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Comparing decision problems for various
paradigms of algebraic logic

Agnes Kurucz

Abstract. We show that in many cases the decision problems for varieties of cylindric
algebras are much harder than those for the corresponding relation algebra reducts. We
also give examples of varieties of cylindric and relation algebras which are algorithmically
more complicated than the subvarieties of their representable algebras.

1. Introduction

The theories of various classes of Tarskian algebraic logic, such as relation alge-
bras (RA) and n-dimensional cylindric algebras (CAn), were developed in a parallel
fashion, see e.g. Henkin et al . [6], Maddux [8], Monk [9]. There is a standard trans-
lation, due to Henkin and Tarski, connecting the two paradigms. As the equational
theories of both RA and CAn (for n > 2) are recursively enumerable but not de-
cidable, and the same holds for the subclasses of representable algebras, one might
conjecture that this translation preserves the degree of unsolvability.

Our first result (Theorem 1) shows that this conjecture does not hold. For
instance, we prove that there exist many undecidable subvarieties of CA3 such that
the corresponding relation algebra varieties are decidable.

Our next aim is to compare the recursion theoretic behaviour of varieties of re-
lation algebras (or cylindric algebras) and the corresponding subvarieties generated
by their representables. Again, the most common examples might suggest an anal-
ogous behaviour: the varieties of all relation algebras and of all representable rela-
tion algebras are both recursively enumerable but not decidable; the same holds for
all cylindric algebras and all representable cylindric algebras of dimension greater
than 2; while in dimension 2 both the representable and axiomatic varieties of
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cylindric algebras are decidable. Here we show that one can find highly unsolvable
abstract varieties such that their representables have less complicated equational
theories (Theorems 2 and 3).

The paper is organised as follows. The next section contains the definitions of the
various algebras, our results, and related open problems. Sections 3–5 are devoted
to the proofs of Theorems 1–3, respectively.

2. Background and results

We assume as known such basic concepts of universal algebra as varieties, homo-
morphisms, subalgebras, and direct products. Some basic knowledge about Boolean
algebras is also required. The reader may find the recursion theoretic notions not
defined here (such as degree of unsolvability) e.g. in [3]. However, in order to make
the paper more or less self-contained, below we give a short summary of the basic
definitions and properties concerning relation algebras and cylindric algebras. For
more details, consult Henkin et al . [6] and Maddux [8].

Notation. For a set U , |U | denotes the cardinality of U , and P(U) stands for the
set of all subsets of U . The usual Boolean operations on subsets of U are denoted
by ∪, ∩, and −U . ω denotes the set of natural numbers, and for every n ∈ ω
we assume that n = {k ∈ ω : k < n}. For n ∈ ω, nU is the set of all n-tuples
of elements in U . We use notation u = ⟨u0, u1, . . . , un−1⟩ for n-tuples. Algebras
are denoted by gothic letters with the corresponding roman letters denoting their
universes. Given algebras A and B, A ⊆ B denotes that A is isomorphic to a
subalgebra of B, that is, A is embeddable into B. Given some class K of algebras,
IK, HK, SK, and PK denote, respectively, the classes of all isomorphic copies,
homomorphic images, isomorphic copies of subalgebras, and isomorphic copies of
direct products of members of K. Eq(K) denotes the equational theory of K.

Relation algebras. A relation algebra is an algebra of the form

A = ⟨A, +, · ,−, 1, 0, ; , ,̆ 1′⟩

such that
(R0) ⟨A, +, · ,−, 1, 0⟩ is a Boolean algebra (called the Boolean reduct of A),

1′ ∈ A, ; and ˘ are binary and unary operations on A, respectively, satisfying the
following properties, for all x, y, z ∈ A:

(R1) x ; (y ; z) = (x ; y) ; z
(R2) (x + y) ; z = (x ; z) + (y ; z)
(R3) x ; 1′ = x
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(R4) x̆ ˘ = x

(R5) (x + y)̆ = x̆ + y˘
(R6) (x ; y)̆ = y˘; x̆
(R7) x̆ ; − (x ; y) ≤ −y

RA denotes the class of all relation algebras. An element x of a relation algebra A

is called an atom of A, if x is an atom of the Boolean reduct of A, that is, for all
y ∈ A, if y ≤ x then either y = 0 or y = x. A relation algebra is called complete
atomic if its Boolean reduct is complete atomic.

