 insight behind this distin
tion is age-long:

Predi
ates were always seen as `requiring' subje
ts, transitive expres-
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sions `require' obje
ts, modi�ers `require' something to modify, and so

on. Be
ause of the fully general and 
ross-linguisti
 
hara
ter of su
h

`requirements', it has been assumed that they are an ingredient of our

`language of thought' rather than a super�
ial property of the natural

languages we speak.

The inadequa
y of the treatment of natural-language predi
ates as

n-ary predi
ates (be
ause of both their �xed arity and the �xed order

of arguments) has been extensively argued by (Davidson, 1967) and his

followers. If semanti
 `in
ompleteness' only partially mat
hes linguis-

ti
 in
ompleteness, then the alleged parallelism between synta
ti
 and

semanti
 types (as assumed by, e.g., (Montague, 1974)) is diÆ
ult to

sustain. Puzzles related to this problem in
lude the fa
ts that

� many verbs (e.g., eat) 
an be used both transitively and intransi-

tively in the same meaning;

� nominalisations (e.g., investment) do not require the presen
e of

the obligatory arguments of the 
orresponding verbs (e.g., invest);

� even semanti
ally empty expressions, su
h as pronouns, 
an make

an expression linguisti
ally 
omplete (e.g., #I borrowed vs.

OK

I

borrowed it), and that in many languages (in the so-
alled `pro-

drop' languages) su
h devi
es are not required for linguisti
 
om-

pleteness;

� some parameters that are always understood (e.g., the time and

pla
e where an event takes pla
e) are not obligatorily expressed

linguisti
ally;

� in many 
ases there is a mismat
h between the 
ategory of a word

and its possible uses, e.g., a noun like storm 
an be used as referring

to events, pla
es, time intervals et
.

Our proposal is the following: Let linguisti
 analysis a

ount for

linguisti
 in
ompleteness (this is motivated by its largely language spe-


i�
 
hara
ter), and let semanti
 analysis not rely on the 
ompleteness/

in
ompleteness distin
tion. For example, let linguisti
 analysis explain

the linguisti
 behaviour of a verb like English eat, and let the semanti
s

assign it a meaning that explains how the meaning of a subje
t or

dire
t obje
t argument (or a time/pla
e adverbial), when present, 
an


ombine with it.

This is in line with (Davidson, 1967), but our solution departs from

Davidsonian approa
hes in various ways. In a Davidsonian model, there

are entities 
orresponding to events (like, say, an eating event) and en-

tities 
orresponding to individuals (say, the eater and the thing eaten),
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plus relations between su
h entities (e.g., the eater stands in the agent

relation with the event, whereas the thing eaten stands in the theme

relation with it). A

ording to our modelling, all these di�erent entities

and relations are 
on
eived of as a single type of entities, whi
h we will


all phenomena. In the semanti
s, a phenomenon is modelled with

a set 
ontaining possible 
onstellations (or `observations,' or `mea-

surements') indi
ating or justifying the presen
e of the phenomenon.

(Constellations play the same role with respe
t to phenomena as the

`truthmakers' of (Mulligan et al., 1984) with respe
t to propositions.

The existen
e of a `truthmaker' for a proposition is a ne
essary and

suÆ
ient 
ondition for the proposition to be true; the existen
e of a


onstellation for a phenomenon is a ne
essary and suÆ
ient 
ondition

for the phenomenon to exist.)

This way we obtain an essentially type free a

ount of meanings: in

addition to the 
ompleteness/in
ompleteness distin
tion, we also dis-

pense with the stri
t parallelism between linguisti
 and semanti
 type

distin
tions. For example, 
onsider the example of storm mentioned

above. In a type free semanti
s, we do not have to de
ide whether

storms are individuals, regions of spa
e, temporal intervals or even-

tualities: they are simply phenomena the existen
e of whi
h 
an be

proven by 
onstellations (for example, by a 
onstellation 
ontaining

meteorologi
al measurements or visual pie
es of information). Below

we 
on
entrate on the most essential aspe
ts of meanings, su
h as

predi
ates and their arguments, and leave the treatment of further,

more 
omplex features like adverbials, quanti�ers et
. to a subsequent

paper.

The paper is stru
tured as follows. First, in Se
tion 2, we illustrate

the basi
s of our representation language and its intended semanti
s

by using some simple examples. Then, in Se
tion 3, we present the

pre
ise formalism, dis
uss the possible reasoning tasks, and give a

�nite Hilbert-style axiomatisation and a de
ision algorithm for the

entailment problem of the suggested system. Finally, in Se
tion 4, we

turn to theoreti
al impli
ations. In parti
ular, we dis
uss the problem

that abandoning the stri
t parallelism between linguisti
 and semanti


stru
ture apparently 
ontradi
ts the prin
iple of 
ompositionality.

We argue that, as a matter of fa
t, not only 
an 
ompositionally be

maintained in our system, but it even takes a more severe form than

its usual interpretation. There are 
ertain issues that any theory of

natural language semanti
s has to fa
e sooner or later, but whi
h are

not dire
tly relevant to the ideas put forward here. We brie
y dis
uss

our plans 
on
erning su
h issues in the last subse
tion.
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2. Towards a non-Fregean natural-language semanti
s

2.1. `Predi
ates' and `arguments'

As we have dis
ussed in the Introdu
tion, semanti
s may not be the

right pla
e to a

ount for the linguisti
ally 
omplete or in
omplete


hara
ter of expressions. For example, the fa
t that English eat 
an

be used both transitively and intransitively may not be a fa
t about

semanti
s (although it may have to do with semanti
 properties). The

fa
t that eating involves an `eater' and a `thing eaten' need not be


aptured in terms of the `in
ompleteness' of the meaning of eat; it 
an

simply be 
onsidered as part of the 
omplexity of that meaning, whi
h

is usually re
e
ted in natural languages, although not ne
essarily in

the same way in all of them.

