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Abstrat. The paper sets out to o�er an alternative to the funtion/argument

approah to the most essential aspets of natural language meanings. That is, we

question the assumption that semanti ompleteness (of, e.g., propositions) or in-

ompleteness (of, e.g., prediates) exatly repliate the orresponding grammatial

onepts (of, e.g., sentenes and verbs, respetively). We argue that even if one gives

up this assumption, it is still possible to keep the ompositionality of the semanti

interpretation of simple prediate/argument strutures. In our opinion, omposi-

tionality presupposes that we are able to ompare arbitrary meanings in term of

information ontent. This is why our proposal relies on an `intrinsially' type free

algebrai semanti theory. The basi entities in our models are neither individuals,

nor eventualities, nor their properties, but `piees of evidene' for believing in the

`truth' or `existene' or `identity' of any kind of phenomenon. Our formal language

ontains a single binary non-assoiative onstrutor used for reating strutured

omplex terms representing arbitrary phenomena. We give a �nite Hilbert-style

axiomatisation and a deision algorithm for the entailment problem of the suggested

system.

Keywords: ompleteness, ompositionality, deision algorithm, �nite axiomatis-

ability, �nite entailment problem, funtion/argument metaphor, measurements, nat-

ural language semantis, piees of evidene

1. Introdution

The ornerstones of the Fregean approah (Frege, 1984) to linguis-

ti and semanti struture are the distintion between `omplete' and

`inomplete' expressions and meanings, on the one hand, and the as-

sumption that these two are entirely parallel, on the other. Whatever

is linguistially omplete (inomplete) is also semantially omplete

(inomplete). The linguisti insight behind this distintion is age-long:

Prediates were always seen as `requiring' subjets, transitive expres-
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sions `require' objets, modi�ers `require' something to modify, and so

on. Beause of the fully general and ross-linguisti harater of suh

`requirements', it has been assumed that they are an ingredient of our

`language of thought' rather than a super�ial property of the natural

languages we speak.

The inadequay of the treatment of natural-language prediates as

n-ary prediates (beause of both their �xed arity and the �xed order

of arguments) has been extensively argued by (Davidson, 1967) and his

followers. If semanti `inompleteness' only partially mathes linguis-

ti inompleteness, then the alleged parallelism between syntati and

semanti types (as assumed by, e.g., (Montague, 1974)) is diÆult to

sustain. Puzzles related to this problem inlude the fats that

� many verbs (e.g., eat) an be used both transitively and intransi-

tively in the same meaning;

� nominalisations (e.g., investment) do not require the presene of

the obligatory arguments of the orresponding verbs (e.g., invest);

� even semantially empty expressions, suh as pronouns, an make

an expression linguistially omplete (e.g., #I borrowed vs.

OK

I

borrowed it), and that in many languages (in the so-alled `pro-

drop' languages) suh devies are not required for linguisti om-

pleteness;

� some parameters that are always understood (e.g., the time and

plae where an event takes plae) are not obligatorily expressed

linguistially;

� in many ases there is a mismath between the ategory of a word

and its possible uses, e.g., a noun like storm an be used as referring

to events, plaes, time intervals et.

Our proposal is the following: Let linguisti analysis aount for

linguisti inompleteness (this is motivated by its largely language spe-

i� harater), and let semanti analysis not rely on the ompleteness/

inompleteness distintion. For example, let linguisti analysis explain

the linguisti behaviour of a verb like English eat, and let the semantis

assign it a meaning that explains how the meaning of a subjet or

diret objet argument (or a time/plae adverbial), when present, an

ombine with it.

This is in line with (Davidson, 1967), but our solution departs from

Davidsonian approahes in various ways. In a Davidsonian model, there

are entities orresponding to events (like, say, an eating event) and en-

tities orresponding to individuals (say, the eater and the thing eaten),
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plus relations between suh entities (e.g., the eater stands in the agent

relation with the event, whereas the thing eaten stands in the theme

relation with it). Aording to our modelling, all these di�erent entities

and relations are oneived of as a single type of entities, whih we will

all phenomena. In the semantis, a phenomenon is modelled with

a set ontaining possible onstellations (or `observations,' or `mea-

surements') indiating or justifying the presene of the phenomenon.

(Constellations play the same role with respet to phenomena as the

`truthmakers' of (Mulligan et al., 1984) with respet to propositions.

The existene of a `truthmaker' for a proposition is a neessary and

suÆient ondition for the proposition to be true; the existene of a

onstellation for a phenomenon is a neessary and suÆient ondition

for the phenomenon to exist.)

This way we obtain an essentially type free aount of meanings: in

addition to the ompleteness/inompleteness distintion, we also dis-

pense with the strit parallelism between linguisti and semanti type

distintions. For example, onsider the example of storm mentioned

above. In a type free semantis, we do not have to deide whether

storms are individuals, regions of spae, temporal intervals or even-

tualities: they are simply phenomena the existene of whih an be

proven by onstellations (for example, by a onstellation ontaining

meteorologial measurements or visual piees of information). Below

we onentrate on the most essential aspets of meanings, suh as

prediates and their arguments, and leave the treatment of further,

more omplex features like adverbials, quanti�ers et. to a subsequent

paper.

The paper is strutured as follows. First, in Setion 2, we illustrate

the basis of our representation language and its intended semantis

by using some simple examples. Then, in Setion 3, we present the

preise formalism, disuss the possible reasoning tasks, and give a

�nite Hilbert-style axiomatisation and a deision algorithm for the

entailment problem of the suggested system. Finally, in Setion 4, we

turn to theoretial impliations. In partiular, we disuss the problem

that abandoning the strit parallelism between linguisti and semanti

struture apparently ontradits the priniple of ompositionality.

