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 Abstract. One of the basic theorems in universal algebra is Birkhoffs variety theorem: the smallest

 equationally axiomatizable class containing a class K of algebras coincides with the class obtained by

 taking homomorphic images of subalgebras of direct products of elements of K. G. Gritzer asked whether

 the variety theorem is equivalent to the Axiom of Choice. In 1980. two of the present authors proved

 that Birkhoffs theorem can already be derived in ZF. Surprisingly. the Axiom of Foundation plays a

 crucial role here: we show that Birkhoffs theorem cannot be derived in ZF + AC\{Foundation}. even

 if we add Foundation for Finite Sets. We also prove that the variety theorem is equivalent to a purely set-

 theoretical statement. the Collection Principle. This principle is independent of ZF\{Foundation}. The

 second part of the paper deals with further connections between axioms of ZF-set theory and theorems

 of universal algebra.

 ?1. Introduction. The problems investigated here fit into the field which is called
 after S. G. Simpson "reverse mathematics". In this field (also called "inverse set
 theory") one tries to determine what is the exact fragment of set theory truly needed
 to establish the core theorems of certain mathematical disciplines. In universal
 algebra the first reverse questions were formulated by G. Grftzer. Problem 31
 in [7] asks whether Birkhoffs variety theorem (see below for an exact formula-

 tion) is equivalent to the Axiom of Choice. As shown in [3], the answer is no:

 Birkhoff's theorem can be derived already in ZF. In ?2 we show (Theorem 1)
 that the Axiom of Foundation (Regularity) is necessary in that derivation. Even
 the extension of ZF\{Foundation} with Foundation for Finite Sets is not enough
 to derive Birkhoffs theorem. Moreover, we prove (Theorem 2) that on the basis
 of ZF\{Foundation}, Birkhoffs theorem is equivalent to a purely set-theoretical
 statement, the Collection Principle. This principle is implied by (but not equivalent
 to) the Axiom of Foundation. The main technical means in proving the results
 above are Theorems 3 and 4 below.

 In ?3 we discuss similar questions, namely, connections between properties of
 operators on classes of algebras and axioms of ZF-set theory. Theorem 5-7 also
 contain partial answers to Problem 28 in [7]: what the semigroup generated by
 the operators (on classes of algebras) I, H, S, P (see below), etc., is like without
 AC.

 Notation. Our set-theoretical usage follows [10]. In particular, ZF denotes
 Zermelo-Fraenkel Set Theory (which includes AF, the Axiom of Foundation),
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 SET THEORY AND UNIVERSAL ALGEBRA 913

 ZF- is ZF without AF, and AC denotes the Axiom of Choice. The Axiom of
 Foundation for Finite Sets (AFW) is the following statement

 (AFW) Vx(O < xJ < co -> y E x(y n x = 0)),

 where IxI < cc) abbreviates the formula (3 function f ) (Domf E co A Rngf = x).
 For universal algebraic notions we generally follow [9]. If K is a class of algebras.,

 we let
 def

 1K {2t: A is isomorphic to some 9 c K},
 def

 HK {2t: A is a homomorphic image of some 9 c K},
 def

 SK {At: A is a subalgebra of some 9 E K},
 P'K ={ t: A Picj~it, (2i: i E I) is a system of members of K for some set

 I, the universe A of A is nonempty},

 PK = IP/K,

 prK {=t: A is isomorphic to a reduced product of members of K}.
 A similarity type is a function t mapping some set into co; we take as understood

 when an algebra is of type t. Two algebras are called similar if they are of the

 same type. If Q and Q' are operators on classes of algebras, then Q < Q' denotes
 the schema

 V class K of similar algebras (QK C Q'K).

 An operator Q on classes of algebras is a closure operator iff QQ = Q.
 Equations of type t are formulated in a first-order language of type t having a

 countable sequence vo, 1, .... of variables. EqK is the set of all equations holding

 in every member of K. For any set F of formulas of our language, Mod F is the
 class of all models of F.

 Birkhoffs variety theorem is the schema

 V class K of similar algebras (Mod EqK = HSP K).