Instead of going through the various arguments against the stri
t

arity of natural-language predi
ates by Davidson and his followers, let

us turn immediately to the analysis we propose. We will follow the

Davidsonian tradition in that we 
on
eive of eventualities as properties

of spatio-temporal lo
ations. So we think of the meaning of `eat' (or

`eating') as a set of (possibly very di�erent) 
onstellations, namely,

those in whi
h there is eviden
e that eating takes pla
e. In 
ontrast

to the standard view, however, we 
laim that this kind of semanti
s


an be extended to other types of expression, those that do not refer to

eventualities. For example, individuals 
an be seen as 
ontiguous spatio-

temporal regions, therefore, they 
an be modelled with the same type

of 
onstellation sets as eventualities. Properties and abstra
t entities

have mu
h more 
omplex semanti
s, but the prin
iple 
an be extended

to them. Clearly, one needs some kind of eviden
e for admitting the

presen
e of a property or an abstra
t entity, and there may be very

di�erent types of eviden
e for it, say an `observation' or some kind of

`measurement:' ea
h su
h pie
e of eviden
e 
an be 
on
eived of as a


onstellation.

A

ording to this general perspe
tive, we propose that the mean-

ingful entities of natural-language expressions like Joe is eating or Joe

is eating bread should all be 
onsidered of the same type, phenomena,

and interpreted as sets of 
onstellations. Let us assume that the mean-

ingful entities in question are Joe, eat, agent, bread and theme.

(Following the usual pra
ti
e, we leave out 
ertain details, su
h as the

�ne points of treating proper names, the progressive et
.) The point

is that Joe 
orresponds to the various possible ways of verifying Joe's

presen
e/identity, eat to the eventualities that 
an be 
hara
terized as

eating, bread to 
onstellations in whi
h some bread 
an be dete
ted,

agent to 
onstellations proving that some animate entity performs an
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a
tivity on purpose, and theme to 
onstellations in whi
h an entity

undergoes some 
hange of state or lo
ation.

As we want to leave open the exa
t ontologi
al status of 
onstel-

lations, we would like to assume only a minimal stru
ture on them.

A possible 
hoi
e is to 
ompare 
onstellations a

ording to their in-

formation 
ontent, say, a pi
ture of a 
orner of a room is 
learly

less informative than a pi
ture showing a larger part of the same

room. Similarly, a pi
ture 
an be more informative than another by

virtue of its better resolution. It is natural to assume that this kind of

informativeness relation is a partial order.

Though we propose every meaning to be a set of 
onstellations,

we do not think that every su
h set is appropriate as the meaning of

some phenomenon. Clearly, if a 
onstellation is suÆ
ient for proving the

presen
e of a phenomenon, then all more informative 
onstellations are

also suÆ
ient for proving it. So a sensible 
hoi
e would be to 
onsider

only upward-
losed sets of 
onstellations as meanings. Another possi-

bility (whi
h is equivalent, at least in well-founded partial orders) is to


olle
t theminimal 
onstellations only from ea
h su
h set. This would


orrespond to the intuition that the meaning of a phenomenon 
ontains

the ne
essary and suÆ
ient proofs for its presen
e, et
.

Let us give another reason for why we would like to 
hoose this

latter option. Sin
e all the meaningful expressions are of the same

semanti
 type (sets of 
onstellations), we 
annot 
ombine them in

the ways familiar from pre-Davidsonian or Davidsonian semanti
s. For

example, the fa
t that Joe is the agent of eating 
annot be expressed

as agent(Joe;eat), be
ause we do not interpret agent as a relation.

Instead, we must produ
e a set of 
onstellations proving that `Joe is

the agent of eating' from the 
onstellations for Joe, agent and eat.

Let A ÆB stand for the 
ombination of A and B; we suggest that, in

order to produ
e a meaning for su
h a 
ombination, we must look at the

overlapping 
onstellations in the meaning jAj of A and the meaning

jBj of B. For example, let j 2 jJoej be a 
onstellation proving Joe's

presen
e, and a 2 jagentj be a 
onstellation proving the presen
e

of an agent. Then, by saying that j and a overlap, we would like to

mean that there exists a 
ommon lower bound x of j and a a

ording

to their information 
ontent. This 
onstellation x should show that

our eviden
e to the e�e
t of Joe's presen
e is not independent of our

eviden
e for agenthood. This must be be
ause Joe is the intentional

agent in question. Now suppose that, say, j shows the pi
ture of a

room where both Joe and Pam are in, and j is not minimal in jJoej

(as we also have there a smaller pi
ture of the same room showing

only the part where Joe is). Suppose also that a is an observation that

is related to Pam, who is performing a purposeful a
tivity. Then the
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overlap of j and a does not have mu
h to do with Joe being our agent,

but rather it is some 
onstellation related to Pam.

Now let us return to the problem of produ
ing 
onstellations prov-

ing both Joe's presen
e and his agenthood. We would like to 
olle
t

those 
onstellations that are more informative than some overlapping

pairs of 
onstellations proving Joe's presen
e, on the one hand, and his

agenthood, on the other. Further, to 
omply with the uniformity of all

meanings, we should only keep the minimal ones among su
h 
onstella-

tions. In terms of the above, we propose the following translations for

Joe is eating and Joe is eating bread:

Joe is eating ; (Joe Æ agent) Æ (agent Æ eat);

Joe is eating bread ;

((Joe Æ agent) Æ (agent Æ eat)) Æ

((bread Æ theme) Æ (theme Æ eat)):

In these translations, the order in whi
h the terms are 
ombined is

irrelevant: Joe Æ agent is the same as agent Æ Joe. So \Æ" denotes

a 
ommutative operation; however, it is important that it should

be non-asso
iative sin
e, for example, in the se
ond translation it

is 
ru
ial that `Joe' is the agent and `bread' is the theme rather

than the other way round. It is easy to infer from what we said about


ombinations of meanings that \Æ" is an idempotent operation.

To sum up, we 
an translate eating, Joe is eating and Joe is eating

bread in a uniformmanner, without 
onsidering any of these expressions

`in
omplete'. In addition, the fa
t that Joe is eating means, roughly,

`Joe is eating something', 
omes for free: this is exa
tly what our

translation expresses.

2.2. `Metonymi
al' interpretation

The 
ase of argument-taking verbs is not the only one in whi
h we �nd a

mismat
h between the semanti
 
hara
ter and the synta
ti
 behaviour

of natural-language expressions. Take the English word storm. Sin
e its

grammati
al 
ategory is `noun', the type of its denotation is tradition-

ally a predi
ate, namely, the one true for all and only the individual

storms in a model of the world. To what extent one 
an 
onsider a

storm an individual is an interesting ontologi
al question whi
h will

play some role in what follows, but it is not our main 
on
ern here.