It is well-known that a relation algebra A is simple (i.e., it has no non-trivial
homomorphic images) iff the quantifier free formula

0 ̸= 1 ∧ (x ̸= 0 → 1 ; x ; 1 = 1)

is valid in A. Thus for any variety V of relation algebras, the class Si(V) of simple
algebras in V is a universal class. Further, for every quantifier free formula ϕ in
the language of relation algebras, one can find in an effective way an equation eϕ

with the same free variables such that the formula ϕ ↔ eϕ is valid in all simple
relation algebras. Thus for any universal class K of simple relation algebras, SPK
is a variety, and Si(SPK) = K holds. And, for any variety V of relation algebras,
we have SPSi(V) = V.

An example for a simple relation algebra is the full relation set algebra with base
U :

Rs(U) =
〈
P(2U),∪,∩,−

2U , 2U, ∅, | ,−1, IdU

〉
,

where for all X, Y ⊆ 2U ,

X | Y = {⟨u, v⟩ ∈ 2U : (∃z ∈ U) ⟨u, z⟩ ∈ X and ⟨z, v⟩ ∈ Y },
X−1 = {⟨u, v⟩ ∈ 2U : ⟨v, u⟩ ∈ X},
IdU = {⟨u, u⟩ ∈ 2U : u ∈ U}.

The variety RRA of representable relation algebras is

RRA = SP {Rs(U) : U is a set} .

Cylindric algebras. For every n ∈ ω, a cylindric algebra of dimension n is an
algebra of the form

A = ⟨A, +, · ,−, 1, 0, ci, dij⟩i,j<n

such that
(C0) ⟨A, +, · ,−, 1, 0⟩ is a Boolean algebra (called the Boolean reduct of A),

dij ∈ A for all i, j < n, and ci are unary operations on A for all i < n satisfying
the following properties, for all x, y ∈ A:

(C1) ci0 = 0
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(C2) x ≤ cix

(C3) ci(x · ciy) = cix · ciy

(C4) cicjx = cjcix

(C5) dii = 1

(C6) djk = ci(dji · dik) (for all i ̸= j, k)

(C7) ci(dij · x) · ci(dij ·−x) = 0 (for all i ̸= j)

CAn denotes the class of all cylindric algebras of dimension n. An element x of
an n-dimensional cylindric algebra A is called an atom of A, if x is an atom of
the Boolean reduct of A. An n-dimensional cylindric algebra is called atomic if its
Boolean reduct is atomic. The following term definable substitution operators will
play an important role in the paper: For any i, j < n, put

si
jx = ci(dij · x).

It is well-known that an n-dimensional cylindric algebra A is simple iff the quan-
tifier free formula

0 ̸= 1 ∧ (x ̸= 0 → c0c1 · · · cn−1x = 1)

is valid in A. Similarly to relation algebras, for every quantifier free formula ϕ in
the language of n-dimensional cylindric algebras, one can find in an effective way
an equation eϕ with the same free variables such that the formula ϕ↔ eϕ is valid
in all simple n-dimensional cylindric algebras.

An example for a simple cylindric algebra is the full cylindric set algebra of
dimension n with base U :

Csn(U) =
〈
P(nU),∪,∩,−

nU , nU, ∅, Ci, Dij

〉

i,j<n
,

where for all i, j < n and X ⊆ nU ,

Ci(X) = {u ∈ nU : (∃v ∈ X)(∀j < n) if j ̸= i then uj = vj },
Dij = {u ∈ nU : ui = uj}.

The variety RCAn of representable cylindric algebras of dimension n is

RCAn = SP {Csn(U) : U is a set} .

Constructing relation algebras from cylindric algebras. The following trans-
lation which associates relation algebras with cylindric algebras is due to Henkin
and Tarski, see [6, 5.3.7]. For an algebra A ∈ CAn (n ≥ 3), let

Nr2A = {x ∈ A : cix = x, for all 2 ≤ i < n}.
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Nr2A is called the set of 2-dimensional elements of A. Define a binary operation
; and a unary operation ˘ on A by taking, for all x, y ∈ A,

x ; y = c2(s1
2x · s0

2y)

x̆ = s2
1s

1
0s

0
2x.

