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Decision support systems intended for operation under real world conditions require reasoning
mechanisms that are robust in the face of degraded data. We present two algebras for reasoning
with incomplete and imprecise data that  are suitable for such systems. The first is an extended
qualitative algebra which includes operations over real numbers. This is appropriate for
reasoning with largely symbolic data. The other is an interval algebra,  built around the
paradigm of interval analysis, which is designed to deal with largely numerical data. We
demonstrate how the algebras may be used for robust reasoning, and show how they might be
applied to a decision problem in a medical domain.

1 Introduction

Gallie [7] eloquently argues that, in contrast to the cartesian view of the universe,  all knowledge is
subject to a degree of irreducible uncertainty. Similar arguments may be made for the ubiquity of
imprecision and incompleteness; for every piece of information that is not be reliable there is one that
is not measured  precisely, and one that has not been obtained by the moment it is required. These
arguments suggest that any system intended to reason about real world conditions should be able to
operate under conditions of uncertainty, imprecision and incompleteness. It is possible to criticise
classical decision theory [8] as regards its handling of imprecision and incompleteness. Whilst  the
decision theoretic mechanism handles uncertainty in a sound manner and degrades gracefully  as the
quality of information falls, such behaviour is dependent on the availability of a full and unambiguous
set of prior and conditional probabilities for all decision options, and expected utility values for all
decision outcomes.

Fox [5], for example, contends that such values are frequently difficult to obtain since they rely on
controversial objective or subjective judgements. If the values are not available the underlying
probability  mechanism fractures, and so it is possible to consider decision theory as suspect in the
light of everyday imprecision and incompleteness. Such a criticism is particularly valid in systems that
are continually encountering new situations and are thus unable to rely on either having the correct
probability values or being able to obtain them before a decision is required. In this paper we address
the issue of robustness,  proposing two algebras that may be used as the basis for extended decision
mechanisms. By combining  numerical and qualitative [1] data we build in the ability to handle
incomplete and imprecise probabilistic information. The algebras will give exact probabilistic
assessments if given exact data, but will continue to function if the probabilities are replaced with less
precise measures.  The use of qualitative techniques also makes it possible to support reasoning that is
more intelligible to an untrained  human user.

2 The problems of imprecision and incompleteness

To illustrate the problems of propagating imprecise and incomplete information in a
probabilistic framework, consider the fragment of medical knowledge [12]: “Metastatic
cancer is a possible cause of a brain tumour, and is also an explanation for increased to ta l
serum [calcium] count. In turn, either of these could explain a patient falling into a coma.
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Severe headache is also possibly associated with a brain tumour”. This knowledge may be
represented as a graph which summarises the underlying causal information (Figure 1):
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Figure 1 The brain tumour example

A purely probabilistic system requires all the values of Table 1 in order to function, and can
deduce [12] the prior probabilities of brain tumour and coma as 0.08 and 0.32 respectively.
Given the occurrence of severe headaches the probabilities increase to 0.104 and 0.33.  All

propagation is halted by a missing value such as that of  p(d| b, c). Imprecise data also causes problems
since the underlying theory requires point values.
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Table 1. Probabilities for the brain tumour example

3 An extended qualitative algebra

Arithmetic operators over real numbers may be extended to handle qualitative data. Fox and Krause [6],
for example, create an extended algebra Q2 that is similar to Williams’ Q1 [13]. The crucial difference
between these independently developed systems is that Q2 makes no distinction between qualitative



expressions and real ones. All types of operands are handled by the same set of operators.  Here we
augment  the  original idea, supplying  a formal definition of  Q2 and a full set of arithmetic operators.

3.1 A formal definition

The qualitative descriptions of Q2 operate on an operand set  S'  = {-, 0, +, ?} ∪ ℜ. S' = S ∪ ℜ where
S = {-, 0, +, ?} is Williams’ set of qualitative operands, and ℜ is the set of real numbers. The operands
{-, 0, +} are related to ℜ by the mapping [ ] :

For any x ∈ ℜ, [x]   = 


 +     i f     x   >   0

0     i f     x   =   0
-     i f       x   <   0

 

The qualitative value ? denotes a real value whose sign and value are not known. We also have  ⊕ ∈
OPQ2 : ℜ × S →  S, where OPQ2 is the set of all operators over S'. Since ℜ ⁄ S', Q2, unlike Q1, has

only one set of arithmetic operators which can operate on all members of S'. We will write the

extended operators analogous to the usual arithmetic operators on ℜ, {+, -, ×, ÷}, as EAQ2 = { +’, - ’ ,