What is more intriguing is that storm, together with a legion of other

nouns (mainly, nominalisations), 
an refer to pla
es, time intervals and

eventualities just as easily as `individuals'. For example, in addition to

the storm moved West (in whi
h the storm is seen as an individual),

we 
an say in the storm (lo
ation), after the storm (time interval) or

be
ause of the storm (eventuality).
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The usual explanation of su
h systemati
 ambiguities relies on some


on
ept of `metonymy', i.e., on 
on
eiving of su
h expressions as some-

how ellipti
al. In parti
ular, under this view, in the storm would `stand

for' in [the pla
e where℄ the storm [was℄, whereas after the storm should

be interpreted as after [the time interval of the existen
e of℄ the storm,

and be
ause of the storm as be
ause of [the event of℄ the storm [taking

pla
e℄.

This may well be a legitimate treatment, but it does not explain why

just words denoting `individuals' like storms 
an fun
tion in these ways.

A treatment not relying on a metonymy me
hanism, but a

ounting for

the behaviour of, say, storm on the basis of its meaning alone would be


learly preferable. We believe a type free treatment 
an do this job.

Take The storm moved West �rst. The meaning of this senten
e 
an

be produ
ed in a way similar to that of Joe is eating (setting aside

the entirely independent problem of how we treat de�nite arti
les),

ex
ept that the grammati
al subje
t here is the theme argument (the

storm is not a purposeful agent, but an individual undergoing 
hange

of lo
ation):

The storm moved West ;

(the-storm Æ theme) Æ (theme Æmoved-West):

In this 
ase, the storm is 
on
eived of as an individual (assuming that,

if we do not 
onsider �gurative meanings, only individuals 
an undergo


hange of lo
ation). That is, only those 
onstellations in jthe-stormj

will overlap with 
onstellations in jthemej whi
h serve as eviden
e for

storms as individuals, in the sense of 
ontiguous time-spa
e regions,

i.e., entities whi
h 
ome into existen
e and then die, and whi
h are

delimited by more or less 
lear boundaries throughout their lifetime.

Clearly, there must be ways of seeing storms in this way, and there will

be 
onstellations supporting su
h a view.

The other uses of storm 
an be explained in an analogous manner.

For example, in the storm 
an be translated as

in the storm ;

(in Æ ground-area) Æ (ground-area Æ the-storm):

Note that in has a relational meaning, so we treat it analogously to eat

above. Namely, it means that a (somehow delimited) spatial area, the

so-
alled �gure, is 
ompared to (namely, is in
luded in) another delim-

ited area, the so-
alled ground. In this 
ase, `the storm' plays the role

of ground (ground-area). The translation above will be meaningful

(i.e., it will not denote the empty set) only if some 
onstellations in

jthe-stormj have a non-empty overlap with jground-areaj, i.e., if
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they make referen
e to the spatial area o

upied by the storm. That is,

instead of re
urring to metonymy, we assume that storm is inherently


apable of being 
on
eived of as a delimited area; at the same time,

we make it expli
it what it means for something to be seen as some-

thing else. The assumption that storm 
an refer to an area is not a

stipulation: it involves the substantive 
laim that some (minimal) sets

of observations proving the presen
e of a storm make referen
e to the

its spatial boundaries.

3. Formalism

In this se
tion, we give the pre
ise de�nitions of the syntax and se-

manti
s of the suggested formalism. As in this paper we intend to take

only the �rst steps of a rather unorthodox approa
h, we have 
hosen

a very basi
 formal representation language. Our terms (representing

phenomena) are built up (freely) from (phenomenon) variables with

the help of the binary 
onne
tive Æ:

t = p j t

1

Æ t

2

:

Our formulas represent the questions we want to ask about su
h phe-

nomena. We introdu
e the simplest possible formulas only, expressing

the equality of two phenomena:

' = t

1

� t

2

:

Our formal expressions are evaluated in models. Ea
h model 
on-

sists of a set of 
onstellations, and 
an be 
onsidered as the 
urrent

`snapshot of the world,' or the `aspe
ts' we are interested in. We assume

only a minimal stru
ture on the 
onstellations: they are `arranged'

a

ording to their informativeness: x � x

0

intends to mean that

x

0

is at least as informative as x. So it is natural to assume that � is

(at least) a partial order. (In this paper we do not make any further

assumptions, but we intend to investigate other possibilities in future

work.) In addition, a model should represent the information we 
ould


olle
t about the simplest phenomena we are talking about at a given

moment, that is, a valuation for the variables.

We de�ne a model to be a triple M = hU;�; Ii, where

� U is a non-empty set,

� � is a partial order on U , and

� I is a fun
tion from the set of variables to the powerset of U

su
h that for every variable p, I(p) is an anti
hain (i.e., for all

x; x

0

2 I(p), if x � x

0

then x = x

0

).
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Given a modelM = hU;�; Ii, we de�ne the meaning jtj

M

for ea
h

term t as follows:

jpj

M

= I(p)

jt

1

Æ t

2

j

M

= min(fu 2 U : 9u

1

2 jt

1

j

M

; 9u

2

2 jt

2

j

M

su
h that

u

1

and u

2

have a 
ommon �-lower bound,

and u is a 
ommon �-upper bound of

u

1

and u

2

g)

(Here min(X) = fx 2 X : for all x

0

2 X, if x

0

� x then x = x

0

g.) Note

that this way jtj

M

is always an anti
hain, for ea
h term t. In what

follows, we will omit the supers
ript from jtj

M

and use simply jtj when

M is 
lear from the 
ontext.

Next, for ea
h formula ', we de�ne the relation M j= ' (' is true

in M) as follows:

M j= t

1

� t

2

i� jt

1

j

M

= jt

2

j

M

:

Remark 1. Another possible simple way of 
omparing 
on
epts is

more permissive than equality. We might want to say something similar

to material impli
ation: A formula of the form t

1

! t

2

would mean,

roughly, that one's eviden
e for t

2

adds nothing to one's eviden
e for t

1

,

it is already in
luded in it. In terms of information 
ontent, this means

that t

1

is a phenomenon that is either the same as, or a re�nement

of, t

2

. The following 
an be a 
orresponding truth relation:

M j= t

1

! t

2

i� 8u

1

2 jt

1

j

M

9u

2

2 jt

2

j

M

u

2

� u

1

:

However, it is not hard to see that ! 
an be de�ned with the help of

Æ and �:

M j= t

1

! t

2

i� M j= (t

1

Æ t

2

) � t

1

:

Indeed, suppose �rst M j= t

1

! t

2

. Take some x 2 jt

1

Æ t

2

j. Then there

is y � x with y 2 jt

1

j, so there is z � y with z 2 jt

2

j. So y is a 
ommon

�-upper bound of y and z. Then y = x follows, sin
e x 2 jt

1

Æ t

2

j. So

we have jt

1

Æ t

2

j � jt

1

j. Conversely, take some x 2 jt

1

j. Then there is

y � x with y 2 jt

2

j. So x is a 
ommon �-upper bound of x and y.

