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Abstract

The finitely axiomatisable and decidable modal logic Diff of ‘elsewhere’ (or ‘differ-
ence operator’) is known to be quite similar to S5. Their validity problems have
the same coNP complexity, and their Kripke frames have similar structures: equiva-
lence relations for S5, and ‘almost’ equivalence relations, with the possibility of some
irreflexive points, for Diff . However, their behaviour may differ dramatically as com-
ponents of two-dimensional logics. Here we consider the decision problems of modal
product logics of the form L×Diff . We present some cases where the transition from
L× S5 to L×Diff not only increases the complexity of the validity problem, but in
fact introduces undecidability, sometimes even non-recursive enumerability.

Keywords: difference operator, products of modal logics, decision problems

1 Introduction

Von Wright’s ‘logic of elsewhere’ [24] is the set Diff of propositional modal
formulas that are valid in all difference frames, that is to say, relational struc-
tures F = (W,R) where for all u, v ∈ W , uRv iff u 6= v. Segerberg [20] gives
a complete axiomatisation of Diff : He shows that Diff is the smallest set of
modal formulas (having 2 and 3 as modal operators) that is closed under the
rules of Substitution, Modus Ponens and Necessitation ϕ/2ϕ, and contains all
propositional tautologies and the formulas

2(p→ q)→ (2p→ 2q)
p→ 23p

33p→ (p ∨3p)
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So an arbitrary Kripke frame for Diff may contain both reflexive and irreflexive
points, but it is always symmetric and pseudo-transitive:

∀x, y, z
(
R(x, y) ∧R(y, z)→ (x = z ∨R(x, z))

)
. (1)

Note that it is not hard to see [3] that

every rooted frame for Diff is a p-morphic image of a difference frame. (2)

One can express the universal modality and the ‘precisely one’ modality with
the help of a difference diamond:

∀ψ = ψ ∧ ¬3¬ψ, 3=1ψ = (ψ ∨3ψ) ∧ ¬3(ψ ∧3ψ).

Then, for any model M over some difference frame (W,R), and any x ∈W ,

M, x |= ∀ψ iff M, y |= ψ, for all y ∈W,

M, x |= 3=1ψ iff |{y ∈W : M, y |= ψ}| = 1.

In this paper we take the first steps in investigating decision problems of
two-dimensional product logics with Diff . We find them intriguing because of
the following reason. It is known that in general the existence of a polynomial
reduction of a logic L1 to a logic L2 does not imply that L1×L is polynomially
reducible to L2 × L (see e.g. [5, Remark 6.19]). However, in cases when there
exist so called ‘model level’ reductions between L1 and L2, such reductions
may be ‘lifted’ to the products (see Sections 2.8, 6.3 and 6.5 in [5]). Both Diff
and the well-known modal logic S5 of equivalence relations not only share the
same coNP-complete validity problems [3,13], but in fact their frames closely
resemble one another. So one might have hoped for such a ‘liftable’ reduction.
However, here we present some cases where the transition from L × S5 to
L×Diff not only increases the complexity of the validity problem, but in fact
introduces undecidability, sometimes even non-recursive enumerability.

The product construction as a combination method on modal logics was
introduced in [19,21,6], and has been extensively studied ever since. Modal
products are connected to several other multi-dimensional logical formalisms,
see [5,12] for surveys and references. Here we discuss the following special case
of the general construction: Given a bimodal frame Fh = (Wh, R

1
h, R

2
h) and

a unimodal frame Fv = (Wv, Rv), their product is defined to be the 3-modal
frame

Fh × Fv = (Wh ×Wv, R̄
1
h, R̄

2
h, R̄v),

where Wh×Wv is the Cartesian product of Wh and Wv and, for all x, x′ ∈Wh,
y, y′ ∈Wv, i = 1, 2,

(x, y)R̄i
h(x′, y′) iff xRi

hx
′ and y = y′,

(x, y)R̄v(x′, y′) iff yRvy
′ and x = x′.