It is straightforward to check, using the properties (C0)–(C7), that Nr2A is closed
under the Booleans, contains d01, and is closed under ; and .̆ Define the algebra

Ra A = ⟨Nr2A, +, · ,−, 1, 0, ; , ,̆ d01⟩,

which is called the relation algebra type reduct of A. For a class K ⊆ CAn, n ≥ 3,
let

Ra∗K = {Ra A : A ∈ K}.

It is shown in [6, 5.3.8] that Ra A ∈ RA, whenever n ≥ 4 and A ∈ CAn. Note that
Ra A is not always a relation algebra if A ∈ CA3, see Simon [11] for a discussion.
Nevertheless, the 3-dimensional cylindric algebras we introduce in Section 3 are
such that their relation algebra type reducts are in fact relation algebras (see (Ca2)
below).

Since the universe and the operations of Ra A are all term definable in A, it is
easy to see that

if A ⊆ B then Ra A ⊆ Ra B, (1)

and similar statements hold for homomorphic images and direct products as well.
Thus for all K ⊆ CAn (n ≥ 3) we have

Ra∗HSPK ⊆ HSPRa∗K.

Moreover, since if K1 ⊆ K2 then HSPK1 ⊆ HSPK2 and Ra∗ K1 ⊆ Ra∗ K2, we
obtain:

For every class K ⊆ CAn (n ≥ 3), HSPRa∗HSPK = HSPRa∗K. (2)

Results. Our results are the following:

Theorem 1. For any two degrees θ1 and θ2 of unsolvability with θ1 > θ2, there are
continuum many subvarieties V of CA3 such that the degree of unsolvability of Eq(V)
is ≥ θ1, while the degree of unsolvability of Eq(Ra∗V) is equal to θ2. In particular,
there are continuum many subvarieties V of CA3 such that Eq(V) is undecidable,
while Eq(Ra∗V) is decidable.

Theorem 2. For each degree θ of unsolvability, there is a subvariety V of RA such
that the degree of unsolvability of Eq(V) is equal to θ, while Eq(V∩RRA) is decidable.
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Theorem 3. For every natural number n ≥ 2, and every degree θ of unsolvability,
there are continuum many subvarieties V of CAn such that the degree of unsolvability
of Eq(V) is ≥ θ, while Eq(V∩RCAn) is recursively enumerable (in fact, V∩RCAn =
RCAn holds). In particular, there are continuum many subvarieties V of CA2 such
that Eq(V) is undecidable, while Eq(V ∩ RCA2) is decidable.

Finally, we mention some related open problems:
(Q1) Give some subvariety V of CAn, for n ≥ 3, such that Eq(V) is undecidable

but Eq(V ∩ RCAn) is decidable.
(Q2) Give some subvariety of either RA or CAn such that its degree of unsolvability

is lower than that of its representables.

3. Cylindric algebras vs. relation algebras

In this section we prove Theorem 1. We will use splittings of 3-dimensional
cylindric algebras which are constructed from Lyndon relation algebras. So to
begin with, let us introduce these notions.

Constructing 3-dimensional cylindric algebras from relation algebras.
Such a construction was first published in Monk [9], see also Maddux [8, Ch.10].

Given a complete atomic relation algebra A, let

B = {a : a = ⟨a0, a1, a2⟩, a0, a1, a2 are atoms of A, and a0 ≤ a1 ; a2},

dA
01 = {a ∈ B : a0 ≤ 1′},

dA
02 = {a ∈ B : a1 ≤ 1′},

dA
12 = {a ∈ B : a2 ≤ 1′},

and for all X ⊆ B,

cA
0 (X) = {a ∈ B : (∃b ∈ X) a2 = b2},

cA
1 (X) = {a ∈ B : (∃b ∈ X) a1 = b1},

cA
2 (X) = {a ∈ B : (∃b ∈ X) a0 = b0}.

Define the 3-dimensional cylindric algebra type algebra

Ca3 A =
〈
P(B),∪,∩,−B, B, ∅, cA

i , dA
ij

〉
i,j<3

.