Now x 2 jt

1

Æ t

2

j follows be
ause jt

1

j is an anti
hain. Now suppose that

jt

1

Æ t

2

j = jt

1

j. Take some x 2 jt

1

j. Then x 2 jt

1

Æ t

2

j, so there is y � x

with y 2 jt

2

j.

Note that the relation v

M

de�ned on term-meanings by

jt

1

j

M

v

M

jt

2

j

M

i� M j= t

1

! t

2

is always a partial order, so! is indeed similar to material impli
ation.
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3.1. Reasoning tasks

What kind of reasoning tasks should we investigate about the suggested

formal system? The satis�ability or 
onsisten
y problem would be

a natural 
andidate:

� Given a (�nite or in�nite) set � of formulas (i.e., equalities), is

there a model where every formula in � is true?

It is easy to see that our formalism is not strong enough to meaningfully

address this question, as every set of formulas in satis�able in some

(probably intuitively weird) model. What is sensible in our 
ontext is

the dual validity problem:

� Given a set � of formulas, is it the 
ase that every formula in � is

true in every model?

This doesn't really sound as a parti
ularly interesting question in 
on-

ne
tion to phenomenon-equalities. However, it is a spe
ial 
ase of the

more relevant entailment problem:

� Given a set � of formulas and a formula ', is ' true in all those

models where every formula of � is true (in symbols: � j= ')?

Below we show that the entailment problem is �nitely axioma-

tisable, and the entailment problem is de
idable and has the �nite

model property, whenever the set � of `assumptions' is �nite. (see

Theorems 9 and 10 below.)

3.2. Hilbert-style 
al
ulus

p � p (1)

given p � q; derive q � p; (2)

given p � q and q � r; derive p � r; (3)

given p � p

0

and q � q

0

; derive p Æ q � p

0

Æ q

0

; (4)

p Æ q � q Æ p; (5)

p Æ p � p; (6)

(p Æ (q Æ r)) Æ r � p Æ (q Æ r): (7)

We say that

� ` s � t

if there is a �nite sequen
e of formulas ending with s � t and su
h that

ea
h formula in the sequen
e is either a substitution instan
e of an
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axiom above, or in �, or obtained from earlier formulas in the sequen
e

by applying a substitution instan
e of one of the rules above.

Observe that (1){(4) just say that � obeys the axioms and rules of

the equational 
al
ulus. While (5) and (6) express that Æ is a 
ommu-

tative and idempotent operation, one 
an regard (7) as some kind of

`weak asso
iativity' (as an asso
iative and idempotent Æ 
learly would

have this property).

Interesting 
onsequen
es of (1){(7) are:

(p Æ q) Æ p � p Æ q; (8)

given p Æ q � p and q Æ r � q; derive p Æ r � p: (9)

Indeed, for (8):

(p Æ q) Æ p

(5)

� (q Æ p) Æ p

(6)

� (q Æ (p Æ p)) Æ p

(7)

� q Æ (p Æ p)

(6)

� q Æ p

(5)

� p Æ q:

For (9): Suppose we have p Æ q � p and q Æ r � q. Then

p Æ (q Æ r) � p Æ q � p;

and so

p Æ r � (p Æ (q Æ r)) Æ r

(7)

� p Æ (q Æ r) � p:

Note that in fa
t the 
al
ulus de�ned by (1){(6), (8) and (9) is

equivalent to the above one, as (7) 
an be derived in it. Note also that

using ! instead of � (
f. Remark 1), (6) and (8) are equivalent to

p! p and (p Æ q)! p, respe
tively, while (9) is equivalent to the rule

given p! q and q ! r; derive p! r:

The proof of the following lemma is straightforward:

Lemma 2. (Soundness.)

For all �; s; t, if � ` s � t then � j= s � t.

3.3. Normal forms

Fix some linear order on the terms. Then say that a term t is in pre-

normal form if, whenever t

1

Æ t

2

is a subterm of t, then t

1

is not

later in the order than t

2

. Clearly, every term t 
an be turned into

an equivalent term

~

t in pre-normal form (by equivalent we mean both

j= t �

~

t and ` t �

~

t). Moreover, we 
an use the following algorithm:

we start `inside out' (that is, bottom up in the parsing tree), and when

we �nd a Æ-term in the wrong order, swap the 
omponents. In what
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follows we don't bother with pre-normal forms, that is, with a slight

abuse of notation, when we write s Æ t, we might mean t Æ s.

Now, given a term t in pre-normal form, we de�ne indu
tively the

normal form

�

t of t by taking

�p = p for variables p;

t Æ s =

8

<

:

�

t if �s is a subterm of

�

t;

�s if

�

t is a subterm of �s;

�

t Æ �s otherwise.

Clearly, this de�nition is also an algorithm: again we start `inside out'.

Claim 3. (i) For ea
h term t, we have

�

�

t =

�

t.

(ii) For all terms t; s, if s is a subterm of t then ` t Æ s � t.

(iii) For ea
h term t, we have ` t �

�

t.

Proof. Ea
h statement follows by indu
tion on the Æ-rank (the number

of nested Æs) of t. We give some details on the proof of (ii) and (iii).

(ii): If t = p then s = p should hold and p Æ p � p is (a substitution

instan
e of) axiom (6). Suppose that t = t

1

Æ t

2

and s is a subterm

of, say, t

1

. Then by the indu
tion hypothesis, we have ` t

1

Æ s � t

1

.

On the other hand, (t

1

Æ t

2

) Æ t

1

� t

1

Æ t

2

is a substitution instan
e of

(8), so we also have ` (t

1

Æ t

2

) Æ t

1

� t

1

Æ t

2

. Now by (9) we obtain

` (t

1

Æ t

2

) Æ s � t

1

Æ t

2

.

