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Abstract

We study the complexity of some fragments of first-

order temporal logic over natural numbers time. The one-

variable fragment of linear first-order temporal logic even

with sole temporal operator2 is EXPSPACE-complete (this

solves an open problem of [10]). So are the one-variable,

two-variable and monadic monodic fragments with Until

and Since. If we add the operators 

n, with n given in

binary, the fragments become 2EXPSPACE-complete. The

packed monodic fragment has the same complexity as its

pure first-order part — 2EXPTIME-complete. Over any

class of flows of time containing one with an infinite as-

cending sequence — e.g., rationals and real numbers time,

and arbitrary strict linear orders — we obtain EXPSPACE

lower bounds (which solves an open problem of [16]). Our

results continue to hold if we restrict to models with finite

first-order domains.

1. Introduction

What is known about the computational complexity of

linear time temporal logics? Everything seems to be clear

in the propositional case. The logics with only one tempo-

ral operator 2 (‘always in the future’) are known to be co-

NP-complete for linear time, for the flows of time hQ; <i

and hR; <i [15] as well as for hN; <i [22]. The complexity

remains the same if one adds the corresponding past oper-

ator [15, 22, 25]. The addition of the ‘next-time’ operator
 and/or the ‘until’ operator U to this primitive language

makes the logic PSPACE-complete over hN; <i [22], and

hQ; <i, hR; <i, and the class of arbitrary strict linear or-

ders [17, 18]. The succinctness of the operators n (‘in n

moments of time’), where n > 1 is given in binary, in-

creases the complexity to EXPSPACE (over hN; <i) [1],

but, of course, does not change the expressive power of the

language.

Compared to this ‘well cultivated garden’, the complex-

ity of first-order temporal logics and their fragments is still

terra incognita. There are well known ‘negative’ results:

for example, �1

1

-completeness of the two-variable monadic

temporal logic of the flow of time hN; <i; see, e.g., [11] and

references therein. But we could find only one ‘positive’

result: Halpern and Vardi [10] and, independently, Sistla

and German [23] showed that the one-variable fragment of

the logic with 2, , and/or U over hN; <i is EXPSPACE-

complete.1 Halpern and Vardi considered this fragment as a

propositional epistemic temporal logic with one agent mod-

elled by the propositional modal system S5. They conjec-

tured that, as in the propositional case, “even with knowl-

edge operators in the language, the complexity still becomes

much simpler without  and U” [10, page 231].

We take up this conjecture as a starting point of our in-

vestigation of the computational complexity of decidable

fragments of first-order linear temporal logic. The main

technical result of this paper is that over a wide range of

flows of time, the one-variable fragment of linear temporal

logic even with sole operator 2 is EXPSPACE-hard.

We also establish matching EXPSPACE upper bounds

for the one-variable, two-variable and monadic monodic

fragments of the first-order temporal logic based on the

flow of time hN; <i and having 2, , U , and S (since) as

their temporal operators. The fragments are EXPSPACE-

complete even if we restrict to models with finite first-order

domains. If we add the operators 

n, with n given in bi-

nary, the fragments become 2EXPSPACE-complete. Fi-

nally, the packed monodic fragment turns out to be as com-

plex as its pure first-order part, i.e., 2EXPTIME-complete

1[21] and [2] determined the complexity of certain temporalised de-

scription logics, which can be regarded as fragments of first-order temporal

logics.



[8]. The 2EXPTIME upper bound for QT L1

2

over hQ; <i

can be obtained using the mosaic technique from [26] (for

details see [6]).

Thus, in surprising contrast to the propositional case, the

omission of  and U does not alter the computational com-

plexity of first-order temporal logics. The addition of n

(n > 0) increases the complexity by one exponential, as

in the propositional case. We will not discuss here the pros

and cons of adding or omitting these operators for various

applications, but refer the reader to, e.g., [24, 12, 1].

The known and new results are summarised in terms of

satisfiability in Table 1. The languages in the table are ex-

plained at the end of x2 and at the start of x4. For a com-

plexity class C, an entry ‘� C’ in the table indicates that the

complexity is in C; an entry ‘� C’ indicates C-hardness; and

an entry ‘C’ indicates C-completeness.

We note that finding upper bounds over hQ; <i and

hR; <i for most of the first-order logics in the table remains

an open problem.