Frames of this form will be called product frames throughout. Now let Lh

be a Kripke complete bimodal logic in the language with boxes 21
h, 22

h and
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diamonds 31
h, 32

h. Let Lv be a Kripke complete unimodal logic in the language
with box 2v and diamond 3v. Their product Lh × Lv is then the set of all
3-modal formulas, in the language having 21

h, 22
h, 2v and 31

h, 32
h, 3v, that

are valid in all product frames Fh × Fv, where Fh is a frame for Lh, and Fv is
a frame for Lv. (Here we assume that 2i

h and 3i
h are interpreted by R̄i

h, while
2v and 3v are interpreted by R̄v.) It is easy to see that in fact it is enough to
consider rooted frames for both component logics [5, Prop.3.7]:

Lh × Lv = {ϕ : ϕ is valid in every Fh × Fv, (3)
where Fh is a rooted frame for Lh,
and Fv is a rooted frame for Lv.}

Our notation and terminology is mostly standard. However, we assume that
the reader is familiar with basic notions of propositional multi-modal logic and
its possible world (or relational) semantics, and we use these without explicit
references. For concepts and statements not defined or proved here, consult,
for example, [1,2].

2 Results

In this section we illustrate that the transition from L×S5 to L×Diff might
introduce undecidability, and, in some cases, even non-recursively enumerabil-
ity.

Our first example of such an L is the logic Ku, the bimodal logic of all Kripke
frames of the form F = (W,R,W ×W ), that is, the first relation is arbitrary,
and the second is the universal relation on W . By a standard unravelling
argument, it can be shown that an arbitrary rooted frame for Ku is always
a p-morphic image of some frame (W,R,W ×W ), where (W,R) is a disjoint
union of irreflexive, intransitive trees. As the product construction on frames
commutes with taking p-morphic images [5, Prop.3.10], by (2) and (3) we
obtain that

Ku ×Diff is determined by product frames Fh × Fv, where
Fh = (Wh, Rh,Wh ×Wh) is such that (Wh, Rh) is a disjoint union of
irreflexive, intransitive trees, and Fv = (Wv, Rv) is a difference frame. (4)

The validity problem of Ku is EXPTIME-complete [23,10]. The following the-
orem is in contrast with the decidability of Ku×S5 (see [25] and [5, Thm.6.58]):

Theorem 2.1 Ku ×Diff is undecidable.

Proof. We reduce the undecidable non-halting problem for two-counter Minsky
machines [15] to the Ku ×Diff -satisfiability problem.

A two-counter Minsky machine is a finite sequence of instructions M =
(I0, . . . , IT ), where each It, for t < T , is from the set

{zeroi, inci, deci(j) : i = 0, 1, j ≤ T},
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and IT = halt. A configuration of M is a triple (k, `,m) of natural numbers,
with k being the index of the current instruction, and `, m the current contents
of the two registers. The (unique) computation of M is the function fM : ω →
(ω × ω × ω) defined by taking fM (0) = (0, 0, 0), and if fM (n) = (k, `,m) then
k ≤ T and

fM (n+ 1) =



(k + 1, 0,m), if Ik = zero0,
(k + 1, `, 0), if Ik = zero1,
(k + 1, `+ 1,m), if Ik = inc0,
(k + 1, `,m+ 1), if Ik = inc1,
(k + 1, `− 1,m), if Ik = dec0(j) and ` > 0,
(k + 1, `,m− 1), if Ik = dec1(j) and m > 0,
(j, 0,m), if Ik = dec0(j) and ` = 0,
(j, `, 0), if Ik = dec1(j) and m = 0,
(k, `,m) if Ik = halt.

We write fM (n) = (iM (n), cM
0 (n), cM

1 (n)
)

to indicate the role of the numbers
in the configurations. We define the halting number HM of M as

HM =
{
n+ 1, if n is the smallest number with IiM (n) = halt,
ω, if there is no n < ω with IiM (n) = halt.

We say that M halts if and only if HM < ω.
Now, given a Minsky machine M as above, we will define a 3-modal formula

ϕM , whose length is recursive (in fact, linear) in T . We will use the language
having 3h,2h for the ‘horizontal’ K-modalities, ∀h for the ‘horizontal’ universal
modality, and 3v for the ‘vertical’ difference operator. We will also use the
following ‘vertical’ abbreviations:

∃vψ = ψ ∨3vψ,

∀vψ = ¬∃v¬ψ,
3=1

v ψ = (ψ ∨3vψ) ∧ ¬3v(ψ ∧3vψ).