And, for any class K of complete atomic relation algebras, let

Ca∗3 K = {Ca3 A : A ∈ K}.

Then we have (see [9], [8]):

(Ca1) Ca3 A ∈ CA3. If A is simple then Ca3 A is simple as well.
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(Ca2) Ra Ca3 A ∈ RA, and the function h defined by h(x) = {a ∈ B : a0 ≤ x}
is an isomorphism between A and Ra Ca3 A.

In particular, for all atoms a0 of A, we have

h(a0) = {⟨a0, b, c⟩ : b, c are atoms of A}.

Let si A
j denote the substitution operations of Ca3 A, for i, j < 3. Then it is not

hard to see that, for all atoms a0, a1, a2 of A, we have

s1 A
2 h(a1) = {⟨b, a1, c⟩ : b, c are atoms of A},

s0 A
2 h(a2) = {⟨b, c, a2⟩ : b, c are atoms of A}.

Therefore,

h(a0) ∩ s1 A
2 h(a1) ∩ s0 A

2 h(a2) = {⟨a0, a1, a2⟩}, (3)

and so

h(a0) ∩ s1 A
2 h(a1) ∩ s0 A

2 h(a2) is an atom of Ca3 A. (4)

Lyndon algebras. Lyndon [7] constructed relation algebras from projective ge-
ometries of arbitrary dimension. Here we define those Lyndon algebras which can
be obtained from projective lines.

Let U be a set with |U | ≥ 3 and let e be such that e /∈ U . We define the Lyndon
algebra on U as

L(U) =
〈
P(U ∪ {e}),∪,∩,−U∪{e}, U ∪ {e}, ∅, ; , ,̆ 1′

〉
,

where 1′ = {e}, X˘ = X , for all X ⊆ U ∪ {e}, and ; is the completely additive
binary operation on P(U ∪{e}) defined between singletons of P(U ∪{e}) as follows.
For any u ̸= v ∈ U ,

{u} ; {e} = {e} ; {u} = {u}
{u} ; {u} = {u} ∪ 1′ = {u, e}
{u} ; {v} = 1−({u}∪ {v} ∪ 1′) = U−{u, v}
{e} ; {e} = {e}.

Then clearly the singletons {e} = 1′ and {u} for u ∈ U are the atoms of L(U).
Moreover, we have (see [7]):

(Ly1) For any set U with |U | ≥ 3, L(U) is a simple and complete atomic relation
algebra.

Observe that for all non-zero elements X of L(U) with e /∈ X , we have X ; X ̸= U
iff X is a (non-identity) atom of L(U). Therefore the following holds:
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Claim 3.1. Suppose A ⊆ L(U) for some set U with |U | ≥ 3. Then for every
element x in A, x is a non-identity atom of L(U) iff x satisfies the formula

La(x) = (0 < x < −1′) ∧ (x ; x ̸= 1).

in A.

Now let
L∅= {A : A ⊆ L(U), U is a set with |U | ≥ 3, and A is not

isomorphic to L(n), for any n ∈ ω − 3},

and for any W ⊆ ω − 3, let

LW = L∅ ∪ I {L(n) : n ∈ W}.

The following statements are proved in Andréka et al . [2], for every W ⊆ ω − 3:

(Ly2) [2, Thm.3.1(i)] LW is a universal class of simple relation algebras. There-
fore SP LW is a subvariety of RA.

(Ly3) [2, Thm.3.4(iii)] Eq(SP LW ) and W have the same degree of unsolvability.
In particular, Eq(SP LW ) is decidable iff W is decidable.

For each W ⊆ ω − 3, define the subclass L−
W of LW by taking

L−
W = {A ∈ L∅ : A ⊆ L(n), for some n ∈ ω − 3} ∪ I {L(U) : U is an infinite set}

∪ I {L(n) : n ∈ W}.

Since the only algebras in LW which are missing from L−
W are those which are

isomorphic to subalgebras of some infinite Lyndon algebra L(U), we have

LW ⊆ SL−
W .

Therefore LW and L−
W generate the same variety, that is, by (Ly2) we have

HSP L−
W = SP LW . (5)

Splitting. This is a technique for obtaining new cylindric algebras from cylindric
algebras, and is a special case of dilation, see Henkin et al . [6, 3.2.69], Andréka [1].
Here we define “splitting to two” for finite algebras only.