(iii): If t = p then the statement is an instan
e of axiom (1). Suppose

that t = t

1

Æ t

2

and we know that ` t

1

�

�

t

1

and ` t

2

�

�

t

2

. By rule (4),

we have ` t �

�

t

1

Æ

�

t

2

. So only the �rst two 
ases in the de�nition of

t

1

Æ t

2

are problemati
. Suppose, say, that

�

t

2

is a subterm of

�

t

1

, that is,

t

1

Æ t

2

=

�

t

1

. But then we have `

�

t

1

Æ

�

t

2

�

�

t

1

by (ii).

It follows from Claim 3 and rule (3) that if t and s are the same

then ` t � s. As we shall see (
f. Corollary 11), the 
onverse statement

also holds. In other words, normal forms are suitable tools for dealing

with (un
onditional) term-equalities.

3.4. De
ision algorithm

Given a set � of formulas and a formula ', we will de�ne an in�nite

sequen
e T

0

� T

1

� : : : � T

n

� : : : of sets of normal form terms, and

an in�nite sequen
e �

0

��

1

� : : : ��

n

� : : : of equivalen
e relations (�

i

will be an equivalen
e relation on T

i

) as follows. Let

T

0

= f

�

t j t is a subterm of some term in � or 'g;
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and for all s; t 2 T

0

, let

s �

0

t , s = t or

9u; v (s = �u; t = �v and either (u � v) 2 � or (v � u) 2 �):

Observe that T

0

is 
losed under taking subterms, and it is �nite if � is

�nite.

Now suppose that T

n

and �

n

have already been de�ned (su
h that

T

n

is 
losed under taking subterms). Let T

n+1

be the smallest set


ontaining T

n

and �

n+1

the smallest equivalen
e relation 
ontaining

�

n

su
h that

(�) for all s; t; s Æ u 2 T

n

: if s �

n

t and s Æ u 6�

n

s,

then t Æ u 2 T

n+1

and t Æ u �

n+1

s Æ u.

In other words, we obtain T

n+1

by 
losing T

n

under appli
ations of `rule

(�)' above.

Note that T

n+1

is 
losed under taking subterms: if v is a proper

subterm of t Æ u then it is a subterm of either

�

t or �u. Sin
e u is a

subterm of an element of T

n

, it is also in T

n

and so, sin
e

�

t = t and

�u = u by Claim 3(i), v is in T

n

� T

n+1

.

Observe that ea
h appli
ation of this rule either

(R1) adds a new element to an (existing) equivalen
e 
lass (if t Æ u =2 T

n

,

and so t Æ u = t Æ u), or

(R2) unites two equivalen
e 
lasses (if t Æ u 2 T

n

, and t Æ u 6�

n

s Æ u),

or

(R3) just has no e�e
t (if t Æ u 2 T

n

, and t Æ u �

n

s Æ u).

In parti
ular, the number of equivalen
e 
lasses does not in
rease as n

grows. Note that if � is �nite then ea
h T

n

(n < !) is �nite as well.

Example 4. � = fx � (y Æ z) Æ (v Æ z); y � x Æ wg ' = x � y:

�

0


lasses:

fx; (y Æ z) Æ (v Æ z)g; fy; x Æ wg; fy Æ zg; fv Æ zg; fvg; fwg; fzg

�

1


lasses:

fx; (y Æ z) Æ (v Æ z)g; fy; x Æ w; ((y Æ z) Æ (v Æ z)) Æ wg;

fy Æ z; (x Æ w) Æ zg; fv Æ zg; fvg; fwg; fzg

�

2


lasses:

fx; (y Æ z) Æ (v Æ z); ((x Æ w) Æ z) Æ (v Æ z)g;

fy; x Æ w; ((y Æ z) Æ (v Æ z)) Æ w; y Æ z; (x Æ w) Æ zg;

fv Æ zg; fvg; fwg; fzg

�

n


lasses, for n � 3:
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fx; (y Æ z) Æ (v Æ z); ((x Æ w) Æ z) Æ (v Æ z); (x Æ w) Æ (v Æ z);

y Æ (v Æ z); y; ((x Æ w) Æ z) Æ (v Æ z); x Æ w; ((y Æ z) Æ (v Æ z)) Æ w;

y Æ z; (x Æ w) Æ zg;

fv Æ zg; fvg; fwg; fzg

Lemma 5. If � is �nite then the `algorithm always stops:' Given �

and ', there is a number N

�;'

su
h that for all m � N

�;'

, we have

T

m

= T

N

�;'

and �

m

=�

N

�;'

.

Proof. For every n and s 2 T

n

, we denote the �

n

-
lass of s by [s℄

n

.

We de�ne two relations �

�

n

and �

n

on �

n

-
lasses by taking, for all

s; t 2 T

n

,

[s℄

n

�

�

n

[t℄

n

, 9s

0

�

n

s:9u 2 T

n

: (s

0

Æ u = s

0

Æ u and s

0

Æ u �

n

t);

�

n

= the re
exive and transitive 
losure of �

�

n

:

Then the relation �

n

is `non-de
reasing' as n grows: if s; t 2 T

n

and

[s℄

n

�

n

[t℄

n

, then [s℄

m

�

m

[t℄

m

as well, for all m � n.

Claim 6. If [s℄

n

�

n

[t℄

n

and s 6�

n

t, then there exist m � n and t

0

2 T

m

su
h that t

0

�

m

t and s is a subterm of t

0

.

Proof. As [s℄

n

�

n

[t℄

n

and s 6�

n

t, there exist k > 0 and u

0

; : : : ; u

k

,

a

0

; : : : ; a

k�1

2 T

n

su
h that

s �

n

u

0

; u

k

�

n

t;

u

i

6�

n

u

i+1

for i < k;

u

i

Æ a

i

= u

i

Æ a

i

; for i < k;

u

i+1

�

n

u

i

Æ a

i

; for i < k:

Now we will apply rule (�) several times. With a slight abuse of nota-

tion, we use � to denote the obtained extensions of �

n

.