 ?2. A set theoretical equivalent to Birkhoffs variety theorem.
 THEOREM 1. ZF- + AC + AF,, J ModEqK = HSP K.
 REMARK. Recall that in ZF-set theory, a class is just an informal version of a

 formula. Thus, the formal counterpart of Theorem 1 is as follows:
 There is a formula p (vo) of the language of set theory such that

 ZF - + A C + AFRo J Vvo (( (pvo) -> "vo is an algebra")

 > Vvo(HSP(vo) +-+ (V equation e)[Vt(p(2t) - "2t k e") -> "vo l= e"]).

 where pHSP(v0) expresses vo e HSP{vl: p(vl)}.
 PROOF OF THEOREM 1.

 LEMMA (Fraenkel-Mostowski). Let X = (V. C) be a class model of ZF - + A C.
 Let F: V -> V be a permutation (i.e., bijection) of V definable in C, and let

 VxVy(x E y At F(x) E y).

 Then TF def(V.,F) kZF-+AC.
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 914 H. ANDREKA. A. KURUCZ. AND I. NEMETI

 The proof of this lemma can be found e.g., in [4, pp. 48-50].

 From now on we use the epsilon symbol E to denote the element relation c F

 of 9F. The usual operation symbols, such as { }, _9 (power set), etc., also denote

 the corresponding operations of T9F. We apply the Fraenkel-Mostowski lemma

 to the following permutation F. For each countable successor ordinal a, let F
 def

 interchange ar and {oa + 1}, and let F(x) x for all other elements of V. Now
 there is a set A = {aj.I: i. j E co} in T9F with the following properties:

 ai1 7 an,,n for all (i. j) 74 (n. m). i, j. n m E co;

 aij ={ai.+11} for all ij Co.

 Since T9F is a ZF--model, we can define the cumulative hierarchy "built on" the
 set A in the usual way. Let On be the class of ordinals in TZF, and let

 def def

 WO = A. Wa1 D g v )

 WA- U U a for /EOn.f limit,
 a<Wl

 and let

 wdefU w. W -U WC,
 aEOn

 defF
 2T23 (W. e). i.e., let 2T2 be the submodel of 93F with universe W.

 We note that the rank function is also definable in 22 as follows. For every x E W

 we let
 def

 rk(x) min{ca E On: x E Wj}.

 Claim 1. QY=ZF-+AC.
 PROOF OF CLAIM 1. The claim will be proved in a way parallel to the well-known

 consistency proof of the Axiom of Foundation (see, e.g., [10, pp. 83-85]).
 Since A is transitive, each Wa and W itself are transitive; hence, Extensionality

 holds in Wt.

 For Pairing: if x E Wa, y E WA for some a < P8, then {x.y} E Wfl, and it
 is the "real" pair of x and y, because "z {x, y}" is a restricted formula (i.e., a

 formula containing restricted quantifiers only) and W is a transitive class.
 For Union: if x E Wa for some ai, then Ux e W+ I and "y Ux" is a

 restricted formula.

 For Power set: if x E Wc, for some ai, then 95(x) C Wa+2. However, "y =9x
 is not a restricted formula, but we can argue as follows. Let p be the restricted
 formula [u C y +-+ (Vz C u)z C x]. Then for every u C W 3 1= A, since T l= k for
 all u.

 For Infinity: co C Wo,+, and co can be defined by a restricted formula.
 For Replacement: let f be a partial function defined by the formula p with

 def

 parameter p C W; that is. let f {(xy) C W:QIp(xyp)}. For an X C W
 let Y =f "X. Then Y is a set and Y C W, hence U{rk(y): y C Y} is an ordinal,
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 SET THEORY AND UNIVERSAL ALGEBRA 915

 say P8, and Y E Wfl+1. Since for every y E W, [y e Y +-+ (3x E X)p (x.y p)] is a
 restricted formula, we are done.

 For the Axiom of Choice: Let 0 74 R E W, and let f be a choice function on
 R; that is, for every 0 74 X E R f (X) E X. Then one can check that if R E Wc,

 for some ai, then f E W,+3. Since "f is a choice function on R" is a restricted
 formula, the proof is completed. E

 Claim 2. Q YJ AFWo.
 PROOF OF CLAIM 2. We prove by induction that for every ar E On

 (#) ~~~(8x c Wald o < I XI < co -> (by c X)y n x= 0].
 For a 0 (#) obviously holds.