·’, ‚’}, and note that along with [ ] they form an algebra that combines arithmetic on real values with

the robustness of qualitative algebras. Thus ⊗ ∈ EAQ2  : S' × S' →  S' is equivalent to the analogous

operation on reals ⊗ ∈ EAQ2 : ℜ × ℜ →  ℜ,  qualitative values ⊗ ∈ EAQ2  : S × S →  S, and a

combined arithmetic and mapping operator converting reals into qualitative values, ⊗ ∈ EAQ2  : ℜ ×

S →  S. To specify the exact results of the operators, we use combinator tables:
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Figure 2. Combinator Tables for Q2

R+ and R- designate the occurrence of particular positive and negative numbers respectively.  R?
represents a real number somewhere between +∞ and -∞ which may be  uniquely determined from the
operator and operands. This contrasts with ? which represents an indeterminable number between +∞



and -∞ . U represents an undefined value, in particular the result of dividing by 0 or an unknown  value
that may be 0.

3.2 Reasoning with imprecise and incomplete information

Consider using Q2 in the brain tumour example with p(d|b,c) missing. The probability table may be
completed by taking p(d| b, c) = + on the grounds that  “either brain tumour or increased total serum
calcium  could result in  a patient falling into a coma”   indicates a positive association between brain
tumour, increased calcium and the occurrence of a coma. All inferred values that are unaffected by  p(d|
b, c) are still precisely available; we can, for instance, still  deduce that the prior probability of brain
tumour is 0.08.  Values affected by p(d|b,c), may not be calculated exactly, but we can deduce
something about them. For instance, from p(d) = p( d| b, c). p(b, c),  p(d| b, c) = +, and the combinator
table for extended multiplication, we can determine that the prior probability of coma is +.  Knowing
that p(d| b, c) = +, we can also conclude that since headaches make a brain tumour more likely, they
also make a coma more likely. A probability value that is not precisely defined may similarly be
assumed to be + and the extended operators used to propagate its consequences.

3.3 Choosing between alternatives

Q2 is essentially symbolic, and handles numbers by reducing them to qualitative relations. Thus any
mechanism intended to allow the system to choose between competing solutions must diverge from
classical methods of decision making. It is possible to use an improper linear model [2]  to weigh up
arguments for (+) and against (-) particular solutions. Alternatively decisions may be made  by the use
of some symbolic decision model which includes the recognition of the need for a decision, the
classification of the decision options, and the consideration of the pros and cons of each possible
decision result. A more detailed description of such a model may be found in [4].

4 An interval  algebra

Since Q2 is essentially qualitative it has a tendency to over abstract, converting point quantifications of
uncertainty into unbounded +’s. This presents no problems in situations in which few accurate
numerical values are available, but may be less attractive when the bulk of  the values are known either
precisely, or within certain limits. Q3 replaces qualitative values  with the [0, 1] interval used by most
uncertainty calculi, and operates over exact values x,...,y and bounded intervals [m, n] ,..., [p, q] to
provide a unique ability to combine qualitative data with point and interval quantifications of
uncertainty.

4.1 A formal definition

We have a set of operands S'' =  {0, [0, 1], S,ℜ[0, 1]} where S = {x : x = [y, z] and 0 ≤ y ≤ 1 and 0 ≤

z ≤ 1} and ℜ[0, 1] = {x : x ∈ ℜ and 0 < x ≤ 1}.  There is a mapping [[ ]] that relates ℜ[0, 1] to S,

[[ℜ[0, 1]]] →  S, such that if x ∈ ℜ[0, 1] then [[x]] = [x, x]. Every real number in the zero-one interval

is equivalent to a point interval. The distinguished member, 0, is included as a separate value. As
above, we have operators that act as mappings; ⊗ ∈ OPQ3 : ℜ[0, 1] × S → S, ⊗ ∈ OPQ3 : S × S →

S, ⊗ ∈ OPQ3 : ℜ[0, 1] × ℜ[0, 1] → ℜ[0, 1] , where OPQ3 is the set of all operators over S''.

Members of S may also be created by  the quantification  of vague information.  We have a function {[
]} which maps from imprecise data to S, so that {[ {x : y ≤ x ≤ z and 0 ≤ y ≤ 1 and 0 ≤ z ≤ 1} ]} →
[y, z] ∈ S.  We distinguish the special case where y = 0 and z = 1 as the vacuous value [0, 1] which
expresses complete ignorance about the value of x. Arithmetic operations are defined by  Moore’s [9]
interval analysis, and for any arithmetic combinator ⊗ ∈ OPQ3  we have:

[a, b] ⊗ [c, d] =   [min (a ⊗ c, a ⊗ d, b ⊗ c, b ⊗ d), max(a ⊗ c, a ⊗ d, b ⊗ c, b ⊗ d)]

where max and min have their usual meanings.