First, as s � u

0

6� u

1

� (u

0

Æ a

0

), an appli
ation of rule (�) yields

s Æ a

0

� u

1

. Then, either u

1

� u

2

or u

1

6� u

2

at this point. In the latter


ase, another appli
ation of rule (�) yields (s Æ a

0

) Æ a

1

� u

2

. And so

on, �nally we obtain a term t

0

� t of the form

t

0

= (: : : ((s Æ a

0

) Æ a

i

1

) Æ : : :) Æ a

i




; (10)

where 1 � i

1

� : : : � i




< k are su
h that u

i

� u

i+1

whenever i 2

f1; : : : ; k � 1g � fi

1

; : : : ; i




g.
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Claim 7. �

n

is `eventually antisymmetri
:' If [s℄

n

�

n

[t℄

n

and [t℄

n

�

n

[s℄

n

, then there is an m � n su
h that s �

m

t.

Proof. Suppose [s℄

n

�

n

[t℄

n

and [t℄

n

�

n

[s℄

n

. If s �

n

t, then m = n is a

good 
hoi
e.

So suppose s 6�

n

t. Throughout, we will use the terms u

0

; : : : ; u

k

,

a

0

; : : : ; a

k�1

and the �-notation, as introdu
ed in the proof of Claim 6.

As [s℄

n

�

n

[t℄

n

, after some appli
ations of rule (�), we obtain a term

t

0

� t of the form (10). Now either t

0

� s at this point or, by [t℄

n

�

n

[s℄

n

and Claim 6, t

0

is a subterm of some s

0

� s. Next, either s

0

� t at this

point and we are ready, or let i + 1 � k be the smallest number su
h

that s

0

6� u

i+1

, that is,

s � s

0

� u

0

� : : : � u

i

6� u

i+1

:

Then, by (10), a

i

is a subterm of t

0

, and so it is a subterm of s

0

as well.

Therefore, an appli
ation of rule (�) yields

s

0

= s

0

Æ a

i

� (u

i

Æ a

i

) � u

i+1

:

And so on, �nally uniting the 
lasses of s and t, as required.

Sin
e the number of �

0

-
lasses is �nite, and the number of equiva-

len
e 
lasses does not in
rease as n grows, there is a smallest numberK

su
h that the number of �

m

-
lasses remains the same, for all m � K.

If the number 


K

of �

K

-
lasses is 1, then rule (�) 
annot be applied

any more to extend T

K

and �

K

, so we 
an 
hoose N

�;'

to be K.

So suppose that 


K

> 1. Sin
e the number of equivalen
e 
lasses does

not 
hange after step K, by Claim 7 we obtain that �

K

is antisymmet-

ri
, so it is a partial order. Moreover, sin
e `�

n

is non-de
reasing as n

grows', there is a smallestM � K su
h that �

M

=�

m

for allm �M (in

the sense that for all s; t 2 T

M

, [s℄

M

�

M

[t℄

M

i� [s℄

m

�

m

[t℄

m

). With

a slight abuse of notation, we will denote this `stable' partial order on

(possibly growing in size) equivalen
e 
lasses by �.

By the 
hoi
e of K, we know that after step K ea
h appli
ation of

rule (�) is either an (R1) or an (R3). It remains to show that there are

only �nitely many (R1)s after step M . In other words, we need to show

that after stepM ea
h 
lass 
an be extended only by �nitely many new

terms. To this end, we 
laim that ea
h time we extend the 
lass of a

term s Æ u by an appli
ation of rule (R1) at a step n � M , we need

to have a term t su
h that [t℄

n

� [s Æ u℄

n

: This is be
ause, on the one

hand, it is a pre
ondition of rule (�) that [t℄

n

6= [s Æ u℄

n

. And, on the

other hand, as a result of applying (R1), [t℄

n+1

� [s Æ u℄

n+1

(sin
e t Æ u

gets into [s Æ u℄

n+1

), and � doesn't grow after step M , so in fa
t we

should already have had [t℄

n

� [s Æ u℄

n

.
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In parti
ular, after step M , �-minimal 
lasses 
annot be extended.

Classes of `�-degree' 1 
an be extended only by terms having a `t-


omponent' from a �-minimal 
lass. Further, the `u-
omponent' of a

new term is always su
h that [u℄

n

� [sÆu℄

n

. So (at �rst sight), for ea
h

t-
omponent, there 
an be an in�nite supply of u-
omponents (out of

the newly added terms) as the 
lass grows. But we 
annot use a t as

t-
omponent if it is already a subterm of the u-
omponent (otherwise

it is not an (R1)-type appli
ation). So a t-
omponent 
annot be reused

with a u-
omponent 
reated using the t-
omponent in question, thus


lasses of `�-degree' 1 
an be extended only with �nitely many new

terms. Then we extend 
lasses of `�-degree' 2, and so on. Clearly, this

way ea
h 
lass 
an be extended only with �nitely many new terms,


ompleting the proof of Lemma 5.

Remark 8. If � = ;, that is, we want to de
ide whether a formula ' is

valid, then all the �

0

-
lasses are singletons by de�nition. Therefore, all

appli
ations of rule (�) are of type (R3), that is, we 
an always 
hoose

N

;;'

to be 0.

3.5. Main results

Given a set � of formulas and a formula ', take the in�nite sequen
es

T

n

and �

n

(n < !) de�ned above, and let

T =

[

n<!

T

n

and � =

[

n<!

�

n

:

It is easy to see that � is an equivalen
e relation on T . We 
all a pair

(�; ') (where ' is s � t) a YES-instan
e i� �s �

�

t holds.

Theorem 9. Let � be a set of formulas and ' a formula. Then the

following are equivalent:

(1) � ` '

(2) � j= '

(3) (�; ') is a YES-instan
e.

Theorem 10. The �nite entailment problem is de
idable and has the

�nite model property.

Corollary 11. The validity problem is de
idable. In parti
ular,

j= s � t i� s and t are the same.
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Proof. If s and t are the same then j= s � t follows by Claim 3 and

Lemma 2. Conversely, if j= s � t then, by Theorem 9, (;; s � t) is a

YES-instan
e. By Remark 8, the de
ision algorithm stops in step 0,

meaning that s and t are the same.

Proof of Theorem 9. (1) ) (2): It is Lemma 2.

(2) ) (3): Suppose that (�; ') is not a YES-instan
e. Then we will

give a model M su
h that all formulas in � are true in M, but ' is

not.

