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CONNECTIONS BETWEEN AXIOMS OF SET THEORY
AND BASIC THEOREMS OF UNIVERSAL ALGEBRA

H. ANDREKA. A. KURUCZ. AND I. NEMETI

Abstract. One of the basic theorems in universal algebra is Birkhoff’s variety theorem: the smallest
equationally axiomatizable class containing a class K of algebras coincides with the class obtained by
taking homomorphic images of subalgebras of direct products of elements of K. G. Gritzer asked whether
the variety theorem is equivalent to the Axiom of Choice. In 1980. two of the present authors proved
that Birkhoff’s theorem can already be derived in ZF. Surprisingly. the Axiom of Foundation plays a
crucial role here: we show that Birkhoff’s theorem cannot be derived in ZF + 4C\{Foundation}. even
if we add Foundation for Finite Sets. We also prove that the variety theorem is equivalent to a purely set-
theoretical statement. the Collection Principle. This principle is independent of ZF\ {Foundation}. The
second part of the paper deals with further connections between axioms of Z F-set theory and theorems
of universal algebra.

§1. Introduction. The problems investigated here fit into the field which is called
after S. G. Simpson “reverse mathematics”. In this field (also called “inverse set
theory”) one tries to determine what is the exact fragment of set theory truly needed
to establish the core theorems of certain mathematical disciplines. In universal
algebra the first reverse questions were formulated by G. Grétzer. Problem 31
in [7] asks whether Birkhoff’s variety theorem (see below for an exact formula-
tion) is equivalent to the Axiom of Choice. As shown in [3], the answer is no:
Birkhoff’s theorem can be derived already in ZF. In §2 we show (Theorem 1)
that the Axiom of Foundation (Regularity) is necessary in that derivation. Even
the extension of ZF\ {Foundation} with Foundation for Finite Sets is not enough
to derive Birkhoff’s theorem. Moreover, we prove (Theorem 2) that on the basis
of ZF\{Foundation}, Birkhoff’s theorem is equivalent to a purely set-theoretical
statement, the Collection Principle. This principle is implied by (but not equivalent
to) the Axiom of Foundation. The main technical means in proving the results
above are Theorems 3 and 4 below.

In §3 we discuss similar questions, namely, connections between properties of
operators on classes of algebras and axioms of ZF -set theory. Theorem 5-7 also
contain partial answers to Problem 28 in [7]: what the semigroup generated by
the operators (on classes of algebras) I, H, S, P (see below), etc., is like without
AC.

Notation. Our set-theoretical usage follows [10]. In particular, ZF denotes
Zermelo-Fraenkel Set Theory (which includes AF, the Axiom of Foundation),
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SET THEORY AND UNIVERSAL ALGEBRA 913

ZF~ is ZF without AF. and AC denotes the Axiom of Choice. The Axiom of
Foundation for Finite Sets (AF,,) is the following statement

(AF,) Vx(0 < |x|<w—3dyex(ynx =0)).

where |x| < w abbreviates the formula (3 function ) (Dom f € w ARng f = x).
For universal algebraic notions we generally follow [9]. If K is a class of algebras.

we let
K% {2: A is isomorphic to some B € K},

HK & {2: A is a homomorphic image of some B € K},

SK & {: 2 is a subalgebra of some B € K},

P'K def {A: A = PicsA;, (A;: i €1) is a system of members of K for some set

I, the universe 4 of 2 is nonempty},

PK & 1PK,

PKE {2A: 2 is isomorphic to a reduced product of members of K}.

A similarity type is a function ¢t mapping some set into w; we take as understood
when an algebra is of type ¢. Two algebras are called similar if they are of the
same type. If Q and Q' are operators on classes of algebras, then Q < Q’ denotes
the schema

V class K of similar algebras (QK C Q'K).

An operator Q on classes of algebras is a closure operator iff QQ = Q.
Equations of type ¢ are formulated in a first-order language of type ¢ having a
countable sequence v, vi, ... of variables. EqK is the set of all equations holding
in every member of K. For any set I' of formulas of our language, Mod I is the
class of all models of T".
Birkhoff’s variety theorem is the schema

V class K of similar algebras (Mod EqK = HSP K).