The idea is to encode the configuration of M as M evolves over time; with each
K-succession representing one time-step in the computation of M . We take
two propositional variables c0 and c1 that will emulate the counters in each
of the two registers of M : the number of points in each vertical Diff -cluster
satisfying ci will represent the contents of the ith register.

We introduce the following abbreviations, for i = 0, 1, that will dictate how
the counters in each register are manipulated:

ψinc(i) = 3=1
v (¬ci ∧3hci) ∧ ∀v(ci → 2hci)

ψdec(i) = 3=1
v (ci ∧3h¬ci) ∧ ∀v(¬ci → 2h¬ci)

ψfix(i) = ∀v(ci ↔ 3hci)

ψzero(i) = ∀v2h¬ci
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For example, ψinc(i) stipulates that there is exactly one vertically accessible
point that evolves from satisfying ¬ci to satisfying ci, while every vertically
accessible point that satisfies ci remains satisfying ci in its K-successors; hence
the number of points satisfying ci is incremented by exactly one from one
vertical Diff -cluster to the next.

We take a propositional variable st, for each t ≤ T , to encode the internal
state of M as M evolves over time, and define ϕM to be the conjunction of the
following formulas:

s0 ∧ ∀v¬c0 ∧ ∀v¬c1 (5)

∀h
∨
t≤T

st ∧
∧

t 6=t′≤T

∀h¬(st ∧ st′) (6)∧
t≤T

∀h(3hst → 2hst) (7)∧
i=0,1

∀h∀v(3hci → 2hci) (8)∧
t<T, i=0,1
It=zeroi

∀h
(
st → 3hst+1 ∧ ψzero(i) ∧ ψfix(1− i)

)
(9)

∧
t<T, i=0,1

It=inci

∀h
(
st → 3hst+1 ∧ ψinc(i) ∧ ψfix(1− i)

)
(10)

∧
t<T, i=0,1
It=deci(j)

∀h
(
(st ∧ ∃vci)→ 3hst+1 ∧ ψdec(i) ∧ ψfix(1− i)

)
(11)

∧
t<T, i=0,1
It=deci(j)

∀h
(
(st ∧ ∀v¬ci)→ 3hsj ∧ ψfix(0) ∧ ψfix(1)

)
(12)

The first formula (5) encodes the initial configuration of M , while (6) stipu-
lates that every point horizontally accessible from the root must always satisfy
exactly one state variable st, for t ≤ T . Formulas (7) and (8) ensure that
any two distinct K-chains encode the same sequence of configurations. The
remaining formulas (9)–(12) specify the behaviour of the machine, depending
on the sequence of instructions set down by M .

Now suppose that ϕM is Ku × Diff -satisfiable. By (4), we may assume
that M, (x0, y0) |= ϕM for some model M based on a product frame Fh × Fv,
where Fh = (Wh, Rh,Wh ×Wh) is such that (Wh, Rh) is a disjoint union of
irreflexive, intransitive trees, and Fv = (Wv, Rv) is a difference frame. The
following notion is then well-defined, for every x ∈Wh:

d(x0, x) =

 0, if x = x0,
n, if there exist w0, . . . , wn with x0 = w0Rh . . . Rhwn = x,
ω, otherwise.

Now we have the following claim (where we use (x, y) |= ψ as a shorthand
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for M, (x, y) |= ψ):

Claim 2.1.1 If (x0, y0) |= ϕM , then for all n < HM , for all x ∈ Wh with
d(x0, x) = n, and for all t ≤ T , the following hold:

(i) (x, y0) |= st if and only if t = iM (n),
(ii) |{y ∈Wv : (x, y) |= c0}| = cM

0 (n),
(iii) |{y ∈Wv : (x, y) |= c1}| = cM

1 (n).
(Here |U | denotes the cardinality of set U .)

Proof. We prove this by induction on n. If n = 0, then the statements hold
by (5) and (6). Now suppose for induction that the statements (i), (ii) and
(iii) hold for all x′ ∈ Wh with d(x0, x

′) = n, and let x ∈ Wh be such that
d(x0, x) = n + 1. Then there is a unique x′ ∈ Wh such that d(x0, x

′) = n and
x′Rhx. Let t = iM (n). Then, by the IH, (x′, y0) |= st. There are six cases,
depending on the form of It. Let us consider two examples:
• It = zero0:

Then iM (n+ 1) = iM (n) + 1 = t+ 1, cM
0 (n+ 1) = 0, and cM

1 (n+ 1) = cM
1 (n).

