
Reasoning About Intentionsin Unertain DomainsMartijn Shut and Mihael Wooldridge and Simon ParsonsDepartment of Computer SieneUniversity of LiverpoolLiverpool L69 7ZF, U.K.fm..shut, m.j.wooldridge, s.d.parsonsg�s.liv.a.ukAbstrat. The design of autonomous agents that are situated in realworld domains involves dealing with unertainty in terms of dynamism,observability and non-determinism. These three types of unertainty,when ombined with the real-time requirements of many appliation do-mains, imply that an agent must be apable of e�etively oordinating itsreasoning. As suh, situated belief-desire-intention (bdi) agents need aneÆient intention reonsideration poliy, whih de�nes when omputa-tional resoures are spent on reasoning, i.e., deliberating over intentions,and when resoures are better spent on either objet-level reasoning oration. This paper presents an implementation of suh a poliy by mod-elling intention reonsideration as a partially observable Markov deisionproess (pomdp). The motivation for a pomdp implementation of inten-tion reonsideration is that the two proesses have similar propertiesand funtions, as we demonstrate in this paper. Our approah ahievesbetter results than existing intention reonsideration frameworks, as isdemonstrated empirially in this paper.1 IntrodutionOne of the key problems in the design of belief-desire-intention (bdi) agents isthe seletion of an intention reonsideration poliy [3, 8℄. Suh a poliy de�nesthe irumstanes under whih a bdi agent will expend omputational resouresdeliberating over its intentions. Wasted e�ort | deliberating over intentionsunneessarily | is undesirable, as is not deliberating when suh deliberationwould have been fruitful. There is urrently no onsensus on exatly how or whenan agent should reonsider its intentions. Current approahes to this problemsimply ditate the ommitment level of the agent, ranging from autious (agentsthat reonsider their intentions at every possible opportunity) to bold (agentsthat do not reonsider until they have fully exeuted their urrent plan). Kinnyand George� investigated the e�etiveness of these two poliies in several typesof environments [3℄; their analysis has been extended by others [8℄.Our objetive in this paper is to demonstrate how to model intention reon-sideration in belief-desire-intention (bdi) agents by using the theory of Markov



deision proesses for planning in partially observable stohasti domains. Weview an intention reonsideration strategy as a poliy in a partially observableMarkov deision proess (pomdp): solving the pomdp thus means �nding anoptimal intention reonsideration strategy. We have shown in previous work [8℄that an agent's optimal rate of reonsideration depends on the environment'sdynamism { the rate of hange of the environment, determinism { the degree ofpreditability of the system behaviour for idential system inputs, and observ-ability { the extent to whih the agent has aess to the state of the environment.The motivation for using a pomdp approah here is that in the pomdp frameworkthe optimality of a poliy is largely based on exatly these three environmentalharateristis.The remainder of this paper is strutured as follows. We begin by providingsome bakground information on the bdi framework in whih the problem ofintention reonsideration arises. In Setion 3 we disuss the Markov deisionframework upon whih our approah builds and present the implementation ofintention reonsideration with a pomdp. In Setion 4 we empirially evaluateour model in an agent testbed. Finally, in Setion 5 we present some onlusionsand desribe related and future work.2 Belief-Desire-Intention AgentsThe idea of applying the onepts of beliefs, desires and intentions to agentsoriginates in the work of Bratman [2℄ and Rao and George� [6℄. In this paper,we use the oneptual model of bdi ageny as developed by Wooldridge andParsons [10℄. The model distinguishes two main data strutures in an agent: abelief set and an intention set1. An agent's beliefs represent information that theagent has about its environment, and may be partial or inorret. Intentions anbe seen as states of a�airs that an agent has ommitted to bringing about. Weregard an intention as a simple unonditional plan.The behaviour of the agentis generated by four main omponents: a next-state funtion, whih updatesthe agent's beliefs on the basis of an observation made of the environment; adeliberation funtion, whih onstruts a set of appropriate intentions on thebasis of the agent's urrent beliefs and intentions; an ation funtion, whihselets and exeutes an ation that ultimately satis�es one or more of the agent'sintentions; and a meta-level ontrol funtion, the sole purpose of whih is todeide whether to pass ontrol to the deliberation or ation subsystems. Onany given ontrol yle, an agent begins by updating its beliefs through itsnext-state funtion, and then, on the basis of its urrent beliefs, the meta-levelontrol funtion deides whether to pass ontrol to the deliberation funtion (inwhih ase the agent expends omputational resoures by deliberating over itsintentions), or else to the ation subsystem (in whih ase the agent ats). As ageneral rule of thumb, an agent's meta-level ontrol system should pass ontrol1 Sine desires do not diretly ontribute to our analytial disussion of intention re-onsideration, they are left out of the oneptual bdi model in this paper. Thisdeision is lari�ed in [10℄.