§2. A set theoretical equivalent to Birkhoff’s variety theorem.

THEOREM 1. ZF~ + AC + AF,, ¥ Mod EqK = HSP K.

REMARK. Recall that in ZF -set theory, a class is just an informal version of a
formula. Thus, the formal counterpart of Theorem 1 is as follows:

There is a formula ¢(vy) of the language of set theory such that

ZF~ 4+ AC + AF,, ¥ Yvo(p(vg) — “vg is an algebra”)
— Vo (P (vg) « (V equation e)[VA(p(A) — “WE e”) — “uy E €”]).
where "SP (vg) expresses vg € HSP{v;: ¢ (v;)}.
PROOF OF THEOREM 1.

LemMa (Fraenkel-Mostowski). Let U = (V. €) be a class model of ZF ~ + AC.
Let F: V — V be a permutation (i.e., bijection) of V definable in G, and let

VxVy(x ef y d@CFF()C) €y).

Then BF < (V. €F) £ ZF~ + AC.
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914 H. ANDREKA. A. KURUCZ. AND 1. NEMETI

The proof of this lemma can be found e.g., in [4, pp. 48-50].

From now on we use the epsilon symbol € to denote the element relation €f
of Y. The usual operation symbols, such as { }, & (power set), etc., also denote
the corresponding operations of U”. We apply the Fraenkel-Mostowski lemma
to the following permutation F. For each countable successor ordinal «, let F

interchange « and {a + 1}, and let F(x) &' X for all other elements of V. Now
there is a set 4 = {a;,: i.j € w} in V¥ with the following properties:

dig 7& an,, for all <l.]> 7é <nm>l]nm € w;
a;; = {a;;1} foralli.jew.

Since U¥ is a ZF ~-model, we can define the cumulative hierarchy “built on” the
set A in the usual way. Let On be the class of ordinals in 27, and let

Wy 4. Won E2(m),

Wy = |J Wa for f € On.f limit,

a<f

and let

def
W=\ Wa
a€0n

& (W.€). ie. let 20 be the submodel of 0¥ with universe W

We note that the rank function is also definable in 20 as follows. For every x € W

we let
d

rk(x) et min{a € On: x € W, }.

Claim 1. WEZF~ + AC.

Proor ofF CrLamm 1. The claim will be proved in a way parallel to the well-known
consistency proof of the Axiom of Foundation (see, e.g.. [10, pp. 83-85]).

Since A4 is transitive, each W, and W itself are transitive; hence, Extensionality
holds in 20. '

For Pairing: if x € W,. y € Wy for some a < f, then {x.y} € Wy, and it
is the “real” pair of x and y, because “z = {x,y}” is a restricted formula (i.e., a
formula containing restricted quantifiers only) and W is a transitive class.

For Union: if x € W, for some «, then |Jx € Wyy) and “y = [Jx” is a
restricted formula.

For Power set: if x € W, for some «, then #(x) € W,,. However, “y = #(x)”
is not a restricted formula, but we can argue as follows. Let ¢ be the restricted
formula [u € y < (Vz € u)z € x]. Then for every u € W 20 F ¢, since T F ¢ for
all u. .

For Infinity: @ € W, and @ can be defined by a restricted formula.

For Replacement: let f* be a partial function defined by the formula ¢ with

parameter p € W; that is, let f & {{x.y)e W: WE ¢(x,y.p)}. Foran X ¢ W

let Ydéff”X. Then Y is a setand Y C W, hence | J{rk(y): y € Y} is an ordinal,
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SET THEORY AND UNIVERSAL ALGEBRA 915

say f, and Y € Wpy,. Since forevery y € W, [y € ¥ « (Ix € X)p(x.y.p)]is a
restricted formula, we are done.

For the Axiom of Choice: Let ) # R € W, and let f be a choice function on
R; that is, for every ) # X € R f(X) € X. Then one can check that if R € W,
for some «, then f € W,13. Since “f is a choice function on R” is a restricted
formula, the proof is completed. O

Claim 2. 20 F AF,,.