4.2 Robustness under imprecision and incompleteness

When we apply Q3 to the medical example all calculations involving exact probabilities produce
degenerate intervals [n, n] equivalent to the exact results. When the missing value  is encountered the
system can substitute  p(d| b, c) = [0, 1] applying the bounds on its possible value. Evaluating as
before, we get p(d) = [0.288, 0.688], a far more precise estimate than +. Knowing that severe headaches



occur allows us to recalculate the probability of coma using Spiegelhalter’s method [12] with interval
arithmetic to arrive at p*(d) =  [0.366, 0.766]. The system can also accept probability estimates within
given bounds. If we know that p(d|b, c) = [0.6, 0.9], we can compute the prior  p(d) = [0.312, 0.324]
and, in the case of known headaches, the updated value p*(d) = [0.039, 0.402].

4.3 Ordering solutions in Q3

Interval arithmetic can only compare non-overlapping intervals, giving [a, b] < [c, d] iff  b < c [9].
This is not suitable for comparing all interval valued probabilities. Instead we  define a flat second order
probability distribution over each interval, indicating  that the value lying within a given range is no
more likely to take any one value than it is to take any other. This allows us to order intervals [a, b]
and [c, d], with [a, b] >Q3 [c, d] if the value in [a, b] is more likely to be greater than the value in [c, d]

than the value in [c, d] is to be greater than that in  [a, b].  Thus [a, b]  >Q3 [c, d] iff  p(VR
[a, b] >

VR
[c, d]) > p( VR

[c, d] > VR
[a, b]) where VR

[a, b] is the actual value taken by the probability

which is known to  fall in the interval [a, b]. The comparison may also be affected between

intervals and point values and it is possible to take all decisions on a well defined basis. The following
results have been established:

Theorem 4.1: For a comparison between an interval with lower bound 
0 and a point  value, [0, b] >Q3 [c, c]  iff  b  > 2c.

Theorem 4.2: Comparing two overlapping intervals we have  [a, b] >Q3 

[c, d]  iff  (b - d) > (c - a).

Proofs may be found in [10]. Of course, if we wish to carry out some kind of argumentation procedure,
it is possible to abstract intervals back into qualitative values. The only difference between propagating
interval values that are then abstracted to qualitative values and propagating qualitative values is the
added computational expense of the interval calculation which will take longer than its qualitative
counterpart; the end result of  the inference will be the same.

5 Decision making in gastroenterology

The following example illustrates the performance of the algebras in more detail. We will consider a
clinic specialising in gastroenterological complaints. These complaints have a number of possible
origins which may be classified as gastric cancer, peptic ulcers (both gastric and duodenal ulcers),
gallstones, and functional disorders. The latter are conditions  with no identifiable organic  cause, and
are often stress related. Over many years, a number of symptoms and signs  which provide useful
information for discriminating between complaints have been recorded from many patients. These are
signs of jaundice, pain after meals, weight loss and the age of  the patient.

The clinic has a research interest in gastric disorders and has established estimates of the number of
patients with confirmed diagnoses of  peptic ulcers and gallstones that exhibited the above symptoms
on arrival. Figures are also available for the relation of the symptoms to gastric cancer, though the low
incidence of the disease casts doubt on the accuracy of the figures, and to functional disorders.  A
conditional probability table  (Table 2) may be constructed from the frequency data.



Gastric
Cancer
   (gc)

Peptic
Ulcer
( p u )

Gal l -
  stones
    (gs)

Functional
Disease
     (fd)

Jaundice
      (j)

Pain
after 
meals
  (m)

Weight
Loss  (w)

Elderly
Patient
    (e)

p (w|pu)
   = 0.35

p ( j | gc )
  = 0.08

p(m|gc)  
   = 0.63

p(w|gc)
   = 0.71

p(e|gc)
   = 0.68

p(e|pu)
   = 0.50

p(e|gs)
  = 0.12

p(e|fd)
  = 0.20

p(j|pu) 
  = 0.03  

p ( j | gs )
  = 0.30

p ( j | f d )
   = 0.10

p(m|pu)
   = 0.40

p(m|gs)
   =0.18

p(w|gs)   
  = 0.03

p(w| fd )
  = 0.01

p(m| fd)
   = 0.30

Table 2. Conditional probabilities relating symptoms of gastric disease to their causes