By (9), we have (x′, y0) |= 3hst+1, and so by (6) and (7), (i) holds. Also
by (9), we have (x′, y0) |= ψzero(0), and so (x, y) |= ¬c0, for all y ∈ Wv, as
required in (ii). Further, by (9), we have (x′, y0) |= ψfix(1), and so by (8), for
all y ∈Wv, (x′, y) |= c1 if and only if (x, y) |= c1, as required in (iii).

• It = dec1(j):
Suppose first that cM

1 (n) > 0. Then (x′, y0) |= ∃vc1, by the IH, and we
have iM (n + 1) = iM (n) + 1 = t + 1, cM

0 (n + 1) = cM
0 (n), and cM

1 (n + 1) =
cM
1 (n) − 1. By (11), we have (x′, y0) |= 3hst+1, and so by (6) and (7), (i)

holds. Also by (11), we have (x′, y0) |= ψdec(1). Therefore, there is y∗ ∈ Wv

with (x′, y∗) |= c1 ∧ 3h¬c1, and for all y ∈ Wv, y 6= y∗, (x′, y) |= c1 if and
only if (x, y) |= c1. By (8), we also have (x, y∗) |= ¬c1, as required in (iii).
Further, by (11), we have (x′, y0) |= ψfix(0), and so by (8), for all y ∈ Wv,
(x′, y) |= c0 if and only if (x, y) |= c0, as required in (ii).
Now suppose that cM

1 (n) = 0. Then (x′, y0) |= ∀v¬c1, by the IH, and we have
iM (n + 1) = j, cM

0 (n + 1) = cM
0 (n), and cM

1 (n + 1) = cM
1 (n) = 0. By (12),

we have (x′, y0) |= 3hsj , and so by (6) and (7), (i) holds. Also by (12), we
have (x′, y0) |= ψfix(i), for i = 0, 1, and so by (8), for all y ∈Wv, (x′, y) |= ci
if and only if (x, y) |= ci, as required in (ii) and (iii).

The other cases are similar and are left to the reader. 2

As a consequence of Claim 2.1.1, we obtain the following:

if ϕM ∧ ∀h¬sT is Ku ×Diff -satisfiable, then M does not halt. (13)

On the other hand, we also have that

if M does not halt, then ϕM ∧ ∀h¬sT is Ku ×Diff -satisfiable. (14)

Indeed, suppose that M does not halt. Let Fh = (ω,+1, ω × ω), and let Fv be
the difference frame on ω. We define a model M on Fh × Fv by taking, for all
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n,m < ω, t ≤ T , and i = 0, 1,

M, (n,m) |= st iff iM (n) = t and m = 0,
M, (n,m) |= ci iff m < cM

i (n).

It is then straightforward to check that M, (0, 0) |= ϕM ∧ ∀h¬sT . The theorem
now follows from (13) and (14). 2

Note that the class of all frames, for each of Ku and Diff , can be defined by
a recursive set of first-order sentences in the frame-correspondence language.
Therefore, the product logic Ku ×Diff is recursively enumerable [6]. So The-
orem 2.1 implies that Ku ×Diff lacks the effective (or bounded) finite model
property: The size of a frame necessary to falsify any given formula ϕ that does
not belong to Ku×Diff cannot be bound by a function recursive in the length
of ϕ. However, as Ku × Diff is not finitely axiomatisable [9], in principle it
can happen that we cannot enumerate the finite frames for Ku × Diff , and
so Ku × Diff might have the (abstract) finite model property. It is easy to
see that it does not have the finite model property w.r.t. product frames: For
example, take the formula ϕM defined in the proof above for the two-counter
Minsky machine M = (inc0, dec1(0), halt).

