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Abstract— This paper introduces a novel continuum-style 

robot that integrates multiple layers of compliant modules. Its 

essential features lie in that its bending is not based on natural 

compliance of a continuous backbone element or soft skeletal 

elements but instead is based on the compliance of each struc-

tured planar module. This structure provides several important 

advantages. First, it demonstrates a large linear bending motion, 

whilst avoiding joint friction. Second, its contraction and 

bending motion are decoupled. Third, it possesses ideal 

back-drivability and a low hysteresis. We further provide an 

analytical method to study the compliance characteristics of the 

planar module and derive the statics and kinematics of the robot. 

The paper provides an overview of experiments validating the 

design and analysis. 

I. INTRODUCTION AND BACKGROUND 

Continuum-style robots, including those inspired by bi-
ology, increasingly arouse the attention of researchers due to 
the compliance capability and the wide range of motion. In the 
last two decades, there have been remarkable developments: 
many new designs appeared and various applications in both 
medical and industrial fields were demonstrated [1]. The re-
lated scientific problems range from designing and modeling 
to low-level control and high-level task execution. Compared 
to modular rigid-link robots, continuum-style robots are more 
diverse, often resembling animals or animal appendages, such 
as snakes, elephant trunks and octopus tentacles [2]. 

Historically, the first continuum-style robot is generally 
accepted to be Anderson and Horn’s tensor arm manipulator 
invented in the late 1960s [3] – a tendon-driven spine-like 
flexible arm. Subsequently in 1971, Hirose started to propose 
creative designs of snake-like robots and appropriate control 
systems based on the biomechanical study of snakes [2]. Early 
works also include Chirikjian’s pilot research in the 1990s on 
establishing the fundamental modeling technique to formulate 
the dynamics of hyper-redundant manipulators [4]. The late 
1990s and the 2000s saw an increasing trend of miniature 
continuum-style robots being moved into robotic surgery with 
a view to finding solutions for robot-assisted minimally 
invasive surgery with its inherent access problems through 
small incisions [5]. Meanwhile, soft robotics as a subset of 
continuum-style robotics emerged with the development of 
novel soft actuators and sensors [6]. Most recently, Walker [1] 
reviewed the state of art of continuous backbone robot 
manipulators and analyzed the hardware design principles that 
inspired our work. 

A continuum robot can be identified with a continuous 
backbone structure. However, a hyper-redundant robot [4] 
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sometimes also has an external continuous appearance which 
is comprised of a segmented backbone with many short rigid 
links; hence, the latter types of robots, strictly speaking, do not 
represent truly continuum robots but will be termed “contin-
uum-style robots” here. Herein, we summarize the frequently 
applied continuum-style robot constructions to date according 
to the distinctive backbone architecture, but excluding the 
subset of “invertebrate” soft robots. Of these, the early robot 
construction is composed of serially connected independent 
joints, which pertains to the aforementioned hyper-redundant 
manipulator. The designs share the advantages of having a 
large number of degrees of freedom (DOFs) and accurate 
control, however they suffer from the problems of lighter 
payload, joint friction and incompressibility/inextensibility. 

Perhaps the most common form of truly continuum robots 
is to use a spring backbone [3]. Due to the flexibility of the 
spring structure, the shape of a robot can be actuated in a 
tendon-driven manner and allows an ideal back-drivability 
and a relatively low hysteresis. However, its compression and 
the bending deflection are mechanically coupled, leading to a 
bending actuation that is partially lost in compression [1]. 
Another popular design of continuum robots utilizes a laterally 
super-elastic, but longitudinally incompressible rod/tube as 
the backbone element [7]. A distinctive feature of using an 
elastic central backbone is design simplicity. On top of this, 
both control and modeling will be straightforward. They con-
sistently can be formulated by beam-mechanics-based models. 
It is in this regard that active cannulas [8] also falls into this 
category. Despite our classification illustrating the diversity of 
designs, there do not exist strict boundaries among various 
kinds of continuum-style robots. For example, a spring-based 
continuum robot sometimes is integrated with an elastic rod as 
the incompressible central backbone to diminish the natural 
compliance. 

 

Figure 1. A multi-layer structured continuum-style robot. 