We argue that, as a matter of fat, not only an ompositionally be

maintained in our system, but it even takes a more severe form than

its usual interpretation. There are ertain issues that any theory of

natural language semantis has to fae sooner or later, but whih are

not diretly relevant to the ideas put forward here. We briey disuss

our plans onerning suh issues in the last subsetion.
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2. Towards a non-Fregean natural-language semantis

2.1. `Prediates' and `arguments'

As we have disussed in the Introdution, semantis may not be the

right plae to aount for the linguistially omplete or inomplete

harater of expressions. For example, the fat that English eat an

be used both transitively and intransitively may not be a fat about

semantis (although it may have to do with semanti properties). The

fat that eating involves an `eater' and a `thing eaten' need not be

aptured in terms of the `inompleteness' of the meaning of eat; it an

simply be onsidered as part of the omplexity of that meaning, whih

is usually reeted in natural languages, although not neessarily in

the same way in all of them.

Instead of going through the various arguments against the strit

arity of natural-language prediates by Davidson and his followers, let

us turn immediately to the analysis we propose. We will follow the

Davidsonian tradition in that we oneive of eventualities as properties

of spatio-temporal loations. So we think of the meaning of `eat' (or

`eating') as a set of (possibly very di�erent) onstellations, namely,

those in whih there is evidene that eating takes plae. In ontrast

to the standard view, however, we laim that this kind of semantis

an be extended to other types of expression, those that do not refer to

eventualities. For example, individuals an be seen as ontiguous spatio-

temporal regions, therefore, they an be modelled with the same type

of onstellation sets as eventualities. Properties and abstrat entities

have muh more omplex semantis, but the priniple an be extended

to them. Clearly, one needs some kind of evidene for admitting the

presene of a property or an abstrat entity, and there may be very

di�erent types of evidene for it, say an `observation' or some kind of

`measurement:' eah suh piee of evidene an be oneived of as a

onstellation.

Aording to this general perspetive, we propose that the mean-

ingful entities of natural-language expressions like Joe is eating or Joe

is eating bread should all be onsidered of the same type, phenomena,

and interpreted as sets of onstellations. Let us assume that the mean-

ingful entities in question are Joe, eat, agent, bread and theme.

(Following the usual pratie, we leave out ertain details, suh as the

�ne points of treating proper names, the progressive et.) The point

is that Joe orresponds to the various possible ways of verifying Joe's

presene/identity, eat to the eventualities that an be haraterized as

eating, bread to onstellations in whih some bread an be deteted,

agent to onstellations proving that some animate entity performs an
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ativity on purpose, and theme to onstellations in whih an entity

undergoes some hange of state or loation.

As we want to leave open the exat ontologial status of onstel-

lations, we would like to assume only a minimal struture on them.

A possible hoie is to ompare onstellations aording to their in-

formation ontent, say, a piture of a orner of a room is learly

less informative than a piture showing a larger part of the same

room. Similarly, a piture an be more informative than another by

virtue of its better resolution. It is natural to assume that this kind of

informativeness relation is a partial order.

Though we propose every meaning to be a set of onstellations,

we do not think that every suh set is appropriate as the meaning of

some phenomenon. Clearly, if a onstellation is suÆient for proving the

presene of a phenomenon, then all more informative onstellations are

also suÆient for proving it. So a sensible hoie would be to onsider

only upward-losed sets of onstellations as meanings. Another possi-

bility (whih is equivalent, at least in well-founded partial orders) is to

ollet theminimal onstellations only from eah suh set. This would

orrespond to the intuition that the meaning of a phenomenon ontains

the neessary and suÆient proofs for its presene, et.

Let us give another reason for why we would like to hoose this

latter option. Sine all the meaningful expressions are of the same

semanti type (sets of onstellations), we annot ombine them in

the ways familiar from pre-Davidsonian or Davidsonian semantis. For

example, the fat that Joe is the agent of eating annot be expressed

as agent(Joe;eat), beause we do not interpret agent as a relation.

Instead, we must produe a set of onstellations proving that `Joe is

the agent of eating' from the onstellations for Joe, agent and eat.

Let A ÆB stand for the ombination of A and B; we suggest that, in

order to produe a meaning for suh a ombination, we must look at the

overlapping onstellations in the meaning jAj of A and the meaning

jBj of B. For example, let j 2 jJoej be a onstellation proving Joe's

presene, and a 2 jagentj be a onstellation proving the presene

of an agent. Then, by saying that j and a overlap, we would like to

mean that there exists a ommon lower bound x of j and a aording

to their information ontent. This onstellation x should show that

our evidene to the e�et of Joe's presene is not independent of our

evidene for agenthood. This must be beause Joe is the intentional

agent in question. Now suppose that, say, j shows the piture of a

room where both Joe and Pam are in, and j is not minimal in jJoej

(as we also have there a smaller piture of the same room showing

only the part where Joe is). Suppose also that a is an observation that

is related to Pam, who is performing a purposeful ativity. Then the
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overlap of j and a does not have muh to do with Joe being our agent,

but rather it is some onstellation related to Pam.

Now let us return to the problem of produing onstellations prov-

ing both Joe's presene and his agenthood. We would like to ollet

those onstellations that are more informative than some overlapping

pairs of onstellations proving Joe's presene, on the one hand, and his

agenthood, on the other. Further, to omply with the uniformity of all

meanings, we should only keep the minimal ones among suh onstella-

tions. In terms of the above, we propose the following translations for

Joe is eating and Joe is eating bread:

Joe is eating ; (Joe Æ agent) Æ (agent Æ eat);

Joe is eating bread ;

((Joe Æ agent) Æ (agent Æ eat)) Æ

((bread Æ theme) Æ (theme Æ eat)):

In these translations, the order in whih the terms are ombined is

irrelevant: Joe Æ agent is the same as agent Æ Joe. So \Æ" denotes

a ommutative operation; however, it is important that it should

be non-assoiative sine, for example, in the seond translation it

is ruial that `Joe' is the agent and `bread' is the theme rather

than the other way round. It is easy to infer from what we said about

ombinations of meanings that \Æ" is an idempotent operation.

To sum up, we an translate eating, Joe is eating and Joe is eating

bread in a uniformmanner, without onsidering any of these expressions

`inomplete'. In addition, the fat that Joe is eating means, roughly,

`Joe is eating something', omes for free: this is exatly what our

translation expresses.