To this end, we denote the �-
lass of a term s by [s℄. We de�ne a

relation � on �-
lasses by taking, for all s; t 2 T ,

[s℄ � [t℄ i� 9n < !: ([s℄

n

�

n

[t℄

n

)

(
f. the proof of Lemma 5 for notation). By Claim 7, we have that

� is antisymmetri
 and so it is partial order. (11)

We will also use the following property of �:

Claim 12. For all terms s; t 2 T , if [s℄ � [t℄ and sÆt 2 T , then sÆt � t.

Proof. If [t℄ = [s℄ but s Æ t 6� t then, by rule (�), s Æ s = s belongs to

[s Æ t℄, so s Æ t � t, a 
ontradi
tion.

So suppose that [s℄ � [t℄, s 6� t and s Æ t 6� t. Then, by Claim 6, s is

a subterm of some t

0

2 [t℄. So, by rule (�), s Æ t

0

= t

0

belongs to [s Æ t℄,

a 
ontradi
tion again.

Now we de�ne a (non-empty) set U , a (irre
exive) binary relation

<

�

on U , and a labelling fun
tion ` : U ! f[t℄ j t 2 Tg[f;g as follows:

(i) For ea
h 
lass C, put a fresh x

C

into U , and de�ne `(x

C

) = C.

(ii) Then, for every su
h x

C

and every s Æ t 2 C su
h that s; t 2 C do

not hold:

� if s 2 C, but t =2 C, then put a new point y into U , and de�ne

`(y) = [t℄ and y <

�

x

C

;

� if t 2 C, but s =2 C, then put a new point y into U , and de�ne

`(y) = [s℄ and y <

�

x

C

;

� if s; t =2 C (by Claim 12, s 6� t follows), then put three new

points y

1

; y

2

; y into U , and de�ne `(y

1

) = [s℄, `(y

2

) = [t℄,

`(y) = ; (we 
all su
h points dummy), and y

1

<

�

x

C

, y

2

<

�

x

C

, y <

�

y

1

, y <

�

y

2

.
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(iii) Then 
ontinue `unfolding the terms' in the labels of the newly


reated points like in (ii). Then again, and so on.

Now let � be the re
exive and transitive 
losure of <

�

. Sin
e ea
h

dummy point 
an be � than itself only, it is straightforward to see

that, for all x; y 2 U su
h that `(x) 6= ;, `(y) 6= ;,

if x � y then `(x) � `(y): (12)

Now it follows from (11) that � is antisymmetri
, so it is a partial order

on U . Moreover,

if x � y and x 6= y then `(x) 6= `(y). (13)

Now, for ea
h propositional variable p, we let

I(p) = fx 2 U j p 2 `(x)g:

Then I(p) is a �-anti
hain: take x; y 2 I(p) with x � y. Then p 2

`(x)\`(y), so `(x) = `(y). Now x = y follows by (13). SoM = hU;�; Ii

is a model.

Claim 13. For every t 2 T , jtj = fx 2 U j t 2 `(x)g:

Proof. It is by indu
tion on the stru
ture of term t. If t is a propositional

variable then the 
laim follows by the de�nition of I.

Suppose that the 
laim is true for terms s and t su
h that s Æ t 2 T .

Suppose �rst that x 2 js Æ tj. There are four 
ases:

1 : x 2 jsj, x 2 jtj. By IH, s; t 2 `(x), so [t℄ � [s℄. By Claim 12, we

have s Æ t 2 `(x).

2: x 2 jsj, x =2 jtj. Then there is a y 2 U su
h that y � x, y 6= x and

y 2 jtj. By IH, s 2 `(x) and t 2 `(y). So by (12), we have [t℄ � [s℄.

Again by Claim 12, we have s Æ t 2 `(x).

3: x 2 jtj, x =2 jsj. This is similar to Case 2.

4: x =2 jsj, x =2 jtj. Then there are y; y

1

; y

2

2 U , all di�erent from

ea
h other and from x su
h that y � y

1

, y � y

2

, y

1

� x, y

2

� x,

y

1

2 jsj, y

2

2 jtj. By the de�nition of U and �, this implies that

y <

�

y

1

, y <

�

y

2

, `(y) = ;, and there are z 2 U and u

1

Æ u

2

2 T

su
h that y

1

<

�

z, y

2

<

�

z, z � x, u

1

2 `(y

1

), u

2

2 `(y

2

),

u

1

Æu

2

2 `(z). Sin
e z is a �-upper bound for y

1

and y

2

, x 2 js Æ tj

implies that x � z, and so x = z, from whi
h x 6= y

1

and x 6= y

2

follow. By IH, we have s 2 `(y

1

) and t 2 `(y

2

). By (13), we have

`(x) 6= `(y

1

) and `(x) 6= `(y

2

). So, by rule (�), s Æ u

2

2 `(x), and

we also have s Æ u

2

6= s and s Æ u

2

6= u

2

. Then, again by rule (�),

we obtain that s Æ t = s Æ t belongs to `(x).
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Conversely, suppose s Æ t 2 `(x). By the de�nition of U and �, x is

a �-upper bound of some y

1

; y

2

su
h that y

1

and y

2

have a 
ommon

�-lower bound, and s 2 `(y

1

), t 2 `(y

2

). By IH, y

1

2 jsj and y

2

2 jtj,

so x is a 
ommon �-upper bound as needed. Let z � x be su
h that

z 2 js Æ tj. By the dire
tion already proven, s Æ t 2 `(z) follows. So

`(x) = `(z). Then we have x = z by (13). This 
ompletes the proof of

Claim 13.

Now it follows from Claims 13, 3(iii) and Lemma 2 that all formulas

in � are true in M, but ' is not true in M.

(3) ) (1): We show by indu
tion on n that, for all terms s; t, if

�s �

n

�

t then � ` s � t. First, let n = 0 and suppose �s �

0

�

t. Then either

�s =

�

t and then � ` s � t by Claim 3(iii) and rule (3), or (s � t) 2 �

or (t � s) 2 � and then � ` s � t by rule (2).

Now suppose �s �

n+1

�

t. If �s �

n

�

t then we have � ` s � t by IH.

Otherwise, there are s

0

; t

0

; u 2 T

n

su
h that s

0

�

n

t

0

,

�

t = t

0

Æ u and

�s = s

0

Æ u. By IH, we have � ` s

0

� t

0

. So, by rules (4), (3) and

Claim 3(iii) we obtain � ` s

0

Æ u � t

0

Æ u, that is, � ` �s �

�

t. Now

� ` s � t follows again by Claim 3(iii). 2

Proof of Theorem 10. By Lemma 5 and Theorem 9, the pro
edure de-

s
ribed in subse
tion 3.4 is a de
ision pro
edure for the �nite entailment

problem.