 Assume that (#) holds for ai, and let X C W?+1 be a finite nonempty set. Assume
 that X is not well founded. Then there is cycle in X, i.e., there are xo ... x,1 C X

 with xo e ... E Xn E xo. Then x .... Xn E Wa,+, thus xO,... Xn C Wa. Namely,
 by xo C Wa, Xn e W,. Hence,by the transitivity of Wa, xO. ....xn E Wa. But
 then there is a non-well-founded set {xO .... xnj} C Wa, which contradicts our
 assumption.

 Let fi be a limit ordinal, and assume that for every ar <fi (#) holds. Let X C WA
 def

 be a finite nonvoid set. Let y U{rk(x): x E X}. Then X C W;, and since y <i,
 (#) holds for X by the induction hypothesis. E

 def

 We recall that W0 = A {a11: i.j E co}. We let Ai {a,,: j E co} for each

 ltXdef Claim 3. Let X E W be a descending chain of singletons; that is, let X

 {x/: i E co} with xi {x=i+} (i E co). Then there exist n.m E co such that
 {xi: i E C\nj} C A,,1; that is,

 |X\A ,JJ1 < Co.

 PROOF OF CLAIM 3. We prove by induction on ar that the statement holds for

 every X C W,.
 For X C W0 the statement obviously holds.

 Assume that the statement holds for every X C Wa for some ai. Let Y C Wa+1,
 and assume Y = {yi: i E co} with y = {yi+l} (I E co). Then {yi} = yo C Wa+i,
 hence yi e W,. Then by the transitivity of Wa, yi e Wc, for every i > 0;
 that is, Y\{yo} C W,. Then by our assumption there is an m E co such that
 I ( Y\{yo})\A1 1 < co. Hence, Y\A,11 is finite too, which was required.

 Let 18 be a limit ordinal. Assume that for every ar <18 and X C Wc, the statement

 holds. Assume Y = {fy: i E co} with ys {y+l} (I c co). Then yo C Wc, for
 some ar <18 and, by the transitivity of Wa, Y C W,. Thus, the statement holds
 by the induction hypothesis. E

 We let TC(X) denote the transitive closure of an X C W. TC(X) exists in every
 model satisfying the Union, Infinity, and Replacement axioms; hence, it exists in
 our Qt too for all X E W.

 Now we will define a new model structure. Let

 def

 U {X E W: (3n E co)(lVm E co)(TC(X) n A,11 M 0 -*m < )
 That is, X E U if the transitive closure of X intersects only finitely many of the
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 916 H. ANDREKA. A. KURUCZ. AND I. NEMETI

 sets A,,1. This U is definable in Wt. Namely, the following formula defines U (by
 Claim 3):

 (3 function f)[Domf c co

 A (Vg E TC(x))[(Vn c o)g,2 {gni} -* Rngg n Rngf 74 0]].

 def
 Let L- (U. c) C Qt be the submodel of Qt with universe U.

 Claim 4. iA ~ZF- +AC +AF.

 PROOF OF CLAIM 4. Since U is a transitive class by definition, Extensionality

 holds.

 Since TC({x.y}) TC(x) U TC(y), TC(U x) C TC(x) and TC(-9(x)) = TC(x)
 (and the corresponding formulas are restricted), Pairing, Union, and Power set

 hold in XA, respectively
 TC(co) n A = 0, hence co c U and, since co can be defined by a restricted

 formula, thus Infinity holds.

 Now consider Replacement. Let fp be a partial function defined by the formula
 def

 p with parameter p C U; that is, let fp {(x y) C U: A I= kp(x y,p)}. For
 def

 an X c U let Y = f7'X. Then Y C W and Y C U. We want to prove
 that Y c U. By the definition of U there is an n C co) such that (Vm C co)
 (TC(X Up) n A,71 7 0 -> m < n). We will show that for this n

 (+) (Vm c co) (TC( Y) n A,1 & 0 -> m < n).

 Let z c X, and assume that there is a k > n with TC(f19(z)) n Ak 7 0. Since

 fp(z) C U. there is an / > k such that TC(fp(z)) nA A 0. Let g: U -> U be
 an automorphism interchanging Al and Ak and leaving all the other elements of

 def def
 U fixed. That is, for every j c co let g(al,.)- ak1j, g(ak.) - alj, and for every

 ( )def
 u V Ak UAl g(u) u. Now since z C X, g(z) = z and g(p) = p. Since g is an
 isomorphism, g(fp(z)) = fg(p)(g(z)) = fp(g()) = fp(z). Therefore.