In this paper, we propose a design of continuum-style ro-
bot that has multiple layers of compliant planar modules 
linked in series (see Fig. 1). Its essential features lie in that the 
bending of this continuum-style robot is not based on natural 
compliance of a continuous backbone element or soft skeletal 
elements but utilizes the compliance of each structured planar 
module. The main advantages of using compliant planar 
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modules are due to their linear output motion and avoiding 
friction between joints. We present an analytical method to 
study the compliance characteristics of the planar module and 
derive the compliance matrix to represent the force-deflection 
relationships, thus making the linear motion accurately pre-
dictable. Another advantage of the continuum-style robot (Fig. 
1) is owing to the serial connection of the conjoined layers, 
thus demonstrating a large linear bending motion, although the 
linear-motion approximation of one layer only holds under the 
condition of small deflections. Additionally, the structure is 
back-drivable – a desirable feature in robotics and improving 
safety when operating in close vicinity of humans. This 
structure behaves like a helical spring, but its contraction and 
bending motion are decoupled, thus reducing the uncontrolled 
compression when generating normal deflections. This feature 
renders the bending of the robot more controllable. Besides, it 
has the capability of maintaining better structural rigidity of 
the whole continuum body when compared to a 
spring-backbone-based design, and thus convinces with 
comparatively low hysteresis. 

II. CONCEPTUAL DESIGN OF THE ROBOT 

A. Segment Design 
 

 

Figure 2. Design of double-layer modular segment. (a) Top view;                
(b) Side view. 

Fig. 2(a) depicts a top view of the compliant planar module. 
Howell et al. first constructed similar types of designs and 
identified different configurations [9]. Due to its out-of-plane 
motion along an axis orthogonal to the parent plane, these 
devices are also called “ortho-planar springs” [9]. In Fig. 2(a), 
the design is presented in detail: three legs (120° apart) radi-
ally extend away from the central platform and are anchored to 
the outer base; each leg has two flexible segments shaped like 
a “U” (U-shape design); the intermediate platform is consid-
ered infinitely stiff. In the current design the circular outer 
contour has a 29mm diameter and the length of each leg is 
8mm. The thickness of the flexible beam elements is 1mm; the 
width 1.2mm and both can be varied to change the beam 
compliance. Part of the base is cut in order to reduce the mass. 
Three tendon channels with a 0.8mm diameter are reserved for 
guiding tendons through each layer of modules. They are 
positioned on the far edge of the base and along the extension 
line of the leg. This compliant layer possesses one DOF to 
raise and lower the platform relative to the fixed base and 2 
DOFs to allow the platform to freely perform titling motions 
around the center, thus 3 DOFs in total. A three-legged design 
is chosen for the reason that it is the minimum odd number leg 
count, which allows reducing the rotational tendencies of each 
leg and increasing the stability of the platform [9]. The radial 

structure causes the central platform to undergo large deflec-
tions when a given moment is applied to the center. 

Fig. 2(b) depicts the modular segment design for our con-
tinuum-style robot. It integrates two layers of compliant planar 
modules facing opposite directions; a prism-like shaft and a 
mating female cylinder are respectively fixed on each platform 
of the top and the bottom. The polygonal cross-section design 
of the axial coupling resists relative rotation between the two 
segments and while enabling torque transmission. They are 
fitted precisely to connect from segment to segment. Except 
for the flexible segments and the two platforms with their 
“vertebrae”, any other part of the segment is a part of the frame 
extending from the base to the tip of the manipulator; this 
frame is idealized to be a rigid body. When fixing the bottom 
cylinder, if a load is applied to the prism shaft, the relative 
displacement or rotation of two platforms would be double 
compared to that of one layer for the same load. The gap be-
tween the two layers currently is 5mm, providing enough 
space to keep the outer edges of two legs or two platforms of 
the top and bottom layers from colliding. The segmented 
modular design allows the length of the continuum-style robot 
to cope with various intended, bending scenarios. 

B. Continuum-Style Robot Assembly 

 

 

Figure 3. Partial views of continuum-style robot assembly. 

The current continuum-style robot prototype consists of 10 
modular segments. Fig. 3 shows partial views of the assembly. 
Including a distal plate and a bottom support, the total length is 
143mm. The distance between the lower face of one segment 
and the upper face of the subsequent segment is 5mm, the 
same as the gap between the two layers of one segment. Three 
tendons are routed along the aligned segments through the 
tendon channels and secured to the distal plate, which leads to 
a tendon-driven under-actuated design. The rigid distal plate 
can be regarded as an extension of the last platform. By pull-
ing the tendons, the load will be transmitted from the distal 
platform to the proximal bottom support, thus generating 
compression and steering motions. Moreover, depending on 
the intended operations, additional groups of tendons can be 
used to increase the mobility and functionality. They are se-
cured to some selected point of column and produce torques to 
the lower part.  