Suppose A is a finite (thus atomic) n-dimensional cylindric algebra, and a is an
atom of A such that

a ≤
∏

i,j<n, i̸=j

−dij .

We call such an a a subdiversity atom of A. We will ‘split’ a into two new atoms a′

and a′′ such that “the cj and djk behaviour” of both a′ and a′′ will “imitate” that
of a.
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To this end, we define a finite atomic algebra split(A, a) of the similarity type
of n-dimensional cylindric algebras as follows: The atoms of split(A, a) are a′, a′′,
and all those atoms of A which are different from a. For all i, j < n, and atoms x, y
of A different from a, let

x ≤ dij in split(A, a) iff x ≤ dij in A,

x ≤ ciy in split(A, a) iff x ≤ ciy in A,

x ≤ cia′ in split(A, a) iff x ≤ cia in A,

x ≤ cia′′ in split(A, a) iff x ≤ cia in A,

and if i ̸= j then

a′ ≤ −dij , a′′ ≤ −dij ,

a′ ≤ cia′, a′ ≤ cia′′, a′′ ≤ cia′, a′′ ≤ cia′′.

Finally, for every element z of split(A, a), define

ciz =
∑

{cix : x is an atom of split(A, a), and x ≤ z}.

Then we have (see [6], [1]):

(Sp1) split(A, a) ∈ CAn, and if A is simple then split(A, a) is simple as well.

(Sp2) A is isomorphic to a subalgebra of split(A, a).

(Sp3) All the elements of split(A, a) of the form ciz (i < n) belong to (the
isomorphic image of) A.

(Sp4) The isomorphic image of a (that is, a′ + a′′) is not an atom of split(A, a).

Thus by (Sp2) and (Sp3), we obtain:

Claim 3.2. If n ≥ 3 then Ra A is isomorphic to Ra split(A, a).

Proof of Theorem 1. For any m ∈ ω − 3, take the Lyndon algebra L(m) on m.
Then {0}, {1} and {2} are non-identity atoms of L(m) such that {0} ≤ {1} ; {2}
holds. Therefore, ⟨{0}, {1}, {2}⟩ is a subdiversity atom of Ca3 L(m). Define

Bm = split(Ca3 L(m), ⟨{0}, {1}, {2}⟩).

Now suppose θ1 and θ2 are degrees of unsolvability with θ1 > θ2. Take some
sets D ⊆ ω − 3 and H ⊆ D such that the degree of unsolvability of D is θ2, and
the degree of unsolvability of H is θ1. Let

KDH = Ca∗3 L−
D ∪ {Bm : m ∈ D − H}.

We are about to find a quantifier free formula ϕm which “singles Bm out of KDH”,
that is, for all A ∈ KDH , ϕm is valid in A iff A ̸= Bm. Roughly, ϕm will say
the following: “If x0, . . . , xm−1 is the list of all distinct non-identity atoms of the
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‘underlying’ Lyndon algebra then ⟨xi, xj , xk⟩ are cylindric algebra atoms, for all
distinct i, j, k < m.”

To this end, let Laca(x) be the formula in the language of 3-dimensional cylindric
algebras which is obtained from the relation algebraic formula La(x) of Claim 3.1
by replacing ; and 1′ with the corresponding cylindric algebraic terms:

Laca(x) = (0 < x < −d01) ∧ (c2(s1
2x · s0

2x) ̸= 1).

For every m ∈ ω − 3, let ψm(x0, . . . , xm−1) be the following formula:
∧

i<m

(c2xi = xi ∧ Laca(xi)) ∧
∧

i<j<m

(xi ̸= xj) ∧ (d01 +
∑

i<m

xi = 1).

Claim 3.3. For all A ∈ KDH , if the elements x0, . . . , xm−1 of A are such that
ψm(x0, . . . , xm−1) holds in A then either

(i) A is isomorphic to L(m) and xi · s1
2xj · s0

2xk are atoms of A, for all distinct
i, j, k < m; or

(ii) A = Bm and xi · s1
2xj · s0

2xk is not an atom of A, for some i, j, k < m.