2. Preliminaries

We begin by introducing the logics dealt with in this pa-

per.

The alphabet of the first-order (or quantified) temporal

languageQT L without equality consists of a countably in-

finite set of individual variables, a non-empty list of pred-

icate symbols P
0

; P

1

; : : : , each of which is equipped with

some fixed arity� 0, the Booleans:, ^, >, and?, the exis-

tential quantifiers 9x for every variable x, and the temporal

operators  (‘next-time’), S (‘since’) and U (‘until’).2 The

set of QT L-formulas ' is defined as usual:

' ::= P (x

1

; : : : ; x

m

) j :' j '

1

^ '

2

j > j ? j

j 9x ' j



' j '

1

S '

2

j '

1

U '

2

;

where P is an m-ary predicate symbol and x
1

; : : : ; x

m

are

variables. We also use the standard abbreviations_;!, and

8x ' = :9x :'; 3' = > U ';

2' = :3:'; 2

+

' = ' ^2':

Given a formula ', we write '(x
1

; : : : ; x

m

) to indicate

that all free variables of ' are in the set fx
1

; : : : ; x

m

g; in

particular, '(x) has at most one free variable x.

QT L is interpreted in first-order temporal models of the

formM = hF; D; Ii, where F = hW;<i is a strict linear or-

der representing the flow of time,D is a non- set, the domain

ofM, and I is a function associating with every moment of

time w 2W a first-order structure

I(w) =

D

D;P

I(w)

0

; P

I(w)

1

; : : :

E

;

2All of the results obtained in this paper still hold if we extend this

language with rigidly-interpreted constant symbols.

where each P
I(w)

i

is a relation on D of the same arity as

P

i

. An assignment a in M is a function from the set of

individual variables to D. Given a QT L-formula ', the

truth relation (M; w) j=

a

' (‘' is true at moment w in

model M under assignment a’) is defined inductively on

the construction of ':

� (M; w) j=

a

P (x

1

; : : : ; x

m

) iff

ha(x

1

) : : : ; a(x

m

)i 2 P

I(w);

� (M; w) j=

a

: iff (M; w) 6j=

a

 ;

� (M; w) j=

a

 

1

^ 

2

iff (M; w) j=

a

 

1

and (M; w) j=

a

 

2

;

� (M; w) j=

a

> and (M; w) 6j=

a

?;

� (M; w) j=

a

9x iff (M; w) j=

b

 for some assign-

ment b that may differ from a only on x;

� (M; w) j=

a

 

1

U  

2

iff there is v > w such that

(M; v) j=

a

 

2

and (M; u) j=

a

 

1

for all u 2 (w; v),

where (w; v) = fu 2W j w < u < vg;

� (M; w) j=

a

 

1

S  

2

iff there is v < w such that

(M; v) j=

a

 

2

and (M; u) j=

a

 

1

for all u 2 (v; w);

� (M; w) j=

a



 iff there is an immediate successor v

of w in W with (M; v) j=

a

 .

Note that, according to the given semantics, ' is equiva-

lent to ? U '. Instead of (M; w) j=

a

'(x), we may write

(M; w) j= '[a℄, where a(x) = a. For a sentence ' (i.e.,

with no free variables), we just write (M; w) j= '.

A QT L-formula' is said to be satisfiable if (M; w) j=

a

' holds for some model M, some moment w and some as-

signment a.

Fragments. For n 2 N, the n-variable fragment ofQT L,

consisting of QT L-formulas with at most n variables, is

denoted by QT L

n (remember that the one-variable frag-

ment of classical first-order logic is a notational variant

of propositional modal logic S5). QT L

1

2

is the subfrag-

ment of QT L1 with sole temporal operator 2. QT L

1

bin

extends QT L1 with the temporal operators 

n (n 2 N),

where n is given in binary. The propositional fragments

PT L

2

;PT Lbin are defined analogously to fragments of

QT L

0

= PT L. Some further ‘monodic’ fragments (e.g.,

the QT Lmo
1 , QT L21 , and T PF 1 of Table 1) will be de-

fined in x4.

3. Lower bounds

The main result in this section is the following:

Theorem 3.1. Let C be any class of strict linear orders,

at least one of which contains an infinite ascending chain.