We also have a set of prior probabilities for the incidence of each disease among patients referred to the
clinic:

p(gc) = 0.01 p(pu) = 0.35
p(gs) = 0.10 p(fd) = 0.54

We are interested in the case of Fred, an elderly patient referred to the clinic by his doctor. Fred shows
no signs of jaundice but has recently lost weight and often has pain after eating. The use of Bayes’ rule
[8] allows us to aggregate the evidences for each disease to come up with a set of posterior
probabilities:

p(gc|¬j, m,w,e) = 0.104 p(pu|¬j, m,w,e) = 0.883
p(gs|¬j, m,w,e) = 0.002 p(fd|¬j, m,w,e) = 0.011

These figures enable us to conclude that Fred is most likely to have a peptic ulcer, may possibly have
gastric cancer, and is extremely unlikely to have either gallstones or some functional disorder.

Given point probability estimates we can carry out  an aggregation in Q2 and Q3 as well as the more
familiar algebra of real numbers. The robustness of the two new algebras may also be used when the
evidence is less precise. As mentioned above the data for gastric cancer and functional disorders is likely
to be less accurate than that  for ulcers and gallstones in which case assessments made by point values
are less acceptable than estimates of the form:

p(m|fd) = [0.2, 0.6] p(e|fd) = [0.1, 0.42]

and: “there is a positive association between the incidence of pain after meals and  
  the occurrence of gastric cancer”.

In such a case, conventional probability calculations over real numbers may not be performed.
However, Q2 and Q3 may be used to deduce some information about the patient. In Q3 we can use the
assessment of a positive association between pain after meals and gastric cancer to give p(m|gc) = [0, 1]
which may be used with the interval and point estimates in an interval version of Bayes’ rule [10] to
give:

p(gc|¬j, m,w,e) = [0, 0.186]
p(pu|¬j, m,w,e) = [0.807, 0.996]
p(gs|¬j, m,w,e) = [0.002, 0.002]
p(fd|¬j, m,w,e) = [0.012, 0.099]



Applying the rules of interval arithmetic and Theorems 4.1 and 4.2 we arrive at the same ordering of
hypotheses as in the point probability case, but with an indication of other possibilities. For instance,
though Fred is most likely to have an ulcer, if this is eliminated, the overlap between functional
disease and cancer indicates that the former should not be discounted.

In Q2, recognition of the imprecision prompts the replacement of the conditional probabilities with a
set of qualitative assessments based upon them (Table 3). The + relating weight loss to cancer indicates
that the occurence of weight loss increases our belief in the presence of cancer, whilst the - relating
jaundice to cancer indicates that should jaundice be present, our belief in the presence of cancer would
be reduced. The ? relating pain after meals to gallstones indicates that the occurence of the symptom
has little or no effect on the diagnosis.
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Functional
Disease
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Weight
Loss
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+

?

+
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?

?

Table 3. Qualitative assessments relating symptoms of gastric disease to their causes

With the addition of  the re-assessed priors:

p(gc) = - p(pu) = ?
p(gs) = ? p(fd) = +

these values can be used in some form of improper linear model with uniform weights and no constant
term to give an assessment of the likelihood of each disease matching the symptoms that agrees with
the probabilistic approaches.

6 Conclusions

The examples demonstrate the strengths of Q2 and Q3 in maintaining performance in the face of
moderately and highly degraded data whilst allowing precise calculations when the data permit. Q2 is
most effective in domains where the degraded data are best represented by qualitative values since its
tendency to abstract will naturally degrade interval data. In contrast Q3, although capable of handling
qualitative data to a degree, performs best when dealing with interval estimates, and so will be most
effective in domains where imprecise and largely complete data are available. It is, of course,  possible
to combine the power of both algebras by using them in conjunction. This will require the
establishment of a mapping between qualitative and interval probability values which is likely  to be
domain dependent.

As a final word, it should not be assumed that algebras described in this paper may only be applied to
systems that deal with probabilistic information. There is no theoretical reason why, given the
necessary extension of the operator sets to include the relevant mathematical operations, the algebras
may not be applied to systems reasoning with possibilistic or fuzzy logics [3] or belief functions [11].
It is, however, true that whilst the meaning of a probabilistic interval is reasonably clear, that of a
belief function or possibility/necessity interval is less transparent.
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