Proof. Suppose first that A = Ca3 B for some B ∈ L−
D. By the definition of L−

D,
there is a set U such that either B is isomorphic to L(U), or B ⊆ L(U) and U is
finite. Therefore, by (Ly1), B is a complete atomic relation algebra, so by (Ca2)
B is isomorphic to Ra A. Let h denote the isomorphism from B to Ra A. Suppose
ψm(x0, . . . , xm−1) holds in A for some x0, . . . , xm−1. Then there are y0, . . . , ym−1

in B such that h(yi) = xi, La(yi) holds in B for all i < m, and 1′ +
∑

i<m yi = 1
holds in B. Therefore, by Claim 3.1, y0, . . . , ym−1 are all the non-identity atoms
of the Lyndon algebra L(U), which implies that |U | = m and A is isomorphic to
L(m). Further, for all distinct i, j, k < m, we have yi ≤ yj ; yk in L(m), thus
xi · s1

2xj · s0
2xk are atoms of A by (4).

Next, suppose A = Bℓ, for some ℓ ∈ D − H . Then by Claim 3.2 and (Ca2),
Ra A is isomorphic to L(ℓ). Now by repeating the previous argument we obtain
that ℓ = m must hold, thus A = Bm. But then yi = {0}, yj = {1}, and yk = {2},
for some i, j, k < m. Thus, by (3) and (Sp4), we have that

xi · s1
2xj · s0

2xk = ⟨{0}, {1}, {2}⟩

is not an atom of A. !

Now define the formula ϕm(x0, . . . , xm−1, y) as

ψm(x0, . . . , xm−1) ∧ (y ≤ x0 · s1
2x1 · s0

2x2) → ((y = 0) ∨(y = x0 · s1
2x1 · s0

2x2)).

By (Ca1), (Ly1–2), and (Sp1), KDH is a class of simple 3-dimensional cylindric
algebras. Thus there is an equation em with the same free variables as ϕm such
that em ↔ ϕm is valid in KDH .
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Let
VDH = HSPKDH .

As a consequence of Claim 3.3 we obtain that for all m ∈ ω − 3,

em is valid in VDH iff Bm /∈ KDH iff m ∈ H or m ∈ (ω − 3) − D,

thus

the degree of unsolvability of Eq(VH) is ≥ the degree of unsolvability of H . (6)

Moreover, if H1 ̸⊆ H2 then the equation em for any m ∈ H1 − H2 distinguishes
between VDH1 and VDH2 . Thus

if H1 ̸= H2 then VDH1 ̸= VDH2 . (7)

On the other hand, observe that by (Ca2) and Claim 3.2, Ra∗VDH is a variety of
relation algebras, and we have

HSPRa∗VDH
(2)
= HSPRa∗KDH

Claim 3.2= HSPRa∗Ca∗3 L−
D

(Ca2)
= HSP L−

D
(5)
= SP LD.

Therefore by (Ly3),

Eq(Ra∗VDH) and D have the same degree of unsolvability. (8)

Finally, (6)–(8) clearly prove Theorem 1. ✷

4. Representable vs. axiomatic relation algebras

In this section we prove Theorem 2. To this end, we discuss some connections
between representability of Lyndon algebras and the existence of projective planes.

A projective plane is a collection of lines and points , satisfying certain properties,
see e.g. Coxeter [5] for more details. Monk [10] proves the following:

(Ly4) For any n ∈ ω − 3, if L(n) ∈ RRA then there is some projective plane
P such that P contains a line ℓ with n points, and L(n) is embeddable
into the full relation set algebra whose base consists of those points of P
which are not on ℓ.

Claim 4.1. For every n ∈ ω − 3, L(n) ∈ RRA iff L(n) is embeddable into the full
relation set algebra with base n2 + 1.

Proof. The right-to-left direction is obvious. For the other, it is well-known (see
[5]) that if P is a projective plane having a line with n points then in fact every
line of P has n points, P has n lines as well, and thus the number of points of
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P is n2 + n + 1. Therefore by (Ly4), if L(n) is representable then L(n) must be
embeddable into the full relation set algebra with base n2 + 1. !