As 
on
erns the �nite model property, we 
laim that if � is �nite

then the model M = hU;�; Ii de�ned in the proof of the `(2) ) (3)'

part of Theorem 9 is �nite. Indeed, by de�nition, every point in U has

�nitely many <

�

-prede
essors, so the �niteness of U follows from (11),

(12) and (13). 2

Note that in an implementation of the de
ision algorithm we may

stop in a step n mu
h smaller than N

�;s�t

, in 
ase we dete
t that �s and

�

t have be
ome �

n

-equivalent.

4. Con
lusion

4.1. What about 
ompositionality?

Under the view proposed in this paper, linguisti
 and semanti
 
om-

pleteness/in
ompleteness need not be dire
tly related. This seemingly


ontradi
ts one of the most important methodologi
al prin
iples of

modern semanti
s, namely, the 
ompositionality prin
iple, whi
h

emphasises the parallelism of semanti
 and linguisti
 stru
ture:
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`The meaning of a 
omplex expression is a fun
tion of its stru
ture

and the meanings of its 
onstituents.'

In fa
t, in some of its formulations, e.g., Montague's ((Montague, 1974)),

this prin
iple requires a total parallelism between synta
ti
 and se-

manti
 types; more pre
isely, it posits a homomorphism between the

semanti
 (fun
tion appli
ation based) algebra and the synta
ti
 (
on-

stituen
y based) algebra. So the question naturally arises whether we

are willing to reje
t the 
ompositionality prin
iple itself.

To the 
ontrary, we are 
onvin
ed that 
ompositionality does not

impose anything on us with respe
t to `
ompleteness.' In our view, the

prin
iple of 
ompositionality is indeed of utmost importan
e for natural

language semanti
s in that it 
arves out that aspe
t of natural language

use that 
an and is to be dealt with su

essfully by semanti
s at all.

Compositionality means that the only phenomena that legitimately 
an

be termed semanti
 must exhibit a systemati
 
orresponden
e between

form and meaning. That is why, for example, the eventual motivated-

ness of more or less idiomati
 expressions (e.g., of mouse '
omputer

pointing devi
e'), although dis
ernible to the speakers to some extent,

falls outside the s
ope of 
ompositionality, hen
e, of semanti
s in gen-

eral. Compositionality (fortunately) 
ontains no stipulation to the e�e
t

that all aspe
ts of linguisti
 form must be explained by a parallelism

with meaning (e.g., one 
ould hardly 
laim that stems with similar

phonologi
al shapes are also semanti
ally similar), therefore it allows

linguisti
 `
ompleteness' to be a phenomenon independent of or only

loosely related to meaning. (As a matter of 
ourse, the 
onverse is

also true: 
ompositionality also does not stipulate that all aspe
ts of

meanings must be re
e
ted by linguisti
 form.)

On the other hand, we think 
ompositionality should be strength-

ened from another point of view. The prin
iple says nothing on what

a `fun
tion' 
an be. In general, there is nothing a `fun
tion' 
annot

do; therefore, under the traditional, weak de�nition of 
ompositional-

ity one would expe
t very unusual ways of 
ombining meanings. For

example, a fun
tion that 
ombines two predi
ates and yields as a value

the one that has greater 
ardinality than the other would be a perfe
tly


ompositional way of 
ombination; or, in prin
iple, a 
ombination fun
-

tion would be allowed to behave in a wildly non-uniform manner, in

the sense of performing totally di�erent operations depending on the

meanings of its operands. (Similar arguments were made by (Zadrozny,

1994; K�alm�an, 1996).) Obviously, what one would expe
t from a 
om-

positional 
ombination fun
tion is that it should be uniform in the

above sense, and that it should preserve the meanings that it 
ombines

(i.e., it must not be destru
tive). These two requirements together
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suggest an essentially additive operation, in very mu
h the same

vein as in traditional linguisti
s sin
e the Antiquity, whi
h thought of


ombining meanings as `adding them together'. (Note that others, su
h

as (Vermeulen and Visser, 1996; Visser, 2003) have also proposed se-

manti
 formalisms that, although with di�erent motivations, share the

feature of additiveness.) Te
hni
ally speaking, an additive 
ombination

operation means that the value that it yields is

� is ri
her than either one of its operands in terms of information


ontent;

� 
ontains only information originating from one of the operands.

This, in turn, presupposes that we are able to 
ompare arbitrary mean-

ings (both the ones to be 
ombined and the resulting value) in terms of

information 
ontent. A suÆ
ient (and under 
ertain reasonable assump-

tions, ne
essary) 
ondition for this to be feasible is that semanti
s must

be type free, just like the semanti
s we have proposed in the present

paper.

4.2. Open issues

In this paper we have been 
on
erned with the basi
 ingredients of

natural language semanti
s, without tou
hing upon notorious problems

su
h as adje
tival modi�
ation, modalities and intensionality, proposi-

tional attitudes, quanti�
ation, information stru
ture, and so on. Some

of these problems obviously require the enri
hment of the apparatus

des
ribed above, but we believe that the problems of su
h enri
hments


an and should be separated from the essentials dis
ussed here.

For example, on the one hand it would be easy to 
onstru
t a �rst-

order (or even higher-order) language the atomi
 formulas of whi
h are

exa
tly the formulas of our suggested language. But this would amount

to begging the question whether a type free approa
h to natural lan-

guage semanti
s 
an be pursued in general. On the other hand, natural

languages are able to express propositions involving 
olle
tions and

se
ond-order predi
ates (e.g., quanti�
ation). Clearly, su
h meanings


annot be treated with a ma
hinery that 
annot express arithmeti
.

But it is arguable whether arithmeti
 is indeed part of natural lan-

guage semanti
s. In a subsequent paper we are planning to 
omplement

our framework with a quanti�
ational 
omponent whi
h 
an treat at

least 
ertain restri
ted types of quanti�
ation. We also intend to in-

vestigate the possibilities of extending the stan
e that we have taken

above to some other features, su
h as modalities and various notions of

in
ompatibility among phenomena (whi
h 
an lead to di�erent kinds

of negation).
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