2.2. `Metonymial' interpretation

The ase of argument-taking verbs is not the only one in whih we �nd a

mismath between the semanti harater and the syntati behaviour

of natural-language expressions. Take the English word storm. Sine its

grammatial ategory is `noun', the type of its denotation is tradition-

ally a prediate, namely, the one true for all and only the individual

storms in a model of the world. To what extent one an onsider a

storm an individual is an interesting ontologial question whih will

play some role in what follows, but it is not our main onern here.

What is more intriguing is that storm, together with a legion of other

nouns (mainly, nominalisations), an refer to plaes, time intervals and

eventualities just as easily as `individuals'. For example, in addition to

the storm moved West (in whih the storm is seen as an individual),

we an say in the storm (loation), after the storm (time interval) or

beause of the storm (eventuality).
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The usual explanation of suh systemati ambiguities relies on some

onept of `metonymy', i.e., on oneiving of suh expressions as some-

how elliptial. In partiular, under this view, in the storm would `stand

for' in [the plae where℄ the storm [was℄, whereas after the storm should

be interpreted as after [the time interval of the existene of℄ the storm,

and beause of the storm as beause of [the event of℄ the storm [taking

plae℄.

This may well be a legitimate treatment, but it does not explain why

just words denoting `individuals' like storms an funtion in these ways.

A treatment not relying on a metonymy mehanism, but aounting for

the behaviour of, say, storm on the basis of its meaning alone would be

learly preferable. We believe a type free treatment an do this job.

Take The storm moved West �rst. The meaning of this sentene an

be produed in a way similar to that of Joe is eating (setting aside

the entirely independent problem of how we treat de�nite artiles),

exept that the grammatial subjet here is the theme argument (the

storm is not a purposeful agent, but an individual undergoing hange

of loation):

The storm moved West ;

(the-storm Æ theme) Æ (theme Æmoved-West):

In this ase, the storm is oneived of as an individual (assuming that,

if we do not onsider �gurative meanings, only individuals an undergo

hange of loation). That is, only those onstellations in jthe-stormj

will overlap with onstellations in jthemej whih serve as evidene for

storms as individuals, in the sense of ontiguous time-spae regions,

i.e., entities whih ome into existene and then die, and whih are

delimited by more or less lear boundaries throughout their lifetime.

Clearly, there must be ways of seeing storms in this way, and there will

be onstellations supporting suh a view.

The other uses of storm an be explained in an analogous manner.

For example, in the storm an be translated as

in the storm ;

(in Æ ground-area) Æ (ground-area Æ the-storm):

Note that in has a relational meaning, so we treat it analogously to eat

above. Namely, it means that a (somehow delimited) spatial area, the

so-alled �gure, is ompared to (namely, is inluded in) another delim-

ited area, the so-alled ground. In this ase, `the storm' plays the role

of ground (ground-area). The translation above will be meaningful

(i.e., it will not denote the empty set) only if some onstellations in

jthe-stormj have a non-empty overlap with jground-areaj, i.e., if
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they make referene to the spatial area oupied by the storm. That is,

instead of reurring to metonymy, we assume that storm is inherently

apable of being oneived of as a delimited area; at the same time,

we make it expliit what it means for something to be seen as some-

thing else. The assumption that storm an refer to an area is not a

stipulation: it involves the substantive laim that some (minimal) sets

of observations proving the presene of a storm make referene to the

its spatial boundaries.

3. Formalism

In this setion, we give the preise de�nitions of the syntax and se-

mantis of the suggested formalism. As in this paper we intend to take

only the �rst steps of a rather unorthodox approah, we have hosen

a very basi formal representation language. Our terms (representing

phenomena) are built up (freely) from (phenomenon) variables with

the help of the binary onnetive Æ:

t = p j t

1

Æ t

2

:

Our formulas represent the questions we want to ask about suh phe-

nomena. We introdue the simplest possible formulas only, expressing

the equality of two phenomena:

' = t

1

� t

2

:

Our formal expressions are evaluated in models. Eah model on-

sists of a set of onstellations, and an be onsidered as the urrent

`snapshot of the world,' or the `aspets' we are interested in. We assume

only a minimal struture on the onstellations: they are `arranged'

aording to their informativeness: x � x

0

intends to mean that

x

0

is at least as informative as x. So it is natural to assume that � is

(at least) a partial order. (In this paper we do not make any further

assumptions, but we intend to investigate other possibilities in future

work.) In addition, a model should represent the information we ould

ollet about the simplest phenomena we are talking about at a given

moment, that is, a valuation for the variables.

We de�ne a model to be a triple M = hU;�; Ii, where

� U is a non-empty set,

� � is a partial order on U , and

� I is a funtion from the set of variables to the powerset of U

suh that for every variable p, I(p) is an antihain (i.e., for all

x; x

0

2 I(p), if x � x

0

then x = x

0

).
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Given a modelM = hU;�; Ii, we de�ne the meaning jtj

M

for eah

term t as follows:

jpj

M

= I(p)

jt

1

Æ t

2

j

M

= min(fu 2 U : 9u

1

2 jt

1

j

M

; 9u

2

2 jt

2

j

M

suh that

u

1

and u

2

have a ommon �-lower bound,

and u is a ommon �-upper bound of

u

1

and u

2

g)

(Here min(X) = fx 2 X : for all x

0

2 X, if x

0

� x then x = x

0

g.) Note

that this way jtj

M

is always an antihain, for eah term t. In what

follows, we will omit the supersript from jtj

M

and use simply jtj when

M is lear from the ontext.