Since for each n there are only finitely many possibilities for such an embedding,
we obtain that

it is decidable whether a finite Lyndon algebra L(n) is representable. (9)

Monk [10] shows that for any set U with |U | ≥ 3, if there is a projective plane
containing a line with |U | points then L(U) ∈ RRA. If U is an infinite set then there
is always some projective plane containing a line with |U | points, and if n = pk+1 for
some k > 0 and prime p then there exists a projective plane containing a line with
n points, see also [10]. Further, Bruck and Ryser [4] proved that there are infinitely
many natural numbers n such that there is no projective plane containing a line
with n points. Thus, we have the following properties concerning representability
of Lyndon algebras:

(Ly5) If U is an infinite set then L(U) ∈ RRA.

(Ly6) There are infinitely many n ∈ ω such that L(n) ∈ RRA.

(Ly7) There are infinitely many n ∈ ω such that L(n) /∈ RRA.

Next, recall the classes LW (W ⊆ ω−3) from the previous section. The following
is shown in Andréka et al . [2, Thm.3.1(iv),(v)]:

(Ly8) For every n ∈ ω − 3 and every A ⊆ L(n) such that A is not isomorphic
to L(n), there is an mA ∈ ω such that for all k ≥ mA we have A ⊆ L(k).

As a consequence we have:

Claim 4.2. L∅⊆ RRA.

Proof. Suppose A ∈ L∅ and A ⊆ L(U) for some set U with |U | ≥ 3. If U is infinite
then A ∈ RRA by (Ly5). If |U | = n then, by the definition of L∅, A is not isomorphic
to L(n). Thus, by (Ly6) and (Ly8), A ⊆ L(k) for some L(k) ∈ RRA, so we have
A ∈ RRA as well. !

Proof of Theorem 2. Let R = {n ∈ ω : L(n) ∈ RRA}. By (Ly7), (ω − 3) − R
is infinite. Given a degree θ of unsolvability, choose H ⊆ (ω − 3) − R such that its
degree of unsolvability is θ. Then by (9), R ∪ H and H have the same degree of
unsolvability. Let

VH = SP LR∪H .

By (Ly2), VH is a variety of relation algebras, and by (Ly3),

Eq(VH) and H have the same the degree of unsolvability. (10)
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On the other hand, Claim 4.2 implies that LR∪H ∩ RRA = LR. Then by (Ly2),

Si(VH ∩ RRA) = LR∪H ∩ RRA = LR,

thus VH ∩ RRA = SPSi(VH ∩ RRA) = SP LR holds. Therefore, by (Ly3) and (9)
we have that

Eq(VH ∩ RRA) is decidable. (11)
Finally, (10) and (11) prove Theorem 2. ✷

5. Representable vs. axiomatic cylindric algebras

In this section we prove Theorem 3. Fix a natural number n ≥ 2 (this n is the
dimension of the cylindric algebras of this section). For each m ∈ ω − n, take the
full n-dimensional cylindric set algebra Csn(m) with base m. It is not hard to see
that {⟨0, 1, . . . , n − 1⟩} is a subdiversity atom of Csn(m). Put

Cm = split(Csn(m), {⟨0, 1, . . . , n − 1⟩}).

Given a degree θ of unsolvability, choose a set H ⊆ ω − n such that the degree of
unsolvability of H is θ, and let

KH = {Csn(U) : U is a set} ∪ {Cm : m ∈ ω − n and m /∈ H}.

We are going to define a quantifier free formula ϕm which “singles Cm out of KH”,
that is, for all A ∈ KH , ϕm is valid in A iff A ̸= Cm.

To this end, for each i < n, define the term

c(i)x = c0 · · · ci−1ci+1 · · · cn−1x,

and take the following formula δn
i (x) in the language of n-dimensional cylindric

algebras:

δn
i (x) =

{
c(0)x · s0

1c(0)x ≤ d01, if i = 0,
c(i)x · si

0c(i)x ≤ d0i, otherwise.
Now it is straightforward to check that for every X ⊆ nU ,

δn
i (X) holds in Csn(U) iff (12)

∣∣{u ∈ U : there is some ⟨x0, . . . , xi−1, u, xi+1, . . . , xn−1⟩ ∈ X}
∣∣ ≤ 1.