 0 = g"0 = g"[TC(fp(z)) n Al] = TC(fp(z)) n Ak 7 0.

 that is a contradiction, proving that (+) holds. Hence, Y C U as desired.
 For AC: Let R C U, and let f be a choice function on R. Then f C R x UR;

 thus, f C U. Since "f is a choice function on R" is a restricted formula, AC
 holds in SA.

 For AFO,: Since U is transitive, the c-least element of a set belonging to U
 also belongs to U. D

 Claim 5. )UX Mod EqK -HSP K.
 PROOF OF CLAIM 5. We let

 def

 K- {(B.f) JB nforsomenCco;
 (Vb C B)(b is a descending chain of singletons);

 (Vb 74 c C B)TC(b) n TC(c) = 0;

 there is an enumeration bo .... 1 bn - of the elements of B

 such that (VO < m < n)f(b,71) = b,711_ and f(bo) bo}.
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 SET THEORY AND UNIVERSAL ALGEBRA 917

 Then K is a class in XA, i.e., one can give a formula X such that 9 E K iff l= X(B)
 Let e be the co-ary formula

 V VX (f (X) = f (x)).
 n1EO

 Then by the definition of K, K l

 We claim that PK l= e. To see this let A E 'K for some set I. Since A E U, TC(2)
 intersects only finitely many of the sets A,1; hence, only finitely many elements of
 K can occur in Rng 2. Let N E co be the maximum of the cardinalities of the

 members of Rng t. Thus, PiEI4i F VX(f Nl (X) = fN (X)), which was required.
 Since e is preserved under HS, we have HSP K l e.

 But {(n.U): n E ct} C IK (where Um = m-I if m > 0 and U = 0).

 Therefore, PI K 1? e. We proved that for our K, or A I= PI K Z HSP K, which
 proves SoX Mod EqK = HSP K. E

 Now the proof of Theorem 1 is completed. By Claims 4 and 5, the model )A
 proves that ZF- + AC + AFT J ModEqK = HSP K. D

 In fact, Theorem 1 is a consequence of the following result. We show that

 on the basis of ZF-, Birkhoffs theorem is equivalent to a purely set-theoretical
 statement. This statement, the so-called Collection Principle, is implied by (but
 not equivalent to) the Axiom of Foundation.

 The Collection Principle (CP) is the schema

 (CP) V class R (DomR is a set --> r C R (r is a set A Domr = DomR))

 (CP can be defined formally as in [10, pp. 72-73]).
 THEOREM 2. On the basis of ZF-, "Mod EqK = HSP K" is equivalent to CP

 The two directions of Theorem 2 are proved as Theorem 3 and Corollary 1

 below. For a careful formalization of these statements (and the other theorems
 below) in the language of ZF-set theory cf. the remarks following Theorem 1 and
 Theorem 4.

 THEOREM 3. ZF- + CP K Mod EqK = HSP K.
 PROOF. We only prove the nontrivial direction, that is, Mod EqK C HSP K.

 Suppose that A E Mod EqK. We show in two steps that A E HSP K, and only
 the second step involves CP.

 Let WA be the word-algebra (absolutely free algebra) generated by the set A,

 and let fi: aA -*> A be the surjective homomorphism induced by the inclusion map
 of the generator set A. Let for all ca, r E FA

 def

 a _ T X gc = gr for every homomorphism g mapping WA into some 9 E K.

 Then there is a homomorphism f ' mapping WAA/= onto A such that f '[a] f ca
 for every a c FA.

 Now it remains to prove that WA 5 SP K. To prove this, let

 def

 I - {(c,): cir E FAU
 def

 R {((c.), (9. h)): (,) E I, E 9 K, h is a homomorphism
 mapping WA into A, and ha 74 hr}.
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 918 H. ANDRtKA. A. KURUCZ. AND I. NEMETI

 Then Dom R = I and I is a set. By CP there is a subset r of R with Dom r I.
 def def

 Let X -P((S and let C((r ( - ha for each ((S, c). (93. h)) E r.
 Then c E C, i.e.. C is nonempty; thus X E PK. Define the function

 def

 g: FA/= -> C by (g[e])((u.z).(1{.h)) = he.