Next, for eah formula ', we de�ne the relation M j= ' (' is true

in M) as follows:

M j= t

1

� t

2

i� jt

1

j

M

= jt

2

j

M

:

Remark 1. Another possible simple way of omparing onepts is

more permissive than equality. We might want to say something similar

to material impliation: A formula of the form t

1

! t

2

would mean,

roughly, that one's evidene for t

2

adds nothing to one's evidene for t

1

,

it is already inluded in it. In terms of information ontent, this means

that t

1

is a phenomenon that is either the same as, or a re�nement

of, t

2

. The following an be a orresponding truth relation:

M j= t

1

! t

2

i� 8u

1

2 jt

1

j

M

9u

2

2 jt

2

j

M

u

2

� u

1

:

However, it is not hard to see that ! an be de�ned with the help of

Æ and �:

M j= t

1

! t

2

i� M j= (t

1

Æ t

2

) � t

1

:

Indeed, suppose �rst M j= t

1

! t

2

. Take some x 2 jt

1

Æ t

2

j. Then there

is y � x with y 2 jt

1

j, so there is z � y with z 2 jt

2

j. So y is a ommon

�-upper bound of y and z. Then y = x follows, sine x 2 jt

1

Æ t

2

j. So

we have jt

1

Æ t

2

j � jt

1

j. Conversely, take some x 2 jt

1

j. Then there is

y � x with y 2 jt

2

j. So x is a ommon �-upper bound of x and y.

Now x 2 jt

1

Æ t

2

j follows beause jt

1

j is an antihain. Now suppose that

jt

1

Æ t

2

j = jt

1

j. Take some x 2 jt

1

j. Then x 2 jt

1

Æ t

2

j, so there is y � x

with y 2 jt

2

j.

Note that the relation v

M

de�ned on term-meanings by

jt

1

j

M

v

M

jt

2

j

M

i� M j= t

1

! t

2

is always a partial order, so! is indeed similar to material impliation.
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3.1. Reasoning tasks

What kind of reasoning tasks should we investigate about the suggested

formal system? The satis�ability or onsisteny problem would be

a natural andidate:

� Given a (�nite or in�nite) set � of formulas (i.e., equalities), is

there a model where every formula in � is true?

It is easy to see that our formalism is not strong enough to meaningfully

address this question, as every set of formulas in satis�able in some

(probably intuitively weird) model. What is sensible in our ontext is

the dual validity problem:

� Given a set � of formulas, is it the ase that every formula in � is

true in every model?

This doesn't really sound as a partiularly interesting question in on-

netion to phenomenon-equalities. However, it is a speial ase of the

more relevant entailment problem:

� Given a set � of formulas and a formula ', is ' true in all those

models where every formula of � is true (in symbols: � j= ')?

Below we show that the entailment problem is �nitely axioma-

tisable, and the entailment problem is deidable and has the �nite

model property, whenever the set � of `assumptions' is �nite. (see

Theorems 9 and 10 below.)

3.2. Hilbert-style alulus

p � p (1)

given p � q; derive q � p; (2)

given p � q and q � r; derive p � r; (3)

given p � p

0

and q � q

0

; derive p Æ q � p

0

Æ q

0

; (4)

p Æ q � q Æ p; (5)

p Æ p � p; (6)

(p Æ (q Æ r)) Æ r � p Æ (q Æ r): (7)

We say that

� ` s � t

if there is a �nite sequene of formulas ending with s � t and suh that

eah formula in the sequene is either a substitution instane of an
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axiom above, or in �, or obtained from earlier formulas in the sequene

by applying a substitution instane of one of the rules above.

Observe that (1){(4) just say that � obeys the axioms and rules of

the equational alulus. While (5) and (6) express that Æ is a ommu-

tative and idempotent operation, one an regard (7) as some kind of

`weak assoiativity' (as an assoiative and idempotent Æ learly would

have this property).

Interesting onsequenes of (1){(7) are:

(p Æ q) Æ p � p Æ q; (8)

given p Æ q � p and q Æ r � q; derive p Æ r � p: (9)

Indeed, for (8):

(p Æ q) Æ p

(5)

� (q Æ p) Æ p

(6)

� (q Æ (p Æ p)) Æ p

(7)

� q Æ (p Æ p)

(6)

� q Æ p

(5)

� p Æ q:

For (9): Suppose we have p Æ q � p and q Æ r � q. Then

p Æ (q Æ r) � p Æ q � p;

and so

p Æ r � (p Æ (q Æ r)) Æ r

(7)

� p Æ (q Æ r) � p:

Note that in fat the alulus de�ned by (1){(6), (8) and (9) is

equivalent to the above one, as (7) an be derived in it. Note also that

using ! instead of � (f. Remark 1), (6) and (8) are equivalent to

p! p and (p Æ q)! p, respetively, while (9) is equivalent to the rule

given p! q and q ! r; derive p! r:

The proof of the following lemma is straightforward:

Lemma 2. (Soundness.)

For all �; s; t, if � ` s � t then � j= s � t.

3.3. Normal forms

Fix some linear order on the terms. Then say that a term t is in pre-

normal form if, whenever t

1

Æ t

2

is a subterm of t, then t

1

is not

later in the order than t

2

. Clearly, every term t an be turned into

an equivalent term

~

t in pre-normal form (by equivalent we mean both

j= t �

~

t and ` t �

~

t). Moreover, we an use the following algorithm:

we start `inside out' (that is, bottom up in the parsing tree), and when

we �nd a Æ-term in the wrong order, swap the omponents. In what
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follows we don't bother with pre-normal forms, that is, with a slight

abuse of notation, when we write s Æ t, we might mean t Æ s.

Now, given a term t in pre-normal form, we de�ne indutively the

normal form

�

t of t by taking

�p = p for variables p;

t Æ s =

8

<

:

�

t if �s is a subterm of

�

t;

�s if

�

t is a subterm of �s;

�

t Æ �s otherwise.

Clearly, this de�nition is also an algorithm: again we start `inside out'.

Claim 3. (i) For eah term t, we have

�

�

t =

�

t.

(ii) For all terms t; s, if s is a subterm of t then ` t Æ s � t.

(iii) For eah term t, we have ` t �

�

t.

Proof. Eah statement follows by indution on the Æ-rank (the number

of nested Æs) of t. We give some details on the proof of (ii) and (iii).

(ii): If t = p then s = p should hold and p Æ p � p is (a substitution

instane of) axiom (6). Suppose that t = t

1

Æ t

2

and s is a subterm

of, say, t

1

. Then by the indution hypothesis, we have ` t

1

Æ s � t

1

.