We call a one-element subset {⟨x0, . . . , xn−1⟩} of nU a permutational singleton of
Csn(U), if all xi are distinct, for i < n. Let psingln(x) be the following formula:

(x ̸= 0) ∧ (x ≤
∏

i,j<n, i̸=j

−dij) ∧
∧

i<n

δn
i (x).

Now (12) implies that for all elements x of Csn(U),

psingln(x) holds in Csn(U) iff x is a permutational singleton of Csn(U). (13)
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For every m ∈ ω − n, let

f(m) = m(m − 1) · · · (m − n + 1).

(Note that if m = n then f(m) = n!.) Let ♯(U) denote the number of elements
satisfying psingln(x) in Csn(U). Then by (13),

♯(U) =

⎧
⎨

⎩

0, if |U | < n,
f(m), if |U | = m, m ∈ ω − n,
infinite, if U is infinite.

Now let m ∈ ω − n, and take an element x of Cm such that x does not belong to
(the isomorphic image of) Csn(m). Let a = {⟨0, 1, . . . , n − 1⟩}, and a′ and a′′ the
two ‘split-atoms.’ Then there is an element y of Csn(m) such that a · y = 0, and
either x = y + a′ or x = y + a′′. Suppose psingln(x) holds in Cm. Then by the
definition of splitting, psingln(y + a) holds in Cm, thus by (Sp2) psingln(y + a)
holds in Csn(m) as well. Now (13) implies that y = 0 must hold. Thus by (Sp2),
we obtain that

psingln(x) holds in Cm iff

either x is a permutational singleton of Csn(U)

or x is one of the two new ‘split-atoms.’
(14)

Now for each m ∈ ω − n, let ψm(x0, . . . , xf(m)−1) be the following formula:
∧

i<f(m)

psingln(xi) ∧
∧

i<j<f(m)

(xi ̸= xj) ∧
( ∑

i<f(m)

xi =
∏

i,j<n, i̸=j

−dij

)
.

Then define the formula ϕm(x0, . . . , xf(m)−1, y) as

ψm(x0, . . . , xf(m)−1) ∧ (y ≤ x0) →
(
(y = 0) ∨ (y = x0)

)
.

Claim 5.1. For all A ∈ KH , ϕm is valid in A iff A ̸= Cm.

Proof. Suppose first that A = Csn(U) for some set U . Since all the permutational
singletons of Csn(U) are in fact atoms of Csn(U), the above computation on ♯(U)
shows there are no elements x0, . . . , xf(m)−1 satisfying ψm in A, unless |U | = m.
Therefore ϕm is valid in Csn(U) for |U | ̸= m because ψm is always false, and ϕm

is valid in Csn(m) because all permutational singletons of Csn(m) are atoms of
Csn(m).

Next, assume that A = Ck for some k ∈ ω − n, and ψm(x0, . . . , xf(m)−1) holds
in Ck. By the definition of splitting and (14), we obtain that

f(k) ≤ f(m) ≤ f(k) + 2.

Since f(k + 1) > f(k) + 2 whenever k ≥ 2, this shows that there are no elements
x0, . . . , xf(m)−1 satisfying ψm in A, unless k = m. Thus ϕm is valid in Ck, for all
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k ̸= m. In case k = m, choose x0, . . . , xf(m)−1 to be the permutational singletons
of Csn(m) such that

x0 = {⟨0, 1, . . . , n − 1⟩}.

Then ψm(x0, . . . , xf(m)−1) holds in Cm, but by (Sp4) x0 is not an atom of Cm, thus
ϕm is not valid in Cm. !

By (Sp1), KH is a class of simple n-dimensional cylindric algebras. Thus there
is an equation em with the same free variables as ϕm such that em ↔ ϕm is valid
in KH . Let

VH = HSPKH .

Since all the full set algebras are in KH , we have

VH ∩ RCAn = RCAn. (15)

On the other hand, Claim 5.1 implies that, for all m ∈ ω − n,

em is valid in VH iff Cm /∈ KH iff m ∈ H,

thus

the degree of unsolvability of Eq(VH) is ≥ the degree of unsolvability of H . (16)

Claim 5.1 also implies that if H1 ̸=H2 then VH1 ̸=VH2 . Thus (15) and (16) prove
Theorem 3.
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