 Then one can easily check that g is an invective homomorphism from WA/_ into
 C, SO WA/_ E SP K as desired. D
 The proof of the following theorem originates from J. D. Monk.
 THEOREM 4. Let Q be an operator on classes of algebras such that for any class

 K of similar algebras the following two properties hold. For every 2t, A E QK implies
 that A E QKo for some subset Ko of K, and K l= e implies QK l= e for any equation
 e. Then

 (1) ZF- +PI< Q CP;
 (2) ZF- +PS< Q CP.

 REMARK. The formal counterpart of Theorem 4 is as follows. Suppose that
 with every formula p (vo) of the language of set theory we associate another set-
 theoretical formula oQ(vo) such that the next three conditions hold:

 ZF- k=Vvo(po(vo) -> "vo is an algebra")

 ) vvo (pQ(vo) -> "vo is an algebra");

 ZF- k=Vvo(p(vo) -> "vo is an algebra") A Q(2t)

 ! 3v1[(VV2 E V1)(I(V2) A (vo E vj)Q(vo/Q))];

 (c)
 ZF- k=Vvo(p(vo) - "vo is an algebra")

 > (V equation e)[Vt(p(2t) -* "2t k e") -*> V%(poQ(t) -> " I= e")].

 Now let ALG be the set of all formulas p with ZF I Vvo(p(vo) -> "vo is an
 algebra"). Then we claim e.g. (1):

 ZF - + {fVvlop'(vo) - pQ(vo)): (p E ALG} K CP.

 where pPI(v0) expresses vo E PI {vl: p(vj)}.
 def

 PROOF OF (1) OF THEOREM 4. Let R be a class such that d = DomR is a set.
 Since in ZF- there is no set of all sets, there is a set z V d. Let t be the similarity
 type {{c } U {c<: x E d }} x {O} (i.e., all symbols are constants). For each x C d we
 define an algebra AX of type t: the universe A, of ala is 3, and all constants denote
 o except for cu which denotes 1. For each (x.y) E R we define a t-type algebra
 Al,: the universe B,. of Bas is 2 U {(x. y) }, and all constants denote 0 except for

 def

 cur which denotes 1. Let K {BiXY (xy) e R}. Note that (0: x c d) E PEjlAx;
 def

 hence, 2tPE1t is a t-type algebra with nonempty universe. Clearly, 2tx 93xY
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 SET THEORY AND UNIVERSAL ALGEBRA 919

 whenever (x.y) C R, so A C PI K. Hence, by assumption A c QK. Let Ko be a
 subset of K such that A c QKo holds. Now we claim that

 (*) (Vx c d)3y alX, C Ko.

 To see this, let x c d. Since 2,Xt ca = c,, we have A 1X ca = c:. Hence,
 QKo X c, = c:, and therefore Ko 1X c, = c:. But for every (u. v) c R if u 74 x,
 then B3ts I= cX = C:. Hence, there is some y with Bs, c K0. as desired in (*).

 def
 Now let r U{Bfx,: 93, C Ko}\2. Thus, r is a subset of the class R. Since

 r contains no ordinals, by (*) DomR C Domr, which completes the proof. D

 PROOF OF (2) OF THEOREM 4. We have to change the proof of (1) only by letting

 atx be the subalgebra of 9x), with universe 2, for each x E d. D
 COROLLARY 1. ZF- + (Mod EqK = HSP K) K CP.

 PROOF. The operator HSP has the two properties required from Q. and for
 every class K of similar algebras, e.g., PS K C Mod EqK C HSP K holds. D

 COROLLARY 2.

 (1) CP is independent of ZF-;

 (2) ZF- + AFco + CP Y AF.
 PROOF OF (1). First, ZF- J CP by Theorems 1 and 3. Second, ZF- J -_CP,

 since CP is implied by the Axiom of Foundation (see [10, pp. 73-74]). D
 PROOF OF (2). Recall the set A of descending chains of singletons and the

 permutation model T9F from the proof of Theorem 1. Foundation obviously fails
 in TZF, since e.g., the set A is not well-founded. But T9F k CP can easily be checked
 in a way similar to the proof of T9F k Replacement (see, e.g., [4, p. 49]). D

 ?3. Further connections between the axioms of set theory and the behaviour of
 operators on classes of algebras. In this section we give several other statements
 concerning operators on classes of algebras which are equivalent to the Collection

 Principle above. There are some further statements which are equivalent to AC +

 CP. Hence, none of them are derivable from ZF- + AC + AFco.
 THEOREM 5. Each of the following statements holds in ZF 7
 (1) I, S, H, and HS are closure operators.