ProoF oF Cram 2. We prove by induction that for every a € On

(#) VX W< |X|<w—(FyeX)ynX =0].

For a = 0 () obviously holds.

Assume that (f) holds for «, and let X C W, be a finite nonempty set. Assume
that X is not well founded. Then there is cycle in X, i.e., there are xp....,x, € X
with xg € --- € x,, € xo. Then xg, . ... X, € Wqy1, thus xq, . ... x, C W,. Namely,

by xo € W,. x, € W,. Hence,by the transitivity of W,, xp,....x, € W,. But
then there is a non-well-founded set {xo,....x,} C W,, which contradicts our
assumption.

Let 8 be a limit ordinal, and assume that for every a < # () holds. Let X C Wy

be a finite nonvoid set. Let y o U{rk(x): x € X}. Then X C W, and since y < S,
(#) holds for X by the induction hypothesis. O

We recall that Wy = A4 = {a,;:i.j € w}. We let 4; & {a,,: j € w} for each
i €w.

Claim 3. Let X € W be a descending chain of singletons; that is, let X &f
{xi1i € o} with x; = {xi1} (i € w). Then there exist n.m € w such that
{xi:i € @\n} C A4,; that is,

[ X\4,,| < w.

Proor orF Cramm 3. We prove by induction on « that the statement holds for
every X C W,.

For X C W} the statement obviously holds.

Assume that the statement holds for every X C W, for some . Let ¥ C W4,
and assume Y = {y;: i € w} with y; = {41} (i € w). Then {y1} = yo € Wy,
hence y, € W,. Then by the transitivity of W,, y; € W, for every i > 0;
that is, Y\{yo} € W,. Then by our assumption there is an m € w such that
[(Y\{po})\4,n| < @. Hence, Y\A4,, is finite too, which was required.

Let § be a limit ordinal. Assume that for every a < f and X C W, the statement
holds. Assume Y = {y;: i € w} with y; = {yi11} (i € ). Then yy € W, for
some « < f and, by the transitivity of W,, Y C W,. Thus, the statement holds
by the induction hypothesis. a

We let TC(X) denote the transitive closure of an X € W. TC(X) exists in every
model satisfying the Union, Infinity, and Replacement axioms; hence, it exists in
our 2J too for all X € W.

Now we will define a new model structure. Let

U (X ew: (3new)vmeo)TCX)N Ay £ 0 —m<n)}.

That is, X € U iff the transitive closure of X intersects only finitely many of the
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916 H. ANDREKA. A. KURUCZ. AND I. NEMETI

sets 4,,. This U is definable in 20. Namely. the following formula defines U (by
Claim 3):

(3 function f)[Dom f € w
A (\V/g € “’TC(x))[(Vn € w)gn = {gn+l} — Rngg ﬁRngf 7& 0]]

Let 4 & (U. €) C 20 be the submodel of 25 with universe U.

Claim 4. l\E ZF~ + AC + AF,,.

ProoF ofF Cram 4. Since U is a transitive class by definition, Extensionality
holds.

Since TC({x.y}) = TC(x) UTC(y), TC(J x) € TC(x) and TC(%(x)) = TC(x)
(and the corresponding formulas are restricted), Pairing, Union, and Power set
hold in 4, respectively.

TC(w) N A = 0, hence @ € U and, since w can be defined by a restricted
formula, thus Infinity holds.

Now consider Replacement. Let f/, be a partial function defined by the formula

¢ with parameter p € U; that is, let f, & {{x.y) € U: b E o(x.y,p)}. For

anX cUlty & fyX. Then Y € W and ¥ C U. We want to prove

that ¥ € U. By the definition of U there is an n € w such that (Vm € w)
(TC(X Up)NA,, # 0 — m < n). We will show that for this »

(+) (Vm € 0)(TC(Y)N A, #0 — m < n).