On the other hand, (t

1

Æ t

2

) Æ t

1

� t

1

Æ t

2

is a substitution instane of

(8), so we also have ` (t

1

Æ t

2

) Æ t

1

� t

1

Æ t

2

. Now by (9) we obtain

` (t

1

Æ t

2

) Æ s � t

1

Æ t

2

.

(iii): If t = p then the statement is an instane of axiom (1). Suppose

that t = t

1

Æ t

2

and we know that ` t

1

�

�

t

1

and ` t

2

�

�

t

2

. By rule (4),

we have ` t �

�

t

1

Æ

�

t

2

. So only the �rst two ases in the de�nition of

t

1

Æ t

2

are problemati. Suppose, say, that

�

t

2

is a subterm of

�

t

1

, that is,

t

1

Æ t

2

=

�

t

1

. But then we have `

�

t

1

Æ

�

t

2

�

�

t

1

by (ii).

It follows from Claim 3 and rule (3) that if t and s are the same

then ` t � s. As we shall see (f. Corollary 11), the onverse statement

also holds. In other words, normal forms are suitable tools for dealing

with (unonditional) term-equalities.

3.4. Deision algorithm

Given a set � of formulas and a formula ', we will de�ne an in�nite

sequene T

0

� T

1

� : : : � T

n

� : : : of sets of normal form terms, and

an in�nite sequene �

0

��

1

� : : : ��

n

� : : : of equivalene relations (�

i

will be an equivalene relation on T

i

) as follows. Let

T

0

= f

�

t j t is a subterm of some term in � or 'g;

eszkk.tex; 18/01/2007; 11:36; p.12



Towards a Natural Language Semantis without Funtors and Operands 13

and for all s; t 2 T

0

, let

s �

0

t , s = t or

9u; v (s = �u; t = �v and either (u � v) 2 � or (v � u) 2 �):

Observe that T

0

is losed under taking subterms, and it is �nite if � is

�nite.

Now suppose that T

n

and �

n

have already been de�ned (suh that

T

n

is losed under taking subterms). Let T

n+1

be the smallest set

ontaining T

n

and �

n+1

the smallest equivalene relation ontaining

�

n

suh that

(�) for all s; t; s Æ u 2 T

n

: if s �

n

t and s Æ u 6�

n

s,

then t Æ u 2 T

n+1

and t Æ u �

n+1

s Æ u.

In other words, we obtain T

n+1

by losing T

n

under appliations of `rule

(�)' above.

Note that T

n+1

is losed under taking subterms: if v is a proper

subterm of t Æ u then it is a subterm of either

�

t or �u. Sine u is a

subterm of an element of T

n

, it is also in T

n

and so, sine

�

t = t and

�u = u by Claim 3(i), v is in T

n

� T

n+1

.

Observe that eah appliation of this rule either

(R1) adds a new element to an (existing) equivalene lass (if t Æ u =2 T

n

,

and so t Æ u = t Æ u), or

(R2) unites two equivalene lasses (if t Æ u 2 T

n

, and t Æ u 6�

n

s Æ u),

or

(R3) just has no e�et (if t Æ u 2 T

n

, and t Æ u �

n

s Æ u).

In partiular, the number of equivalene lasses does not inrease as n

grows. Note that if � is �nite then eah T

n

(n < !) is �nite as well.

Example 4. � = fx � (y Æ z) Æ (v Æ z); y � x Æ wg ' = x � y:

�

0

lasses:

fx; (y Æ z) Æ (v Æ z)g; fy; x Æ wg; fy Æ zg; fv Æ zg; fvg; fwg; fzg

�

1

lasses:

fx; (y Æ z) Æ (v Æ z)g; fy; x Æ w; ((y Æ z) Æ (v Æ z)) Æ wg;

fy Æ z; (x Æ w) Æ zg; fv Æ zg; fvg; fwg; fzg

�

2

lasses:

fx; (y Æ z) Æ (v Æ z); ((x Æ w) Æ z) Æ (v Æ z)g;

fy; x Æ w; ((y Æ z) Æ (v Æ z)) Æ w; y Æ z; (x Æ w) Æ zg;

fv Æ zg; fvg; fwg; fzg

�

n

lasses, for n � 3:
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14 Erd�elyi-Szab�o|K�alm�an|Kuruz

fx; (y Æ z) Æ (v Æ z); ((x Æ w) Æ z) Æ (v Æ z); (x Æ w) Æ (v Æ z);

y Æ (v Æ z); y; ((x Æ w) Æ z) Æ (v Æ z); x Æ w; ((y Æ z) Æ (v Æ z)) Æ w;

y Æ z; (x Æ w) Æ zg;

fv Æ zg; fvg; fwg; fzg

Lemma 5. If � is �nite then the `algorithm always stops:' Given �

and ', there is a number N

�;'

suh that for all m � N

�;'

, we have

T

m

= T

N

�;'

and �

m

=�

N

�;'

.

Proof. For every n and s 2 T

n

, we denote the �

n

-lass of s by [s℄

n

.

We de�ne two relations �

�

n

and �

n

on �

n

-lasses by taking, for all

s; t 2 T

n

,

[s℄

n

�

�

n

[t℄

n

, 9s

0

�

n

s:9u 2 T

n

: (s

0

Æ u = s

0

Æ u and s

0

Æ u �

n

t);

�

n

= the reexive and transitive losure of �

�

n

:

Then the relation �

n

is `non-dereasing' as n grows: if s; t 2 T

n

and

[s℄

n

�

n

[t℄

n

, then [s℄

m

�

m

[t℄

m

as well, for all m � n.

Claim 6. If [s℄

n

�

n

[t℄

n

and s 6�

n

t, then there exist m � n and t

0

2 T

m

suh that t

0

�

m

t and s is a subterm of t

0

.