III. COMPLIANCE OF PLANAR MODULE 

From the perspective of mechanical design, the planar 
module is a type of hybrid flexure mechanisms [9]. Each 
flexible segment in each leg can be treated as a beam flexure. 
Each leg is a folded serial chain of two fixed-guided beam 
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flexures. The planar module is formed by connecting the 
central platform to the outer base through three legs in parallel. 
Thus, we can stepwise derive the compliance matrix for the 
entire module with a bottom-up approach. 

A.  Compliance Matrix Derivation 

 

 

     Figure 4. Coordinate frame transformation. (a) One leg of the design;             
(b) A compliant layer. 

Fig. 4(a) depicts one leg of the design. The small defor-
mation of each beam is defined as a twist deflection, which in 
ray coordinates can be denoted by 

 S = [ θx  θy  θz  δx  δy  δz ]
T
    (1)          

where the first group of three elements represents the three 
rotational deflections about their corresponding axes, whilst 
the last three elements reveal the corresponding translational 
deflections. A twist deflection S is an element of the Lie al-
gebra se(3) of Lie group SE(3). 

And in harmony with this, the loading force is considered 
as a general wrench in axis coordinates 

 W = [ mx  my   mz   fx   fy   fz ]
T
  (2)          

in which the primary part 
T

x y z
m m m   m is the vector 

attached with the force amplitude, representing the direction 
of the axis of the wrench, whilst the location of the axis of the 

wrench is given by the secondary part 
T

x y z
f f f   f . A 

wrench is an element of the dual Lie algebra se*(3). 

Consider beam 1 of the leg in Fig. 4(a), a local coordinate 
frame {x1y1z1} generally can be established at the centroid of 
the beam. With the coordinates of both the twist deflection and 
the wrench written in the same frame {x1y1z1}, then the com-
pliance matrix of beam 1 can be derived [10] and expressed as 

 
3 3

1
12 12y z z y

l l l l l l
diag

GJ EI EI EA EI EI


 
 
  

C  (3) 

where the primary part represents torsional compliance and 
the secondary part the linear compliance. As shown in Fig. 4, 
beam 1 has a rectangular cross-section with the width b and 
the thickness h (b>h), as well as a length l, and the area of the 
cross-section A is equal to bh. E denotes the elastic module of 
the material, and G denotes the shear module of the material 
with G=E/(2(1+v)) and v Poisson’s ratio. Iy=b

3
h/12 and 

Iz=bh
3
/12 are the moments of inertia of the beam at the 

cross-section with respect to axis y and axis z, and J is the 
torsional moment of inertia. 

Equivalent results are also produced in references [10], 
[11], [12] and there exists remarkable similarity, however, due 
to coordinate frame choices, they are diverse in form. 

The compliance characteristics of an individual link or a 
whole mechanism system are their intrinsic properties, but 
notice that the expression of the compliance matrix may vary 
and it depends on the coordinate choice. Once the coordinate 
system is defined, it also applies for the references when an-
alyzing the twist deflection of a finite segment. 

For (1), (2) and (3), we have the relations between a twist 
deflection and a loading wrench summarized below 

 S = C1W  ;  W = K1S  ;  C1 = K1
-1

  (4) 

where K1 is the stiffness matrix. 

Beam 2 is an identical flexible segment to beam 1, thus the 
compliance matrix is the same but written in its own local 
coordinate frame{x2y2z2}. Two beams in the leg are connected 
by an intermediate platform, but it is modeled as a fixed pin 
joint with its compliance ignored when we consider the 
force-deflection relationship of the leg [9]. At the connecting 
edge between the leg and the platform, we established the 
global coordinate frame {xl1yl1zl1}. To shift the local 
coordinate frame of each beam into the global coordinate 
frame {xl1yl1zl1}, an adjoint action of Lie group SE(3) on its Lie 
algebra is introduced through a 6×6 matrix representation [13] 

 g

 
  
 

0R
Ad

AR R
 (5) 

where R is a 3×3 rotation matrix of the coordinate transfor-
mation, and A is a skew-symmetric matrix spanned by trans-
lation vector d. 