Then the satisfiability problem forQT L1
2

-formulas in mod-

els based on flows of time from C is EXPSPACE-hard. The



Table 1. Complexity of the satisfiability problem for various linear temporal logics

flow of time

language hN; <i hQ; <i hR; <i

PT L

2

NP [22] NP [15] NP [15]

PT L PSPACE [22] PSPACE [17] PSPACE [17]

PT Lbin EXPSPACE [1] — —

QT L

1

2

EXPSPACE

�

� EXPSPACE

� 2EXPTIME [6℄
� EXPSPACE

QT L

1 EXPSPACE [10, 23] � EXPSPACE � EXPSPACE

QT L

1

bin 2EXPSPACE — —

QT L

mo
1 EXPSPACE � EXPSPACE � EXPSPACE

QT L

2

1 EXPSPACE � EXPSPACE � EXPSPACE

T PF 1 2EXPTIME � 2EXPTIME � 2EXPTIME

same holds if we restrict to models hF; D; Ii with finite do-

main D.

Proof. The proof uses some ideas from [14, 19]. First we

treat the case of arbitrary domains. The proof is by re-

duction of the following infinite version of the 2n-corridor

tiling problem, which is known to be EXPSPACE-

complete (cf. results in [5]): given an instance T =

hT; t

0

; ni, where T is a finite set of tile types, t
0

2 T is

a tile type, and n 2 N is given in binary, decide whether T

tiles the N � 2

n-corridor fhx; yi j x 2 N; 0 � y < 2

n

g in

such a way that t
0

is placed at h0; 0i and the top and bottom

sides of the corridor are of some fixed colour, say, white.

Suppose that T = hT; t

0

; ni is given. Our aim is to write

a QT L1
2

-formula '
T

such that (i) '
T

is constructible from

T in polynomial time, and (ii) '
T

is satisfiable in a first-

order temporal model M = hF; D; Ii based on some F =

hW;<i from C iff T tiles the N�2

n -corridor so that the top

and bottom sides are white and t
0

is placed at h0; 0i.

We will write down nine numbered conjuncts of '
T

.

To aid our explanation, we will assume that they hold in

a modelM = hhW;<i ; D; Ii at a time x
0

2W and a point

y

0

2 D, and show how they force a tiling.

'

T

will contain, among many others, unary predicates

t(x) for all t 2 T . Our first step in the construction of '
T

is

to write down formulas forcing not only an infinite sequence

y

0

; y

1

; : : : of distinct elements fromD, but at the same time

an infinite sequence x
0

< x

1

< x

2

< : : : of points from

W , such that for each i 2 N, (M; x

i

) j= t[y

i

℄ for a unique

tile type t. If i = k �2

n

+j for some j < 2

n then we will use

hx

i

; y

i

i to encode the pair hk; ji of the N � 2

n-grid. Thus,

the upper neighbour hk; j + 1i of hk; ji (if j + 1 < 2

n)

will be coded by the element y
i+1

at time x
i+1

, and its right

neighbour hk + 1; ji by y
i+2

n at the moment x
i+2

n .

Let q
0

; : : : ; q

n�1

be pairwise distinct propositional vari-

ables, and P
0

; : : : ; P

n�1

be distinct unary predicates. We

will require that the truth values of the P
i

do not change

over time. This requirement can be ensured by the sentence

^

i<n

8x (2

+

P

i

(x) _ 2

+

:P

i

(x)): (1)

For any atomic formula �, write �1 for � and �0 for :�.

For each j < 2

n, define formulas

�

j

= q

d

0

0

^ � � � ^ q

d

n�1

n�1

;

Æ

j

(x) = P

d

0

0

(x) ^ � � � ^ P

d

n�1

n�1

(x);

where d
n�1

: : : d

0

is the binary representation of j. We say

that the moment u 2 W is of type j if (M; u) j= �

j

. Assum-

ing that (1) holds at x
0

, we also say that the element y 2 D

is of type j if (M; u) j= Æ

j

[y℄ for all u 2W with u � x

0

.

Now define the formula

equ(x) =

^

i<n

(P

i

(x)$ q

i

):

It should be clear that for all moments u � x

0

and all ele-

ments y 2 D, if (M; u) j= equ[y℄ then u and y are of the

same type (j, for some j < 2

n).