Proof. As [s℄

n

�

n

[t℄

n

and s 6�

n

t, there exist k > 0 and u

0

; : : : ; u

k

,

a

0

; : : : ; a

k�1

2 T

n

suh that

s �

n

u

0

; u

k

�

n

t;

u

i

6�

n

u

i+1

for i < k;

u

i

Æ a

i

= u

i

Æ a

i

; for i < k;

u

i+1

�

n

u

i

Æ a

i

; for i < k:

Now we will apply rule (�) several times. With a slight abuse of nota-

tion, we use � to denote the obtained extensions of �

n

.

First, as s � u

0

6� u

1

� (u

0

Æ a

0

), an appliation of rule (�) yields

s Æ a

0

� u

1

. Then, either u

1

� u

2

or u

1

6� u

2

at this point. In the latter

ase, another appliation of rule (�) yields (s Æ a

0

) Æ a

1

� u

2

. And so

on, �nally we obtain a term t

0

� t of the form

t

0

= (: : : ((s Æ a

0

) Æ a

i

1

) Æ : : :) Æ a

i



; (10)

where 1 � i

1

� : : : � i



< k are suh that u

i

� u

i+1

whenever i 2

f1; : : : ; k � 1g � fi

1

; : : : ; i



g.
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Claim 7. �

n

is `eventually antisymmetri:' If [s℄

n

�

n

[t℄

n

and [t℄

n

�

n

[s℄

n

, then there is an m � n suh that s �

m

t.

Proof. Suppose [s℄

n

�

n

[t℄

n

and [t℄

n

�

n

[s℄

n

. If s �

n

t, then m = n is a

good hoie.

So suppose s 6�

n

t. Throughout, we will use the terms u

0

; : : : ; u

k

,

a

0

; : : : ; a

k�1

and the �-notation, as introdued in the proof of Claim 6.

As [s℄

n

�

n

[t℄

n

, after some appliations of rule (�), we obtain a term

t

0

� t of the form (10). Now either t

0

� s at this point or, by [t℄

n

�

n

[s℄

n

and Claim 6, t

0

is a subterm of some s

0

� s. Next, either s

0

� t at this

point and we are ready, or let i + 1 � k be the smallest number suh

that s

0

6� u

i+1

, that is,

s � s

0

� u

0

� : : : � u

i

6� u

i+1

:

Then, by (10), a

i

is a subterm of t

0

, and so it is a subterm of s

0

as well.

Therefore, an appliation of rule (�) yields

s

0

= s

0

Æ a

i

� (u

i

Æ a

i

) � u

i+1

:

And so on, �nally uniting the lasses of s and t, as required.

Sine the number of �

0

-lasses is �nite, and the number of equiva-

lene lasses does not inrease as n grows, there is a smallest numberK

suh that the number of �

m

-lasses remains the same, for all m � K.

If the number 

K

of �

K

-lasses is 1, then rule (�) annot be applied

any more to extend T

K

and �

K

, so we an hoose N

�;'

to be K.

So suppose that 

K

> 1. Sine the number of equivalene lasses does

not hange after step K, by Claim 7 we obtain that �

K

is antisymmet-

ri, so it is a partial order. Moreover, sine `�

n

is non-dereasing as n

grows', there is a smallestM � K suh that �

M

=�

m

for allm �M (in

the sense that for all s; t 2 T

M

, [s℄

M

�

M

[t℄

M

i� [s℄

m

�

m

[t℄

m

). With

a slight abuse of notation, we will denote this `stable' partial order on

(possibly growing in size) equivalene lasses by �.

By the hoie of K, we know that after step K eah appliation of

rule (�) is either an (R1) or an (R3). It remains to show that there are

only �nitely many (R1)s after step M . In other words, we need to show

that after stepM eah lass an be extended only by �nitely many new

terms. To this end, we laim that eah time we extend the lass of a

term s Æ u by an appliation of rule (R1) at a step n � M , we need

to have a term t suh that [t℄

n

� [s Æ u℄

n

: This is beause, on the one

hand, it is a preondition of rule (�) that [t℄

n

6= [s Æ u℄

n

. And, on the

other hand, as a result of applying (R1), [t℄

n+1

� [s Æ u℄

n+1

(sine t Æ u

gets into [s Æ u℄

n+1

), and � doesn't grow after step M , so in fat we

should already have had [t℄

n

� [s Æ u℄

n

.
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In partiular, after step M , �-minimal lasses annot be extended.

Classes of `�-degree' 1 an be extended only by terms having a `t-

omponent' from a �-minimal lass. Further, the `u-omponent' of a

new term is always suh that [u℄

n

� [sÆu℄

n

. So (at �rst sight), for eah

t-omponent, there an be an in�nite supply of u-omponents (out of

the newly added terms) as the lass grows. But we annot use a t as

t-omponent if it is already a subterm of the u-omponent (otherwise

it is not an (R1)-type appliation). So a t-omponent annot be reused

with a u-omponent reated using the t-omponent in question, thus

lasses of `�-degree' 1 an be extended only with �nitely many new

terms. Then we extend lasses of `�-degree' 2, and so on. Clearly, this

way eah lass an be extended only with �nitely many new terms,

ompleting the proof of Lemma 5.

Remark 8. If � = ;, that is, we want to deide whether a formula ' is

valid, then all the �

0

-lasses are singletons by de�nition. Therefore, all

appliations of rule (�) are of type (R3), that is, we an always hoose

N

;;'

to be 0.

3.5. Main results

Given a set � of formulas and a formula ', take the in�nite sequenes

T

n

and �

n

(n < !) de�ned above, and let

T =

[

n<!

T

n

and � =

[

n<!

�

n

:

It is easy to see that � is an equivalene relation on T . We all a pair

(�; ') (where ' is s � t) a YES-instane i� �s �

�

t holds.

Theorem 9. Let � be a set of formulas and ' a formula. Then the

following are equivalent:

(1) � ` '

(2) � j= '

(3) (�; ') is a YES-instane.

Theorem 10. The �nite entailment problem is deidable and has the

�nite model property.

Corollary 11. The validity problem is deidable. In partiular,

j= s � t i� s and t are the same.
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Proof. If s and t are the same then j= s � t follows by Claim 3 and

Lemma 2. Conversely, if j= s � t then, by Theorem 9, (;; s � t) is a

YES-instane. By Remark 8, the deision algorithm stops in step 0,

meaning that s and t are the same.