Let z € X, and assume that there is a k > n with TC(f,(z)) N 4, # 0. Since
fp(z) € U, there is an / > k such that TC(f,(z)) N4; = 0. Let g: U — U be
an automorphism interchanging 4; and 4, and leaving all the other elements of

U fixed. That is, for every j € w let g(a; ;) & ar ;. glak,) def a;;, and for every

udgd A UA glu )i u. Now since z € X, g(z) = z and g(p) = p. Since g is an
isomorphism, g(f,(z)) = f,(,)(g(z)) = f,(g(z)) = f,(z). Therefore.

0 =g"0=g"[TC(f,(2)) N Aj] = TC(f,(2)) N Ay # 0.

that is a contradiction, proving that (+) holds. Hence, Y € U as desired.

For AC: Let R € U, and let f be a choice function on R. Then f C R x |JR;
thus, /' € U. Since “f is a choice function on R” is a restricted formula, 4C
holds in 4.

For AF,: Since U is transitive, the €-least element of a set belonging to U
also belongs to U. |

Claim 5. 4 ¥ Mod EgK = HSP K.

Proor oF CLaM 5. We let

dif{(B f) |B| = n for some n € w;

(vb € B)(b is a descending chain of singletons);
(Vb # ¢ € B)TC(b) N'TC(c) = 0;
there is an enumeration by, ....b,_; of the elements of B
such that (VO < m < n)f(b,,) = b,_1 and f(by) = bo}.
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SET THEORY AND UNIVERSAL ALGEBRA 917

Then K is a class in 4, i.e., one can give a formula y such that B € K iff i = y(B).
Let o be the w-ary formula

\/ v (FH (x) = £7(x)).
new
Then by the definition of K, K F o.

We claim that PK F o. To see this let 2 € /K for some set . Since 2 € U, TC(2A)
intersects only finitely many of the sets 4,,; hence, only finitely many elements of
K can occur in Rng®. Let N € w be the maximum of the cardinalities of the
members of RngA. Thus, P4 F Vx(fV(x) = f¥(x)), which was required.

Since g is preserved under HS, we have HSP K F o.

But {(n.(J): n € o} C IK (where (Jm = m —1if m > 0 and JO = 0).
Therefore, PI K ¥ o. We proved that for our K, or & F PI K Q HSP K, which

proves 4 ¥ Mod EqK = HSP K. ]
Now the proof of Theorem 1 is completed. By Claims 4 and 5, the model {
proves that ZF ~ + AC + AF,, ¥ Mod EqK = HSP K. O

In fact, Theorem 1 is a consequence of the following result. We show that
on the basis of ZF ~, Birkhoff’s theorem is equivalent to a purely set-theoretical
statement. This statement, the so-called Collection Principle, is implied by (but
not equivalent to) the Axiom of Foundation.

The Collection Principle (C P) is the schema

(CP) Vclass R(DomR is aset — Jr C R(r is a set ADomr = Dom R))

(CP can be defined formally as in [10, pp. 72-73]).

THEOREM 2. On the basis of ZF —, “Mod EqK = HSP K" is equivalent to CP.

The two directions of Theorem 2 are proved as Theorem 3 and Corollary 1
below. For a careful formalization of these statements (and the other theorems
below) in the language of ZF -set theory cf. the remarks following Theorem 1 and
Theorem 4.

THEOREM 3. ZF~ + CP - Mod EqK = HSP K.

ProoF. We only prove the nontrivial direction, that is, Mod EqK C HSP K.

Suppose that A € Mod EqK. We show in two steps that 2 € HSP K, and only
the second step involves CP.

Let §, be the word-algebra (absolutely free algebra) generated by the set A4,
and let f: 4 — 2 be the surjective homomorphism induced by the inclusion map
of the generator set 4. Let for all o.7 € F,4

o=1¥ ga = gt for every homomorphism g mapping §4 into some B € K.