We can now define ‘counting’ formulas of length poly-

nomial in n. Suppose that su(x) is a unary predicate and



that (1) and the two sentences

2

+

^

k<n

�

�

^

i<k

q

i

^ :q

k

�

! 8x

h

su(x)$

^

i<k

:P

i

(x) ^ P

k

(x) ^

^

k<j<n

(P

j

(x) $ q

j

)

i

� (2)

2

+

�

^

i<n

q

i

! 8x

�

su(x) $

^

i<n

:P

i

(x)

�

�

(3)

hold in M at x
0

. For u � x

0

and y 2 D with (M; u) j=

su[y℄, if u is of type j (j < 2

n) then y is of type j + 1

(mod 2

n

).

Write

tile(x) =

_

t2T

t(x); and � = 9x tile(x):

Now we can generate the required infinite sequences of

points using the formula

�

0

^ equ(x) ^ tile(x) ^ 2:tile(x)

^ 2

+

�

�! 9x

�

su(x) ^3(equ(x) ^ tile(x))

^ 2(3tile(x)! :�)

��

, (4)

Indeed, suppose that the conjunction of (1)–(4) holds at

x

0

on some element y
0

2 D. Then x
0

; y

0

are of type 0.

Since (M; x

0

) j= 9x

�

su(x) ^ 3(equ(x) ^ tile(x)) ^

2(3tile(x) ! :�)

�

; there are y
1

2 D and x
1

> x

0

in

W such that

� (M; x

0

) j= su[y

1

℄ (so y
1

is of type 1),

� (M; x

1

) j= equ[y

1

℄ (so the moment x
1

is of type 1),

� (M; x

1

) j= tile[y

1

℄ (note that since (M; x

0

) j=

2:tile[y

0

℄, we have y
1

6= y

0

),

� no moment u > x

1

makes tile[y

1

℄ true,

� no moment u with x
0

< u < x

1

makes � true.

Repeating this argument with x

1

in place of x
0

, we find

y

2

=2 fy

0

; y

1

g and x
2

> x

1

of type 2, etc., and so forth,

until we get to a moment x
2

n

�1

which is of type 2n � 1,

and then to x
2

n of type 0 again. See Fig. 1.

Our next aim is to write down formulas to locate the up-

per and right neighbours of a given tile in the corridor. Let

up(x) = 3tile(x) ^2(3tile(x)! :�);

right(x) = equ(x) ^3tile(x) ^

^2

�

� ^3tile(x)! :equ(x)

�

:

It is easy to see that for all i; j 2 N,

� (M; x

i

) j= up[y

j

℄ iff j = i+ 1,

� (M; x

i

) j= right[y

i+2

n

℄ iff j = i+ 2

n.

Now, the formulas below enforce that h0; 0i is covered by

t

0

, every point of the N � 2

n-corridor is covered by at most

one tile, the top and bottom sides of the corridor are white,

and the colours on adjacent edges of adjacent tiles match:

t

0

(x) ^ 2

+

8x

^

t;t

0

2T;

t6=t

0

:(t(x) ^ t

0

(x)); (5)

2

+

8x

�

�

0

^ tile(x) !

_

t2T;

down(t)=white

t(x)

�

; (6)

2

+

8x

�

�

2

n

�1

^ tile(x) !

_

t2T;

up(t)=white

t(x)

�

; (7)

2

+

�

:�

2

n

�1

!

8x

^

t;t

0

2T;

up(t)6=down(t0)

�

t(x)! 8x

�

up(x)! 2:t

0

(x)

�

�

�

;

(8)

2

+

8x

^

t;t

0

2T;

right(t)6=left(t0)

�

t(x)! 8x

�

right(x)! 2:t

0

(x)

�

�

: (9)

Let '
T

be the conjunction of (1)–(9). It is clear that '
T

is constructible from T in polynomial time. Suppose that

(M; x

0

) j= '

T

[y

0

℄. Then, after defining the points x
i

; y

i

(i 2 N) as above, we define a map f : N � 2

n

! T by

taking

f(k; j) = t iff (M; x

k�2

n

+j

) j= t[y

k�2

n

+j

℄:

We leave it to the reader to check that f is indeed a tiling of

N � 2

n as required.