Then, the coordinates of a twist deflection and a wrench in 
the coordinate frame {xl1yl1zl1} are calculated as [10], [12] 

 S' = Adg S   ;   W' = Adg
-T

 W  (6) 

To obtain the compliance matrix C' in the new coordinate 
frame, we deduct it as follows based on (4): 

 S' = Adg S = Adg (CW) = Adg C Adg
T
 W'   (7) 

Thus, we derive that the compliance matrix will be trans-
formed to the new coordinate frame according to the relation 

 C' = Adg C Adg
T
   (8) 

Similarly, we can derive the stiffness matrix in the new 
coordinate frame {xl1yl1zl1} as 

 K' = Adg
-T

 K Adg
-1

  (9) 

Here, the inverse and the inverse transpose of such adjoint 
transformation matrix are given respectively by 

 
T

1

T Tg


 
  
 

0R
Ad

-R A R
  ; 

T

g
  
  
 0

R AR
Ad

R
  (10) 

All deformations are written in the same coordinate frame 
{xl1yl1zl1}, then the overall compliance matrix of the leg as a 
serial flexure chain is obtained [12] by 

    
2

T

1

1
i

g i gl i i


C Ad C Ad  ,     (i=1, 2).  (11) 

Given a compliance matrix of one leg, its corresponding 
stiffness matrix K = C

-1
 is first calculated. It is noted that all 
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twist deflections and wrenches here must be transformed into 
the same coordinate frame, and correspondingly, the stiffness 
matrix of each leg will be expressed in such a global coordi-
nate frame. We establish the global coordinate frame {xyz} in 
the center of the triangular platform, see Fig. 4(b). The radius 
of the plate is labeled by parameter r. The coordinate trans-
formation operation from the connecting edge between the leg 
and the platform, i.e. the edge of the disc to the center of disc 
follows the aforementioned relation in (9). Further considering 
that the overall layer’s stiffness is isotropic [14], it gives the 
unified form as 

 
T 2 2T

1 1 10
    K K NK N N K N   (12) 

where K1' is the stiffness matrix of leg 1 in the global coor-

dinate frame {xyz}; it is derived by the relation K1'= T
-T

K1 T
-1 

based on (9), which indicates a coordinate transformation 
from the local coordinate frame at the connecting edge to the 
global coordinate frame of the platform center. In the case, T 
only possesses the translation action along the x axis. N de-
scribes the rotation action based on the fact that three legs are 
symmetrically connected to the platform with an angle120°.  

Finally, the compliance matrix of the overall planar mod-
ule layer as a type of hybrid flexure mechanisms is computed 
by inverting the stiffness matrix K0,  
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0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

c

c

c

c

c

c



 
 
 
 

   
 
 
 
  

C K    (13) 

Here, the nonzero compliance elements are denoted by the 
variables with two subscripts. They are all determined by both 
material parameters and geometric parameters of the me-
chanical design of the compliant layer structure. 

B. Compliance Analysis and Numerical Example 

The compliance matrix in (13) is symmetric positive 
definite (SPD), and the diagonal entries represent the 
translational and rotational compliance in/about all directions, 
respectively. Besides, all diagonal compliance elements of C0 
can factor out a factor that coincides with the corresponding 
elements of beam’s compliance matrix in (3). By observing 
compliance elements of C0, we notice that the x-z planar 
motion (x, z, θy) is decoupled from out-of-plane forcing and 
vice-versa. On the other hand, the entries outside the main 
diagonal are all zero, revealing that the out-of-plane rotation 
and translational motion of the platform are decoupled. This 
further verifies that the contraction effort and bending motion 
of the multi-layer structured continuum-style robot will be 
theoretically independent to each other. 

In the following, we use two numerical examples to further 
reveal the information embodied in the compliance matrix. 
The dimensions of the planar module are l= 8mm, b=1.2mm, 
h=1mm, d=2mm, r=3.5mm. Aluminum alloy (Young’s mod-
ule E=71GPa and Poisson’s ratio v=0.33) and polyethylene 
(E=1.1GPa and v=0.42) are selected as fabrication material for 
use in the two examples, respectively, thus deriving each 

element of the corresponding numerical compliance matrix as 
tabulated in Table 1. 

Table 1.  Numerical examples of compliance elements. 

Compliance element Aluminum alloy Polyethylene 
c11 1.39×10

-1
 9.54 

c22 4.19×10
-2

 2.71 
c33 1.39×10

-1
 9.54 

c44 9.66×10
-7

 6.23×10
-5

 
c55 4.82×10

-6
 3.28×10

-4
 

c66 9.66×10
-7

 6.23×10
-5

 
 

By analyzing the numerical results, we can draw the 
following conclusions. 