Then there is a homomorphism f’ mapping §,/= onto 2 such that f'[¢] = fo
for every o € F,.
Now it remains to prove that §,4/= € SP K. To prove this, let

Idéf{(a,ﬂ: 0.1 € Fy0# 1}

R & {{{g.7),(®B.h)): (0,7) € I,B € K, h is a homomorphism

mapping §,4 into B, and ho # ht}.
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918 H. ANDREKA. A. KURUCZ. AND L. NEMETI

Then Dom R = I and I is a set. By CP there is a subset r of R with Domr = I.

Let € d— (,,,) (B.h) )E/% and let Cl(o.7).(B.h)) &ef ho for each (o, > <%h>> er.
Then ¢ € C. i.e., C is nonempty; thus ¢ € PK Define the functlon

g: Fq/= — C by (glo])((o.0).(B.1)) —hQ

Then one can easily check that g is an injective homomorphism from §./— into
¢, 50 §4/= € SP K as desired. O
The proof of the following theorem originates from J. D. Monk.
THEOREM 4. Let Q be an operator on classes of algebras such that for any class
K of similar algebras the following two properties hold. For every A, % € QK implies
that A € QKg for some subset Ko of K. and K F e implies QK F e for any equation
e. Then
(1) ZF-+PI<QF CP;
(2) ZF-+PS<QF CP.
ReMARK. The formal counterpart of Theorem 4 is as follows. Suppose that
with every formula ¢(vy) of the language of set theory we associate another set-
theoretical formula ¢@(vy) such that the next three conditions hold:

ZF~ EVu(p(vg) — “vg is an algebra”)

— Yuo(Qvy) — “vg is an algebra”);

(a)

ZF~ EYug(p(vg) — “vp is an algebra™) A ()

(b)
— Jui[(Voz € v1)(@(v2) A (vo € v1)2(vo/))];

(c)
ZF~ EYuy(p(vg) — “vg is an algebra”)

— (V equation e)[VA(p(A) — “AE e”) — VA(UA) — “UE e”)].

Now let ALG be the set of all formulas ¢ with ZF =~ F Vug(p(vg) — “vg is an
algebra”). Then we claim e.g. (1):

ZF~ + {Yoo(¢™(v9) — ©%w)): ¢ € ALG} - CP.

where P!(vg) expresses vy € PI {v1: ¢(v))}.

ProOF OF (1) oF THEOREM 4. Let R be a class such that d ' DomR is a set.
Since in ZF ~ there is no set of all sets, there is a set z ¢ d. Let ¢ be the similarity
type {{c-}U{cv: x €d}} x {0} (i.e., all symbols are constants). For each x € d we
define an algebra 2/, of type ¢: the universe 4, of 2. is 3, and all constants denote
0 except for ¢, which denotes 1. For each (x.y) € R we define a ¢-type algebra

B, : the universe By, of B, is 2U{(x.y)}, and all constants denote 0 except for

¢, which denotes . Let K% {B.,: (x.y) € R}. Note that (0: x €d) € PycsAy;

hence, o & P_\Ae(; 2, is a t-type algebra with nonempty universe. Clearly, A, = B,
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SET THEORY AND UNIVERSAL ALGEBRA 919

whenever (x.y) € R, so 2 € PI K. Hence, by assumption 2 € QK. Let K, be a
subset of K such that 20 € QK holds. Now we claim that

(%) (vx € d)3y B,, € Ko.

To see this, let x € d. Since A, ¥ ¢, = c-, we have A ¥ ¢, = c-.. Hence,
QKo ¥ ¢, = c-, and therefore Ky ¥ ¢, = c.. But for every (u.v) € R if u # x,
then B, F ¢, = c.. Hence, there is some y with B, € K. as desired in (x).