 (2) IS = SI, IPr = P', IP = P, IH= HI = H.
 PROOF. The proofs are straightforward. IS = SI and "HS is a closure operator"

 are proved as 0.2.15 of [9, Part I, p. 72], and there it is emphasized that AC is not
 used in the proof. It is easy to check that AF is not used either. D

 THEOREM 6. In ZF - each of the following statements is equivalent to CP:
 (1) HSP is a closure operator.
 (2) PP < SP.

 (3) PI < SP.
 (4) P'I < HSP'.
 (5) P's <SP.

 (6) PS < SP.
 (7) P'S < HSP .
 (8) SP is a closure operator.
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 PROOF. Each of the statements (1)-(4) implies CP on the basis of ZF-, be-
 cause of (1) of Theorem 4 with Q = HSP`. To the other statements, apply (2)
 of Theorem 4 with Q = HSP` too.

 To the reverse direction:

 (1) follows from Theorem 3: HSPHSP K = Mod EqHSP K C Mod EqK
 HSP K.

 To prove (2). let A C PP K. Say A is isomorphic to PiEjI , where 93 E PK
 for each i C I. Hence, the relation

 def

 R {(i. (. f .k)): iC Id (L-: j C J) CJK for some set J.
 f is an isomorphism of 93 into PjEi Lj, k E J}

 has domain I. By CP there is a subset r of R with Domr = I. Let

 def

 thus, CPK. Now define a function g: PiEIBi jP(i.( .fk)),ErQC with (gb)(i.(Cf.k))
 def

 - (f bi), for some b C PiEIBj. Then it is easy to check that g isomorphically
 embeds PiEI 31 into X, i.e., A C IISP K. Hence, by Theorem 5 or, A E SP K, as
 desired.

 (3) and (4) follows from (2): P/I < PI < PP < SP < HSP .
 To prove (5), let A e PrS K. Say A is isomorphic to PiEI93i/F, where 9; C SK

 for each i C I and F is a filter over I. Hence, the relation

 def

 R {(i, I,): i CICK. 93 C
 has domain I. By CP there is a subset r of R with Domr = I. Let

 def

 E {y C r: 3x E F with {(i, Cr: i E x} C y}.
 Then E C 95(r) is a filter over r because F is a filter over I. Now define a

 def

 function g: PjEiBj > P(j.)E,.rC with (gb)(i.) bi for each b C PiEIBi, and let
 def

 f[b]F [gb]E. Then one can check that f isomorphically embeds PiEI93i/F into
 P(i.z)&ErC/E; that is, A E IISPr.K. hence, by Theorem 5 or, A E SPC K, as desired.

 def
 To prove (6), repeat the proof of (5) (using its notation) with filter F {I }.

 Then E = {r} by its definition. Hence, A-Pi93, ' PjEI;3I/{fI which can be
 isomorphically embedded into P=iqErX/{r} P(i.f)r,.t By Theorem 5 the proof
 is complete. We note that [2] contains a proof of "ZF F- (5) and (6)".

 (7) follows from (6): P'S < PS < SP < HSP .
 Finally, (8) follows from (2), (6), and Theorem 5: SPSP < SSPP < SSSP
 SP. D
 THEOREM 7. In ZF- each of the following statements is equivalent to AC + CP:
 (1) P is a closure operator.
 (2) HP is a closure operator.
 (3) PI < P.
 (4) P/I < HP'
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 (5) PP < HP'.
 PROOF. That each statement is a consequence of ZF- + AC + CP can be seen

 in a way similar to the proof of, e.g., (2) of Theorem 6. The only difference is
 that here it is not enough to "reduce" a set of classes to a set of sets (with the
 help of CP) but we must choose exactly one element from each class, which is
 possible with the help of CP and AC together only.

 For the other direction: each statement implies CP on the basis of ZF-, by
 (1) of Theorem 4 with Q = HPr. To prove that each of the statements implies
 AC first we show that each of them implies P'I < HP".