1. In the group of rotational compliance elements (c11, c22 

and c33), the rotational compliance elements both c11 and c33 

about the horizontal x and z axis are more than 3 times larger 
than the rotational compliance element c22 about the vertical 
axis y, indicating its potential to be used for bending motions 
in continuum-style robot, while resisting in-plane rotations.  

2. In the group of translational compliance elements (c44, 
c55 and c66), the vertical compliance element c55 is about 5 
times larger than both the horizontal compliance element c66 

along z axis and the horizontal compliance element c44 along x 
axis. This result agrees with our intuition and the qualitative 
study by Howell et al. [9]. Such translational motion along the 
vertical axis of the planar module has been investigated for use 
in many applications, such as a pneumatic valve controller for 
Flowserve [9] and a force sensor [15]. 

Overall, c11, c33 and c55 are the major compliance elements. 
Thus, reasonably, further analysis can focus on the major 
displacements θx, θz and δy that are produced by the loads mx, 
mz and fy , respectively. 

IV. STATICS ANALYSIS AND KINEMATIC MODELING 

First of all, there arise three assumptions. One is that only 

flexible beams provide elasticity while all the rest of parts are 

considered to be rigid body. Another is that the effect of 

gravity is neglected. The third one is that the loads exerted on 

the top plane are uniformly distributed to each segment of the 

robot. 

As pointed out earlier, only the two rotational deflections 

θx, θz and the longitudinal displacement δy are the main de-

formation corresponding to the three major compliance ele-

ments c11, c33 and c55. Thus, simplifying: 
 

 

11
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55

0 0

0 0

0 0

x x

z z

y y

n c M

n c M

n c F









 



    
    
    
        

   (14) 

 

where Mx, Mz and Fy denote the loads on the system as a 

whole; n is the number of compliant layers. 

In this tendon-driven design, the loads are applied to the 

top plane via three non-stretchable tendons. Pre-tightening 

force will be applied, thus, activating one or two tendons, can 

result in rotational deflection and equally activating three 

tendons together leads to longitudinal compression. 
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Figure 5. Configuration of two segments assembly 2D bending. 
 

Fig. 5 shows a bending configuration of the planar model 

in the xy-plane, where the base of the robot is centered about 

the origin and the coordinate system orientation parallel to the 

global coordinate frame of the proximal layer. For simplicity, 

we only assembled two planar modules, Fig. 5. The bending 

of this continuum-style robot is utilizing the local beam de-

flection of each compliant planar module, thus we do the 

calculations based on the rotational deflection angle to derive 

the length changes of the three tendons. Firstly, we calculate 

the length of inner and outer boundaries of the planar model. 
 

 2 ; 2s lL LL N L N        (15) 

where Ls and Ll denote the length of inner and outer bounda-

ries of the planar model, respectively; L is constant, repre-

senting the initial length of this continuum-style robot; N is 

the number of the double layered modular segment, Fig. 2(b); 

∆ denotes the spacing changes of segments and ∆=Rsinθ, 

where θ is the generalized rotational deflection angle of each 

compliant layer and R is the distance from the tendon channel 

to the center of the plane.  

In the example of Fig. 5, the structure is bending about the 

z axis, and the inner boundary corresponds exactly to one of 

the tendons on the x-axis. Later, we can obtain the rest of 

another two tendon lengths based on spatial model with the 

known distances of inner and outer boundaries. 

Because the gap between the two layers of a modular 

segment is unchanged, we can only consider the spatial con-

figuration of the gap between the two adjacent segments 

connected by a column, which is shown in Fig. 6. 

 

 
Figure 6. 3D bending geometry and cross-section area. 

 

Besides, from the cross-sectional geometry of Fig. 6, the 

positional relation between the inner and outer boundaries 

and the three tendons can be expressed in terms of the relative 

orientation φ between the two adjacent segment surfaces [16]. 

The orientation φ is the resultant of both θx and θz. We can 

calculate the lengths of three tendons based on the angular 

relationship, as follows: 

   2k

s s yk lL L L L N





     , ( 1,2,3).k    (16) 

where 2N·δy denotes the total longitudinal compression of this 

continuum-style robot; k identifies the tendon. 