For the other direction, take a flow of time F from C hav-

ing an infinite ascending chain of distinct points x
i

. As-

suming that T = hT; t

0

; ni tiles the N � 2

n-corridor, Fig. 1

shows that '
T

is satisfiable in a first-order temporal model

based on F and with infinite domain.

Now we sketch how to deal with models with finite do-

mains. By the pigeon-hole principle, any tiling of the N �

2

n-corridor by T = hT; t

0

; ni has two identical columns

X;Y , so it can be converted into an eventually periodic

tiling by iterating the part [X;Y ) between the columns.

Such a tiling can be specified by finitely many x
i

; y

i

. So we

modify '
T

by adding propositional variables X;Y to mark

the end of the columns, relativising the main 3 in (4) to

times before Y by replacing the first ‘�’ by ‘� ^3Y ’, and

including a statement that corresponding tiles in columns

X and Y are the same. We leave the reader to write the

required formulas. Since no pairs hx
i

; y

i

i are forced for x
i

after Y , the resulting formula has a model with finite do-

main iff T tiles the corridor.

It is a consequence of this theorem that the decision prob-

lem for the temporal epistemic logic C2nf,nl,sync of [10] for
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Figure 1. Satisfying '

T

(with n = 2) in a firstorder temporal model

synchronous systems with perfect recall and no forgetting

for one agent with sole temporal operator2 is EXPSPACE-

hard. To see this, it is enough to recall that QT L1
2

is

just a notational variant of that logic. Indeed, assume that

C

2

nf,nl,sync is based on the language with propositional vari-

ables p
1

; : : : , the knowledge operator K, the temporal op-

erator 2, and the Booleans, ^ and :. A translation ℄ from

that language onto QT L1
2

can be defined by taking

p

℄

i

= P

i

(x)

( 

1

^  

2

)

℄

=  

℄

1

^  

℄

2

(: )

℄

= : 

℄

(K )

℄

= 8x 

℄

(2 )

℄

= 2 

℄

:

It is easy to prove that  is satisfiable iff  ℄ is satisfiable

(see, e.g., [6]). Obviously, this equivalence neither depends

on the flow of time nor on the temporal operators available

— as long as we consider the same flows of time and the

same temporal operators for both languages. So, every re-

sult formulated in the present paper for a variant of QT L1

holds true for the corresponding variant of Cnf,nl,sync as well.

Note also that in the literature on (products of) modal

logic the corresponding systems are often denoted by

PTL � S5 [7]. Again, the results formulated here for

QT L

1 hold true for the corresponding product logics with

S5.

Reynolds [16] proved the decidability of the product

Lin � S5, where Lin is the temporal logic of arbitrary

strict linear orders with the operators ‘always in the future’

and ‘always in the past.’ He gave a 2EXPTIME decision

procedure and conjectured that the lower bound should be

EXPSPACE. Theorem 3.1 shows this conjecture to be true.

Now consider the language QT L1bin extending QT L

1

with the temporal operators n, n given in binary.

Theorem 3.2. The satisfiability problem for QT L

1

bin-

formulas over the flow of time hN; <i is 2EXPSPACE-hard.

Proof. This result can be proved by an easy modification

of the proof of Corollary 4.3(1) of [10]. Actually, it follows

from this proof that it is sufficient to prove the following

version of Lemma 4.1 (about ‘yardsticks’) of [10]:

Let, inductively, exp(0; n) = n, and exp(k + 1; n) =

exp(k; n) � 2exp(k;n).



Lemma 3.3. For every n � 0, there exists a satisfiable for-

mula '
n

of temporal propositional logic extended by 

n, n

coded in binary, with j'
n

j 2 O(n), such that if '
n

is true

at moment 0, then there exists N � 0 such that the propo-

sitional variable p
2

is true in a time point m iff m is of the

form N + j � exp(2; n), for some j � 0.

This modified lemma can be proved by defining '
1;n

as in

the proof of Lemma 4.1 of [10], and then using the opera-

tor exp(1;n) in the construction of '
n

in the same way as

the operators n where used in the definition of '
1;n

. (Ac-

tually, the authors briefly discuss this construction on page

222 of [10]). We leave the details to the reader.

Obviously, given the computational complexity of the

language with  and 2, we obtain an upper bound for the

language with additional operators 

n, n > 1, by adding

one exponential. The result above states that this upper

bound is optimal. Note also that the proof above goes

through for satisfiability in models with finite domains.