 For (1): P'I < IP'IP' = PP = P < HP".
 For (2): P'I < HIP'HIP' = HPHP < HP" (by Theorem 5).
 For (3): P'I < IP'I = PI < P < HP'.
 For (5): P'I < IP'IP' = PP < HP'.
 Now it remains to prove that

 ZF- + P'I < HP" K AC.

 def
 Let X {Xi: i E I} be a set of nonempty sets. We want to give a choice

 def
 function for X. Let t { (g, 1) } be a similarity type; i.e., let t consist of one unary

 def
 function symbol. Define an algebra X of type t as follows. Let C (x, i): i E I,
 x E X1} U {O, 1, 2}, and let

 c if c = 0 or c = (x. i) for some i E I, x E Xi.
 gc - {1 if c = 2,

 2 if c =1.

 Since no ordered pair is a member {0, 1: 2}, g I is well defined. Now let

 def

 K -{: 9 C C and {O. 1.2} C B};

 thus, K is a class of t-type algebras. For every i E I define an algebra A; with

 def ~2t def (
 A; = {(x. i): x E X;} U {1. 2} and g - A,

 def

 We will show that A; E IK. Fix some z E Xi, and let C; (Ai\{(z, i)}) U {O}
 and gee 9`C g c,; thus, C; E K. Define the isomorphism ki: 2i --> C; needed by

 k def a if a74(zi).
 '10 if a = (z,i).

 def

 P;EEIA 74 0, since (1: i E I) E PjEIAi. Therefore, 2 = PEI12t E P'I K; henceby
 our assumption 2 E HP" K. Then there exist algebras 93B E K (X E J for some

 ,,def set J), a filter F over J, and a homomorphism h from B-PIEJ93j/F onto S.
 def

 Let b [(0: j E J)]F. Then b E B and g~b = b, since for each y (X E J)
 gO '0 0 and J E F. Hence, hb E D and g'hb hg'b = hb, since h is a
 homomorphism. Recall that 2 = PiEI12t and A {(x, i): x E Xi } U { 1. 2} for
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 each i c I. Thus, for each i c I (hb)i = (xi. i) for some xi c Xi. Now let the
 function m be defined with

 def

 m(Xi) pro(hb)i for each Xi c X.

 where pro is the usual first projection defined on (UiE1 Xi) x I. Then m is a choice
 function for the set X. D

 PROBLEMS.

 (1) Is ZF- H PSP = SPIS true?
 Is ZF - H PSPS = SPIS true?

 (2) (In C co) ZF Hf lnP= l?
 (In C co) ZF F (HP) (HP

 Q1 def Qn+1 def n (If Q is an operator on classes of algebras, then Q= Q and Qn=l QQn
 for every 0 74 n E co.) Solving these last two problems would complete the
 solution of Problem 28 in [7, p. 161]: whether without AC the semigroup

 generated by the operators I, H, S, P is finite.
 Connections between algebraic theorems and further axioms of ZF-set the-

 ory will be discussed in a future paper. Other similar investigations on "reverse

 mathematics" are e.g., in [1], [5], [6], [8], and [11].
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 help. We also thank P. Burmeiser for enjoyable discussions. We are grateful to

 G. Gritzer, D. Kelly, B. Quackenbush, and the other members of the seminar of
 the Mathematics Department of the University of Manitoba (1984) for long and
 stimulating discussions.

 REFERENCES

 [1] H. ANDRtKA, P. BURMEISTER, and I. NtMETI, Quasivarieties of partial algebras a Unifying

 approach towards a tvo-valued model theory for partial algebras, Stiudia Scientariium Mathematicarum
 Hungarica, vol. 16 (1981), pp. 325-372.

 [2] H. ANDR1KA and I. NtMETI, Does SP K D PS K imply the axiom of choice?, Commentationes
 Mathematicae Universitatis Carolinae, vol. 21 (1980), pp. 699-706.

 [3] , HSP K is equational class, without the axiom of choice, Algebra Universalis, vol. 13

 (1981), pp. 164-166.
 [4] U. FELGNER, Models of ZF-set theory, Lecture Notes in Mathematics, vol. 223. Springer-Verlag,

 New York, 1971.

 [5] H. M. FRIEDMAN, S. G. SIMPSON, and R. L. SMITH, Countable algebra and set existence axioms.

 Annals of Pure and Applied Logic, vol. 25 (1983), pp. 141-181.

 [6] G. GRXTZER, A statement equivalent to the axiom of choice, Notices of the American Mathe-
 matical Society, vol. 12 (1965), p. 217 (Abstract).

 [7] , Universal algebra, second edition, Springer-Verlag, New York, 1979.