Now let r & U{B+y: B, € Ko}\2. Thus, r is a subset of the class R. Since
r contains no ordinals, by () Dom R C Domr, which completes the proof. [
PROOF OF (2) oF THEOREM 4. We have to change the proof of (1) only by letting
2 be the subalgebra of ®B,, with universe 2, for each x € 4. Od
CoROLLARY 1. ZF~ + (ModEgK = HSP K) - CP.
Proor. The operator HSP has the two properties required from Q. and for
every class K of similar algebras, e.g., PS K C Mod EqK C HSP K holds. O
COROLLARY 2.
(1) CP is independent of ZF
(2) ZF~ + AF, + CP ¥ AF.
PROOF OF (1). First, ZF~ ¥ CP by Theorems 1 and 3. Second, ZF ~ ¥ -~CP,
since CP is implied by the Axiom of Foundation (see [10, pp. 73-74]). O
PrOOF OF (2). Recall the set 4 of descending chains of singletons and the
permutation model U7 from the proof of Theorem 1. Foundation obviously fails
in 0¥ since e.g., the set 4 is not well-founded. But 27 £ C P can easily be checked
in a way similar to the proof of Uf E Replacement (see, e.g., [4, p. 49]). O

§3. Further connections between the axioms of set theory and the behaviour of
operators on classes of algebras. In this section we give several other statements
concerning operators on classes of algebras which are equivalent to the Collection
Principle above. There are some further statements which are equivalent to AC +
CP. Hence, none of them are derivable from ZF~ + AC + AF,,.

THEOREM 5. Each of the following statements holds in ZF ~:

(1) I S, H, and HS are closure operators.
(2) IS=SLIP =P, IP=P,IH = HI = H.

Proor. The proofs are straightforward. IS = SI and “HS is a closure operator”
are proved as 0.2.15 of [9, Part I, p. 72], and there it is emphasized that 4C is not
used in the proof. It is easy to check that AF is not used either. ]

THEOREM 6. In ZF ~ each of the following statements is equivalent to CP:

(1) HSP is a closure operator.

) PP < SP.

) PI < SP.

) P'L < HSP'.
) P'S < SP".

) PS < SP.

) P'S < HSP'.
)

3
4
5
6
7
8) SP is a closure operator.

(2
(
(
(
(
(
(
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920 H. ANDREKA. A. KURUCZ. AND 1. NEMETI

Proor. Each of the statements (1)-(4) implies CP on the basis of ZF~, be-
cause of (1) of Theorem 4 with Q = HSP’. To the other statements, apply (2)
of Theorem 4 with Q = HSP’ too.

To the reverse direction:

(1) follows from Theorem 3: HSPHSP K = Mod EqHSP K C Mod EqK =
HSP K.

To prove (2). let 2 € PP K. Say 2 is isomorphic to P;c;%B;, where B; € PK
for each i € I. Hence, the relation

Rc‘:ef{g,(g.fk));ie],@: (€;: j € J) €K for some set J,

f is an isomorphism of %B; into P;c,;€;.k € J}

has domain /. By CP there is a subset r of R with Domr = I. Let

def
D= Pl esayerCh:

thus, DePK. Now define a function g : Pic1Bi— P (¢.r.1yer Ce With (gb) (i (e 1))

o (fbi) for some b € Pic;B;. Then it is easy to check that g isomorphically

embeds P;c;B; into D, i.e, A € IISP K. Hence, by Theorem 5 or, A € SP K, as
desired.

(3) and (4) follows from (2): P'IL < PI < PP < SP < HSP'.

To prove (5), let A € P'S K. Say 2 is isomorphic to P;c;B;/r, where B; € SK
for each i € I and F is a filter over /. Hence, the relation

RE{(i.¢):iel.ccK B Ca)

has domain /. By CP there is a subset r of R with Domr = I. Let

Edéf{ygr:HxEFWith{U:@)GV:iex}gy}'

Then E C 2(r) is a filter over r because F is a filter over /. Now define a
function g: Pic;B; — P ¢)e,C with (gb)<,;¢> = b; for each b € P;c;B;, and let

fIblr o [gb]e. Then one can check that f isomorphically embeds P;c;B; /F into
Pi¢yer€/E: that is, 2A € IISP" K. hence, by Theorem 5 or, 2 € SP” K, as desired.

To prove (6), repeat the proof of (5) (using its notation) with filter F f {1}.