4. Upper bounds

Now we obtain the matching upper bounds for some de-

cidable fragments of first-order temporal logics based on

hN; <i. The maximal ‘well-behaved’ sublanguage of QT L

yet discovered [11] consists of so-called monodic formulas.

A QT L-formula is said to be monodic if it has no subfor-

mula of the form ' S  or ' U  with more than one free

variable.3 The set of all monodic formulas will be denoted

by QT L 1 .

The result obtained in [11] states (roughly) that, if we

take a fragment QT L0 of QT L 1 whose underlying first-

order (non-temporal) part is decidable, then QT L

0 is de-

cidable over hN; <i, hQ; <i, and some other flows of time.

Examples of QT L0 include:

� the monadic monodic fragmentQT Lmo
1 ,

� the one-variable fragment QT L1,

� the two-variable monodic fragmentQT L21 ,

� the packed monodic fragment T PF 1 .

Here, T PF 1 is the fragment of QT L 1 in which quantifi-

cation is restricted to patterns 9�y( ^ '), where �y is a tuple

of variables, every free variable of ' is free in  as well,

and the ‘guard’  is a conjunction of atomic and existen-

tially quantified atomic formulas such that for any two free

variables x
1

, x
2

of , there is a conjunct of  in which x
1

,

x

2

both occur free. This definition is based on the packed

fragment of first-order logic, defined by Marx in [13]. The

3In what follows, we consider the operator  as an abbreviation of

?U '.

clique-guarded fragment of Grädel [9] is an equivalent for-

mulation. These are ‘guarded’ fragments; their satisfiability

problem is 2EXPTIME-complete.

We now set up some machinery from [11] for the com-

plexity proof. Let ' be a QT L 1 -sentence. For every sub-

formula of ' of the form (x) =  

1

U 

2

or (x) =  

1

S 

2

with one free variable, we reserve a unary predicateR
 

(x);

and for every subsentence of the form  =  

1

U  

2

or

 =  

1

S  

2

we fix a fresh propositional variable p
 

. R
 

and p
 

are called surrogates of  (x) and  , respectively.

Denote by ' the result of replacing all subformulas of ' of

the form  

1

U  

2

and  
1

S  

2

, which are not in the scope of

another occurrence of U and S, by their surrogates. Thus,

' is a pure (non-temporal) first-order formula.

Let x be a variable not occurring in '. We denote by

sub ' the set of subformulas of ', and

sub
x

' = f fx=yg;: fx=yg j  (y) 2 sub 'g:

Without loss of generality we may identify :: with  ,

so sub
x

' is finite. By a type for ' we mean any Boolean-

saturated subset t of f j  2 sub
x

'g — that is,

�  

1

^ 

2

2 t iff  
1

2 t and  
2

2 t, for every  
1

^ 

2

2

sub
x

';

� : 2 t iff  =2 t, for every : 2 sub
x

'.

To a certain extent, every state I(w) in a first-order tem-

poral model can be characterised — modulo ' — by the

set of types that are ‘realised’ in this state. This motivates

the following definition. A set C of types is called a state

candidate. However, not all state candidates can represent

states in first-order temporal models. Consider a first-order

structure

I =




D;P

I

0

; : : :

�

and suppose that a 2 D. The set tI(a) = f j  2

sub
x

'; I j=  [a℄g is clearly a type for '. Say that I re-

alises a state candidate C if C = ft

I

(a) j a 2 Dg. A state

candidate is said to be (finitely) realisable if there is a (fi-

nite) first-order structure realising it. It is easy to see that a

state candidate C is (finitely) realisable iff the sentence

real

C

= 8x

_

t2C

^

 2t

 (x) ^

^

t2C

9x

^

 2t

 (x)

is true in some (finite) first-order structure.