 [8] , Birkhoffs representation theorem is equivalent to the axiom of choice, Algebra Universalis,

 vol. 23 (1986), pp. 58-60.

 [9] L. HENKIN. J. D. MONK. and A. TARSKI, Cylindiic algebras, Parts I, 1 North-Holland.
 Amsterdam, 1971 and 1985.

This content downloaded from 82.4.188.154 on Wed, 05 Jun 2019 09:51:16 UTC
All use subject to https://about.jstor.org/terms



 SET THEORY AND UNIVERSAL ALGEBRA 923

 [10] T. JECH, Set theory, Academic Press, New York, 1978.

 [11] S. G. SIMPSON, Which set existence axioms are needed to prove the Cauchy/Peano theorem?,
 this JOURNAL, vol. 49 (1984), pp. 783-802.

 MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES

 BUDAPEST. H-1364. HUNGARY

 E-mail: andrekagrmk530.rmki.kfki.hu

 E-nail: kuruczgrmk530.rmki.kfki.hu

 E-nail: hl469nemghuella.bitnet

This content downloaded from 82.4.188.154 on Wed, 05 Jun 2019 09:51:16 UTC
All use subject to https://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12

	Issue Table of Contents
	Journal of Symbolic Logic, Vol. 59, No. 3, Sep., 1994
	Front Matter
	A Survey/Expository Paper
	On Gödel's Theorems on Lengths of Proofs I: Number of Lines and Speedup for Arithmetics [pp.  737 - 756]

	The Topological Vaught's Conjecture and Minimal Counterexamples [pp.  757 - 784]
	A Small Reflection Principle for Bounded Arithmetic [pp.  785 - 812]
	More About Relatively Lawless Sequences [pp.  813 - 829]
	A Logic for Approximate Reasoning [pp.  830 - 837]
	䙩湩瑥汹⁁硩潭慴楺慢汥‡㔼獵戾ㄼ⽳畢㸠䍡瑥杯物捡氠周敯物敳⁛灰⸠‸㌸‭‸㐴�
	Kernel Contraction [pp.  845 - 859]
	Chains and Antichains in Interval Algebras [pp.  860 - 867]
	Almost Weakly 2-Generic Sets [pp.  868 - 887]
	A Modal View of Linear Logic [pp.  888 - 899]
	On Reduction Properties [pp.  900 - 911]
	Connections between Axioms of Set Theory and Basic Theorems of Universal Algebra [pp.  912 - 923]
	Bisimulations and Predicate Logic [pp.  924 - 944]
	A Functorial Property of the Aczel-Buchholz-Feferman Function [pp.  945 - 955]
	ω㱳異㸪㰯獵瀾㱳畢㸱㰯獵戾⁡猠慮⁉湩瑩慬⁓敧浥湴⁯映瑨攠挭䑥杲敥猠孰瀮†㤵㘠ⴠ㤷㙝
	Models of Arithmetic and Upper Bounds for Arithmetic Sets [pp.  977 - 983]
	Constructing Strongly Equivalent Nonisomorphic Models for Unsuperstable Theories, Part A [pp.  984 - 996]
	Combinatorics on Ideals and Axiom A [pp.  997 - 1000]
	A Feasible Theory for Analysis [pp.  1001 - 1011]
	Flat Sets [pp.  1012 - 1021]
	Covering Analytic Sets by Families of Closed Sets [pp.  1022 - 1031]
	A Guide to Truth Predicates in the Modern Era [pp.  1032 - 1054]
	On a Generalization of Distributivity [pp.  1055 - 1067]
	Diophantine Equivalence and Countable Rings [pp.  1068 - 1095]
	䩥湳敮❳ ꌼ獵瀾⨼⽳異㸠周敯特⁡湤⁴桥⁃潭扩湡瑯物慬⁃潮瑥湴⁯映嘠㴠䰠孰瀮†㄰㤶‭‱㄰㑝
	Reviews
	untitled [p.  1105]
	untitled [pp.  1105 - 1107]
	untitled [pp.  1107 - 1108]
	untitled [pp.  1108 - 1110]
	untitled [pp.  1110 - 1114]

	Logic and Linguistics Meeting, Columbus, 1993 [p.  1115]
	The European Association for Logic, Language, and Computation [p.  1116]
	Notices [pp.  1117 - 1120]
	Back Matter