Proof of Theorem 9. (1) ) (2): It is Lemma 2.

(2) ) (3): Suppose that (�; ') is not a YES-instane. Then we will

give a model M suh that all formulas in � are true in M, but ' is

not.

To this end, we denote the �-lass of a term s by [s℄. We de�ne a

relation � on �-lasses by taking, for all s; t 2 T ,

[s℄ � [t℄ i� 9n < !: ([s℄

n

�

n

[t℄

n

)

(f. the proof of Lemma 5 for notation). By Claim 7, we have that

� is antisymmetri and so it is partial order. (11)

We will also use the following property of �:

Claim 12. For all terms s; t 2 T , if [s℄ � [t℄ and sÆt 2 T , then sÆt � t.

Proof. If [t℄ = [s℄ but s Æ t 6� t then, by rule (�), s Æ s = s belongs to

[s Æ t℄, so s Æ t � t, a ontradition.

So suppose that [s℄ � [t℄, s 6� t and s Æ t 6� t. Then, by Claim 6, s is

a subterm of some t

0

2 [t℄. So, by rule (�), s Æ t

0

= t

0

belongs to [s Æ t℄,

a ontradition again.

Now we de�ne a (non-empty) set U , a (irreexive) binary relation

<

�

on U , and a labelling funtion ` : U ! f[t℄ j t 2 Tg[f;g as follows:

(i) For eah lass C, put a fresh x

C

into U , and de�ne `(x

C

) = C.

(ii) Then, for every suh x

C

and every s Æ t 2 C suh that s; t 2 C do

not hold:

� if s 2 C, but t =2 C, then put a new point y into U , and de�ne

`(y) = [t℄ and y <

�

x

C

;

� if t 2 C, but s =2 C, then put a new point y into U , and de�ne

`(y) = [s℄ and y <

�

x

C

;

� if s; t =2 C (by Claim 12, s 6� t follows), then put three new

points y

1

; y

2

; y into U , and de�ne `(y

1

) = [s℄, `(y

2

) = [t℄,

`(y) = ; (we all suh points dummy), and y

1

<

�

x

C

, y

2

<

�

x

C

, y <

�

y

1

, y <

�

y

2

.
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(iii) Then ontinue `unfolding the terms' in the labels of the newly

reated points like in (ii). Then again, and so on.

Now let � be the reexive and transitive losure of <

�

. Sine eah

dummy point an be � than itself only, it is straightforward to see

that, for all x; y 2 U suh that `(x) 6= ;, `(y) 6= ;,

if x � y then `(x) � `(y): (12)

Now it follows from (11) that � is antisymmetri, so it is a partial order

on U . Moreover,

if x � y and x 6= y then `(x) 6= `(y). (13)

Now, for eah propositional variable p, we let

I(p) = fx 2 U j p 2 `(x)g:

Then I(p) is a �-antihain: take x; y 2 I(p) with x � y. Then p 2

`(x)\`(y), so `(x) = `(y). Now x = y follows by (13). SoM = hU;�; Ii

is a model.

Claim 13. For every t 2 T , jtj = fx 2 U j t 2 `(x)g:

Proof. It is by indution on the struture of term t. If t is a propositional

variable then the laim follows by the de�nition of I.

Suppose that the laim is true for terms s and t suh that s Æ t 2 T .

Suppose �rst that x 2 js Æ tj. There are four ases:

1 : x 2 jsj, x 2 jtj. By IH, s; t 2 `(x), so [t℄ � [s℄. By Claim 12, we

have s Æ t 2 `(x).

2: x 2 jsj, x =2 jtj. Then there is a y 2 U suh that y � x, y 6= x and

y 2 jtj. By IH, s 2 `(x) and t 2 `(y). So by (12), we have [t℄ � [s℄.

Again by Claim 12, we have s Æ t 2 `(x).

3: x 2 jtj, x =2 jsj. This is similar to Case 2.

4: x =2 jsj, x =2 jtj. Then there are y; y

1

; y

2

2 U , all di�erent from

eah other and from x suh that y � y

1

, y � y

2

, y

1

� x, y

2

� x,

y

1

2 jsj, y

2

2 jtj. By the de�nition of U and �, this implies that

y <

�

y

1

, y <

�

y

2

, `(y) = ;, and there are z 2 U and u

1

Æ u

2

2 T

suh that y

1

<

�

z, y

2

<

�

z, z � x, u

1

2 `(y

1

), u

2

2 `(y

2

),

u

1

Æu

2

2 `(z). Sine z is a �-upper bound for y

1

and y

2

, x 2 js Æ tj

implies that x � z, and so x = z, from whih x 6= y

1

and x 6= y

2

follow. By IH, we have s 2 `(y

1

) and t 2 `(y

2

). By (13), we have

`(x) 6= `(y

1

) and `(x) 6= `(y

2

). So, by rule (�), s Æ u

2

2 `(x), and

we also have s Æ u

2

6= s and s Æ u

2

6= u

2

. Then, again by rule (�),

we obtain that s Æ t = s Æ t belongs to `(x).
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Conversely, suppose s Æ t 2 `(x). By the de�nition of U and �, x is

a �-upper bound of some y

1

; y

2

suh that y

1

and y

2

have a ommon

�-lower bound, and s 2 `(y

1

), t 2 `(y

2

). By IH, y

1

2 jsj and y

2

2 jtj,

so x is a ommon �-upper bound as needed. Let z � x be suh that

z 2 js Æ tj. By the diretion already proven, s Æ t 2 `(z) follows. So

`(x) = `(z). Then we have x = z by (13). This ompletes the proof of

Claim 13.

Now it follows from Claims 13, 3(iii) and Lemma 2 that all formulas

in � are true in M, but ' is not true in M.

(3) ) (1): We show by indution on n that, for all terms s; t, if

�s �

n

�

t then � ` s � t. First, let n = 0 and suppose �s �

0

�

t. Then either

�s =

�

t and then � ` s � t by Claim 3(iii) and rule (3), or (s � t) 2 �

or (t � s) 2 � and then � ` s � t by rule (2).