A quasimodel for a QT L 1 -sentence ' (based on F =

hW;<i) is a tripleQ = hF; q;Ri, where q, a state function,

is a map associating with each w 2 W a realisable state

candidate q(w) for ', andR is a set of runs — functions in
Q

w2W

q(w) satisfying the following conditions:

� every r 2 R is coherent and saturated — that is,



– for every  
1

U  

2

2 sub
x

' and every w 2 W ,

we have  
1

U  

2

2 r(w) iff there is v > w such

that  
2

2 r(v) and  
1

2 r(u) for all u 2 (w; v),

and

– for every  
1

S  

2

2 sub
x

' and every w 2 W ,

we have  
1

S  

2

2 r(w) iff there is v < w such

that  
2

2 r(v) and  
1

2 r(u) for all u 2 (v; w);

� and for every w 2 W and every t 2 q(w), there exists

a run r 2 R such that r(w) = t.

The following general theorem provides upper bounds

for the computational complexity of the satisfiability prob-

lem for decidable monodic fragments over the flow of time

hN; <i.

Theorem 4.1. Let QT L0 be a sublanguage of QT L 1 .

(i) Suppose that there is an algorithm which, given a

state candidate C for a QT L

0-sentence ', can recognise

whether C is (finitely) realisable using exponential space in

the length of '. Then the satisfiability problem for QT L0

in models over hN; <i (with finite domains) is decidable in

EXPSPACE.

(ii) Suppose that there is an algorithm which, given a

state candidate C for a QT L

0-sentence ', can recognise

whether C is (finitely) realisable in deterministic double ex-

ponential time in the length of '. Then the satisfiability

problem for QT L0 in models over hN; <i (with finite do-

mains) is decidable in 2EXPTIME.

Proof. Without loss of generality (see, e.g., [6]) we can

consider only S-free formulas.

(i) We present a non-deterministic EXPSPACE satisfi-

ability checking algorithm for QT L0-sentences which is

similar to that of [22]. Theorem 24 of [11] states that

a QT L0-sentence ' is satisfiable over hN; <i iff there is

a ‘balloon-like’ quasimodel Q = hhN; <i ; q;Ri, where

q(l

1

+ n) = q(l

1

+ l

2

+ n) for some fixed l
1

, l
2

(l
2

> 0)

and every n 2 N, and both l
1

, l
2

are double exponential in

the length `(') of '.

Thus, given a QT L-sentence ', the algorithm guesses

the length of the prefix l
1

and the period l
2

of the quasi-

model to be built. Then at every step i it guesses a state can-

didate q(i) and checks whether q(i) is realisable and suit-

able for the quasimodel (in the sense that we have enough

runs). Note that q(i) can be represented using exponen-

tial space in `('). The former test requires no more than

exponential space in `('), and the latter one can be done

in deterministic polynomial time in the length of q(i), so

again using exponential space.

It is to be noted that this algorithm needs to store at most

three state candidates at every step (previous q(i� 1), cur-

rent q(i), and the beginning of the loop q(l
1

)). It also needs

to keep the list of unfulfilled eventualities (formulas of the

form  

1

U  

2

) for every type of the current state candi-

date. Therefore, the presented non-deterministic algorithm

requires only an exponential amount of space. By [20],

there is an equivalent deterministic algorithm that runs in

exponential space.

(ii) The proof is similar to that of (i). The difference is in

the algorithm for checking realisability of state candidates,

which now uses alternation and runs in exponential space

in the length of the formula. The existence of such an algo-

rithm follows from the fact that 2EXPTIME coincides with

AEXPSPACE [4].

The argument for finite domains is similar.

Theorem 4.2. (i) The satisfiability problem for the lan-

guages QT Lmo
1 , QT L1 and QT L

2

1 in models over the

flow of time hN; <i (with arbitrary or only finite domains)

is EXPSPACE-complete.

(ii) The satisfiability problem for T PF 1 in models

over hN; <i (with arbitrary or only finite domains) is

2EXPTIME-complete.

Proof. The lower bounds follow from Theorem 3.1 and [9].

To establish the upper bounds for the case of arbitrary

domains, we apply Theorem 4.1 and use the formula real

C

stating that C is realisable. Although the length of real

C

is exponential in the length `(') of ', using its specific

structure one can show that for the monadic, one- and two-

variable fragments the realisability test can be carried out by

non-deterministic algorithms that run in exponential space

in `(') (see [3]), and by a deterministic algorithm in double

exponential time in `(') for the packed fragment [8].

The upper bounds for the case of finite domains follow

in the same way from Theorem 4.1 and the fact that all the

considered first-order fragments have the finite model prop-

erty (and thus realisability coincides with finite realisabil-

ity).
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