Next, instead of frames with a universal modality as first components, we
consider frames of the form (W,R,R∗), where (W,R) is an irreflexive, intran-
sitive tree, and R∗ is the reflexive and transitive closure of R. The modal
operator corresponding to R∗ is sometimes called master modality, or com-
mon knowledge operator in epistemic logics. Examples of logics determined by
frames of this kind are
• KC , the bimodal logic of all frames of the form (W,R,R∗),
• PTLX2, the ‘next-time, future’ fragment of Propositional Temporal Logic

over (ω,+1,≤) as time-line, and
• PDL−1 , test-free Propositional Dynamic Logic with just one atomic program

and its Kleene star closure.

Both KC and PDL−1 have the same EXPTIME-completeness as Ku [8,4,16],
while PTLX2 is PSPACE-complete [22]. Furthermore, each of these logics
(and, indeed, Ku) are polynomially reducible to full PDL using ‘model level’
reductions that can be ‘lifted’ to products, see [5, Sections 6.3,6.5]. As is
shown in [5, Thm.6.49], the validity problem of PDL × S5 is decidable in
coN2EXPTIME, and so KC × S5, PTLX2 × S5, and PDL−1 × S5 are also
decidable. (Note that all these logics are EXPSPACE-hard, and PTLX2×S5
is in fact EXPSPACE-complete, see [5, Thms.6.65,6.66].)

Theorem 2.2 Let C be any class of frames such that
• every frame in C is of the form Fh × Fv, where Fh = (W,R,R∗) with (W,R)

being an irreflexive, intransitive tree, and Fv is a difference frame;
• (ω,+1,≤) ∈ C.

Let L be the set of all 3-modal formulas that are valid in all frames in C. Then
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L is not recursively enumerable.

Proof. We reduce the undecidable but recursively enumerable halting problem
for two-counter Minsky machines to the L-satisfiability problem.

Let M be a Minsky machine, and let ϕM be the formula defined in the proof
of Theorem 2.1. It is straightforward to see that ϕM ∧¬∀h¬sT is satisfiable in
a frame in C if and only if M halts. (Here the notation ∀h is a bit misleading,
as the corresponding relation is not ‘horizontally’ universal any more, but the
reflexive and transitive closure of the relation corresponding to 2h.) 2

Corollary 2.3 The logics KC ×Diff , PTLX2×Diff , and PDL−1 ×Diff are
not recursively enumerable.

3 Discussion

We conclude the paper with a few remarks on related formalisms and further
research.
• As Diff can be regarded as a fragment of hybrid logic, our Theorems 2.1 and

2.2 imply the undecidability of some hybrid product logics (see [18]).
• We gave examples of bimodal logics L where L×Diff is undecidable. Prod-

ucts of standard decidable unimodal logics and Diff have not been investi-
gated. Is there an example for undecidability among them? In particular,
is any of K×Diff , K4×Diff , S5×Diff , or Diff ×Diff decidable? Each
of these products with S5 in place of Diff is known to be decidable, logics
like K× S5 and S5× S5 are even coNEXPTIME-complete. Even if these
kinds of products with Diff turn out to be decidable, we cannot always hope
for proofs that are completely analogous to the S5-cases: in contrast to the
product finite model property of, say, K× S5 or S5× S5, it turns out that
Diff×Diff has no (abstract) finite model property [9]. Concerning attempts
at filtration arguments, note that no logic of the form L × Diff is finitely
axiomatisable, whenever L is between K and S5 [9].

• We proved Theorems 2.1 and 2.2 using reductions of the halting problem
for two-counter Minsky machines. It appears that this technique is slightly
different to other proofs of undecidability results about product logics, which
use reductions of the halting problem for Turing machines or ω × ω-tilings.
One might think that these latter undecidable problems are tailor-made for
product logics: product frames are by definition grid-like, so it should not
be hard to encode these ‘grid-based’ problems into them. Indeed, if we have
both next-time and universal or master modalities in both dimensions, then
this is rather straightforward (see, for example, the case of Ku × Ku in
[5, Thm.5.37]). However, if some of this machinery is missing, then often
the grid needs to be encoded by ‘diagonal’ points, and some other tricks
may be needed [7,14,17,11]. We failed to apply these kinds of tricks in the
undecidability proofs given here. In order to understand the boundaries of
each technique, it would be interesting to know whether there is a natural
way to fully encode the ω × ω-grid in frames for L×Diff -logics.
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