Now suppose �s �

n+1

�

t. If �s �

n

�

t then we have � ` s � t by IH.

Otherwise, there are s

0

; t

0

; u 2 T

n

suh that s

0

�

n

t

0

,

�

t = t

0

Æ u and

�s = s

0

Æ u. By IH, we have � ` s

0

� t

0

. So, by rules (4), (3) and

Claim 3(iii) we obtain � ` s

0

Æ u � t

0

Æ u, that is, � ` �s �

�

t. Now

� ` s � t follows again by Claim 3(iii). 2

Proof of Theorem 10. By Lemma 5 and Theorem 9, the proedure de-

sribed in subsetion 3.4 is a deision proedure for the �nite entailment

problem.

As onerns the �nite model property, we laim that if � is �nite

then the model M = hU;�; Ii de�ned in the proof of the `(2) ) (3)'

part of Theorem 9 is �nite. Indeed, by de�nition, every point in U has

�nitely many <

�

-predeessors, so the �niteness of U follows from (11),

(12) and (13). 2

Note that in an implementation of the deision algorithm we may

stop in a step n muh smaller than N

�;s�t

, in ase we detet that �s and

�

t have beome �

n

-equivalent.

4. Conlusion

4.1. What about ompositionality?

Under the view proposed in this paper, linguisti and semanti om-

pleteness/inompleteness need not be diretly related. This seemingly

ontradits one of the most important methodologial priniples of

modern semantis, namely, the ompositionality priniple, whih

emphasises the parallelism of semanti and linguisti struture:
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`The meaning of a omplex expression is a funtion of its struture

and the meanings of its onstituents.'

In fat, in some of its formulations, e.g., Montague's ((Montague, 1974)),

this priniple requires a total parallelism between syntati and se-

manti types; more preisely, it posits a homomorphism between the

semanti (funtion appliation based) algebra and the syntati (on-

stitueny based) algebra. So the question naturally arises whether we

are willing to rejet the ompositionality priniple itself.

To the ontrary, we are onvined that ompositionality does not

impose anything on us with respet to `ompleteness.' In our view, the

priniple of ompositionality is indeed of utmost importane for natural

language semantis in that it arves out that aspet of natural language

use that an and is to be dealt with suessfully by semantis at all.

Compositionality means that the only phenomena that legitimately an

be termed semanti must exhibit a systemati orrespondene between

form and meaning. That is why, for example, the eventual motivated-

ness of more or less idiomati expressions (e.g., of mouse 'omputer

pointing devie'), although disernible to the speakers to some extent,

falls outside the sope of ompositionality, hene, of semantis in gen-

eral. Compositionality (fortunately) ontains no stipulation to the e�et

that all aspets of linguisti form must be explained by a parallelism

with meaning (e.g., one ould hardly laim that stems with similar

phonologial shapes are also semantially similar), therefore it allows

linguisti `ompleteness' to be a phenomenon independent of or only

loosely related to meaning. (As a matter of ourse, the onverse is

also true: ompositionality also does not stipulate that all aspets of

meanings must be reeted by linguisti form.)

On the other hand, we think ompositionality should be strength-

ened from another point of view. The priniple says nothing on what

a `funtion' an be. In general, there is nothing a `funtion' annot

do; therefore, under the traditional, weak de�nition of ompositional-

ity one would expet very unusual ways of ombining meanings. For

example, a funtion that ombines two prediates and yields as a value

the one that has greater ardinality than the other would be a perfetly

ompositional way of ombination; or, in priniple, a ombination fun-

tion would be allowed to behave in a wildly non-uniform manner, in

the sense of performing totally di�erent operations depending on the

meanings of its operands. (Similar arguments were made by (Zadrozny,

1994; K�alm�an, 1996).) Obviously, what one would expet from a om-

positional ombination funtion is that it should be uniform in the

above sense, and that it should preserve the meanings that it ombines

(i.e., it must not be destrutive). These two requirements together
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suggest an essentially additive operation, in very muh the same

vein as in traditional linguistis sine the Antiquity, whih thought of

ombining meanings as `adding them together'. (Note that others, suh

as (Vermeulen and Visser, 1996; Visser, 2003) have also proposed se-

manti formalisms that, although with di�erent motivations, share the

feature of additiveness.) Tehnially speaking, an additive ombination

operation means that the value that it yields is

� is riher than either one of its operands in terms of information

ontent;

� ontains only information originating from one of the operands.

This, in turn, presupposes that we are able to ompare arbitrary mean-

ings (both the ones to be ombined and the resulting value) in terms of

information ontent. A suÆient (and under ertain reasonable assump-

tions, neessary) ondition for this to be feasible is that semantis must

be type free, just like the semantis we have proposed in the present

paper.

4.2. Open issues

In this paper we have been onerned with the basi ingredients of

natural language semantis, without touhing upon notorious problems

suh as adjetival modi�ation, modalities and intensionality, proposi-

tional attitudes, quanti�ation, information struture, and so on. Some

of these problems obviously require the enrihment of the apparatus

desribed above, but we believe that the problems of suh enrihments

an and should be separated from the essentials disussed here.

For example, on the one hand it would be easy to onstrut a �rst-

order (or even higher-order) language the atomi formulas of whih are

exatly the formulas of our suggested language. But this would amount

to begging the question whether a type free approah to natural lan-

guage semantis an be pursued in general. On the other hand, natural

languages are able to express propositions involving olletions and

seond-order prediates (e.g., quanti�ation). Clearly, suh meanings

annot be treated with a mahinery that annot express arithmeti.

But it is arguable whether arithmeti is indeed part of natural lan-

guage semantis. In a subsequent paper we are planning to omplement

our framework with a quanti�ational omponent whih an treat at

least ertain restrited types of quanti�ation. We also intend to in-

vestigate the possibilities of extending the stane that we have taken

above to some other features, suh as modalities and various notions of

inompatibility among phenomena (whih an lead to di�erent kinds

of negation).
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