Referring back to Fig. 5, given the rotational deflection θz 

and the segment number N, the tip position of such design on 

the xy-plane can be calculated to be 
 

   

   

sin sin(2 ) sin(2 )

1 cos cos(2 ) cos(2 )

0

y z z z

y z z z

g Nx

y g N

z

   
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       

         

  
  
  
      

    (17) 

 

where g denotes the distance between the lower face of one 

segment and the upper face of the subsequent segment. Here, 

the equation involves the longitudinal displacement δy for the 

case of that the axial compression is generated. 

After that, we rotate the planar model about the y-axis 

with an angle ω and obtain a spatial model. The derivation of 

spatial position coordinates is obtained by rotating the xy 

positions about the y-axis. The tip position in space is then 

given by multiplying the rotation matrix R (ω) and (17), 

yielding 
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z z z
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   

      

        

       
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  
  
     

 (18) 

 

The occurrence of the rotation is a synergistic effect of 

both rotational deflections 2Nθz about the z-axis and 2Nθx 

about the x-axis. It can be derived as 

 arctan x

z





       (19) 

We have now found the positions of the continuum-style 

robot tip as functions of the three major displacements θx, θz 

and δy thus completing the kinematics model. With the cal-

culated tendon lengths, we have derived a model that could be 

used to control this continuum-style robot. 

V. PROTOTYPE EXPERIMENT 

A prototype of the multilayer structured continuum-style 

robot was tested; test procedures and results are described in 

this section. The double-layered segment is made of acrylo-

nitrile butadiene styrene (ABS) plastic material and is 3D 

printed using a rapid prototyping machine (VisiJet
®
 EX200). 

Besides, a mini-camera (NanEye Stereo, AWAIBA
®
) holder 

is designed and printed to realize a possible application of the 

robot as an example (here: an endoscopic camera). The length 

of the assembled prototype is 150mm and its diameter is 

29mm. Each tendon is driven by a DC motor (Maxon Motor
®
) 

y

xo

Tendon
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with a pulley; the employed 128:1 reduction gearhead allows 

tendon actuation with a high rotational resolution. Due to the 

limited compliance of the fabrication material, the prototype 

only serves as a preliminary setup for the investigation of the 

performance of hysteresis, back-drivability and bending mo-

tions. 

Fig. 7 shows a comparison after and before of the longi-

tudinal contraction, which indicates the back-drivability and 

to some extent ensures the safety when interacting with en-

vironments. We can also observe that the tendons’ pulling 

force is equally distributed to each of the compliant layers and 

results in equal longitudinal displacements. 
 

 

 

 
Figure 7. (a) After and (b) before longitudinal contraction. 

 

Fig. 8(a) shows a 2D bending motion of the robot. The 

bending control effort does not generate compressions, which 

verifies that its contraction and bending motion are decoupled 

in the unique design. In addition, the equally distributed 

bending deformations are also presented here; compared with 

the sketch in Fig. 5, we can see that the experimental 

performance is virtually coinciding with the model. Fig. 8(b) 

shows a 3D bending motion of the robot. Some bending 

nonlinearity is observable, which we suspect to be because of 

the influence of gravity and the nonlinear stress due to 

non-homogenous material properties. 
 

    
 

Figure 8. Bending deformation of the robot; (a) 2D bending motion;          

(b) 3D bending motion. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper presents the design of a continuum-style robot 

with multiple layers of compliant planar modules linked in 

series. Firstly, we reviewed frequently applied continu-

um-style robot constructions to date based on the distinctive 

backbone architecture. Through our study, we found that our 

structure has advantages over other existing traditional con-

tinuum-style robot: a large linear bending motion, avoidance 

of joint friction, back-drivability, largely decoupled contrac-

tion and bending motions as well as low hysteresis.  

We derived the compliance matrix of the planar module 

and provided statics and kinematics descriptions for the 

overall robot construction. We built and tested a prototype 

and observed its performance. The experimental results veri-

fied some of the characteristics of the robot, such as contrac-

tion, equally distributed longitudinal/bending displacements 

and decoupling. 

A finite element method (FEM) analysis is being con-

ducted to further confirm the predicted behavior of the pre-

sented continuum-style robot and subsequently a quantitative 

empirical validation. In the view of that the compliance 

characteristics of the planar module are determined by both 

material parameters and geometric parameters of the me-

chanical design, we aim to test different fabrication materials 

and other layer configuration, such as side-leg design and 

changing the number of flexible segments. 
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