Then E = {r} by its definition. Hence, 2 = P;c;B; = P;¢; %, /7y which can be
isomorphically embedded into P eyer®/ 1y = Plieyer€. By Theorem 5 the proof
is complete. We note that [2] contains a proof of “ZF + (5) and (6)”.
(7) follows from (6): P’S < PS < SP < HSP'.
Finally, (8) follows from (2), (6), and Theorem 5: SPSP < SSPP < SSSP =
SP. O
THEOREM 7. In ZF ~ each of the following statements is equivalent to AC + C P:
(1) P is a closure operator.
(2) HP is a closure operator.
(3) PISP.
(4) PI<HP".
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SET THEORY AND UNIVERSAL ALGEBRA 921

(5) PP <HP".

Proor. That each statement is a consequence of ZF ~ + AC + CP can be seen
in a way similar to the proof of, e.g., (2) of Theorem 6. The only difference is
that here it is not enough to “reduce” a set of classes to a set of sets (with the
help of CP) but we must choose exactly one element from each class, which is
possible with the help of CP and AC together only.

For the other direction: each statement implies CP on the basis of ZF~, by
(1) of Theorem 4 with Q = HP". To prove that each of the statements implies
AC first we show that each of them implies P’'I < HP'.

For (1): PI<IPIP' = PP =P < HP'.

For (2): P'I < HIP’HIP’ = HPHP < HP" (by Theorem 5).

For (3): PI<IPI =PI<P < HP'.

For (5): P'I <IP'IP' = PP < HP'.

Now it remains to prove that

ZF~ +PI<HP | AC.

Let ¥ & {X;:i € I} be a set of nonempty sets. We want to give a choice
function for X. Let t & {(g.1)} be a similarity type; i.e., let # consist of one unary
function symbol. Define an algebra € of type ¢ as follows. Let C &f {(x.i):i€l,
x € X;}u{0.1,2}, and let

c ifec=0o0rc=(x,i)forsomeiecl, xelX,
g =1 ife=2
2 ife=1.
Since no ordered pair is a member {0, 1:2}, g% is well defined. Now let

K< (%8: % C ¢and {0.1.2} C B):

thus, K is a class of 7-type algebras. For every i € I define an algebra 2; with

A4S {(xi):x € X}U{L2} and g% &gy,

We will show that 2; € IK. Fix some z € X;, and let C; &f (4:\{(z.i)}) u{0}

and g% def g% Ic; thus, €; € K. Define the isomorphism k;: 2; — €; needed by
ki d;f{ a %fa # (z,i),
0 ifa=(z1).
PiciA; # 0, since (1: i € I) € Pic; A;. Therefore, ® & Pic;U; € P'I K; hence,by
our assumption ©® € HP" K. Then there exist algebras B, € K (j € J for some
set J), a filter F over J, and a homomorphism % from B &ef Pic;B;/r onto D.

Let b & [(0: j € J)]r. Then b € B and g®b = b, since for each B; (j € J)
g%0 =0and J € F. Hence, hb € D and g®hb = hg®bh = hb, since & is a
homomorphism. Recall that ® = P;c;2; and 4; = {(x,i): x € X;} U {1,2} for
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each i € I. Thus, for each i € I (hb); = (x;.i) for some x; € X;. Now let the
function m be defined with

m(X;) def pro(hb); for each X; € X.

where pr, is the usual first projection defined on (| J;; X;) x I. Then m is a choice
function for the set X. |
PROBLEMS.
(1) Is ZF~ - PSP = SPIS true?
Is ZF~ + PSPS = SPIS true?
(2) 3 e w)ZF FP* =Pt
(3n € ) ZF - (HP)" = (HP)*1?
| def | def

(If Q is an operator on classes of algebras, then Q' = Q and Q"*! = QQ”
for every 0 # n € w.) Solving these last two problems would complete the
solution of Problem 28 in [7, p. 161]: whether without 4C the semigroup
generated by the operators I, H, S, P is finite.
Connections between algebraic theorems and further axioms of ZF-set the-
ory will be discussed in a future paper. Other similar investigations on “reverse
mathematics” are e.g., in [1], [5], [6], [8]. and [11].
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