to the deliberation funtion when the agent will hange intentions as a result;otherwise, the time spent deliberating is wasted. Investigating how this hoie ismade rationally and eÆiently is the main motivation behind the work presentedin this paper.We have to onsider that agents do not operate in isolation: they are situatedin environments; an environment denotes everything that is external to the agent.Let P be a set of propositions denoting environment variables. In aordanewith similar proposition based vetor desriptions of states, we let environmentstates be built up of suh propositions. Then E is a set environment states withmembers fe; e0; : : :g, and e = fp1; : : : ; png, where pi 2 P .The internal state of an agent onsists of beliefs and intentions. Let Bel :E ! [0; 1℄, where Pe2E Bel(e) = 1, denote the agent's beliefs: we representwhat the agent believes to be true of its environment by de�ning a probabilitydistribution over the possible environment states. The agent's set of intentions,Int, is a subset of the set of environment variables: Int � P . An internal states is a pair s = hBel; Inti, where Bel : E ! [0; 1℄ is a probability funtion andInt � P is a set of intentions. Let S be the set of all internal states. For astate s 2 S, we refer to the beliefs in that state as Bels and to the intentions asInts. We assume that it is possible to denote values and osts of the outomesof intentions2: an intention value V : Int ! IR represents the value of theoutome of an intention; and intention ost C : Int ! IR represents the ost ofahieving the outome of an intention. The net value Vnet : Int! IR representsthe net value of the outome of an intention; Vnet(i), where i 2 Int, is typiallyV (i) � C(i). We an express how \good" it is to be in some state by assigninga numerial value to states, alled the worth of a state. We denote the worth ofa state by a funtion W : S ! IR, and we assume this to be based on the netvalues of the outomes of the intentions in a state. Moreover, we assume that onestate has an higher worth than an other state if the net values of all its intentionsare higher. This means that if 8s; s0 2 S;8i 2 Ints;8i0 2 Ints0 ; Vnet(i) � Vnet(i0),then W (s) � W (s0). In the empirial investigation disussed in this paper, weillustrate that a onversion from intention values to state worths is feasible,though we do not explore the issue here3. Finally, A denotes the set of physialations the agent is able to perform; with every � 2 A we identify a set ofpropositions P� � P , whih inludes the propositions that hange value when �is exeuted.In this oneptual model, the question of intention reonsideration thus ba-sially boils down to the implementation of the meta-level ontrol funtion. Onevery given ontrol yle, the agent must deide whether it ats upon its ur-2 We learly distinguish intentions from their outome states and we do not give valuesto intentions themselves, but rather to their outomes. For example, when an agentintends to deliver o�ee, an outome of that intention is the state in whih o�ee hasbeen delivered.3 Notie that this problem is the inverse of the utilitarian lifting problem: the problemof how to lift utilities over states to desires over sets of states. Disussing the liftingproblem, and its inverse, is beyond the sope of this paper, and therefore we diretthe interested reader to the work of Lang et al. [4℄.



rent intentions, or to adopt new intentions and this is deided by the meta-levelontrol funtion. We ontinue with disussing how this implementation an bedone by using Markov deision proesses.3 Implementing Intention Reonsideration as a pomdpIn this paper, the main point of our formalisation of intention reonsiderationis the pomdp implementation of it. The fat that the optimality of a pomdppoliy is based on the environment's observability, determinism and dynamism,renders the framework appropriate in the ontext of intention reonsideration.In this setion, we explain what a pomdp is and how to use it for implementingintention reonsideration.A partially observable Markov Deision Proess (pomdp) an be understoodas a system that at any point in time an be in any one of a number of distintstates, in whih the system's state hanges over time resulting from ations,and where the urrent state of the system annot be determined with ompleteertainty [1℄. Partially observable mdps satisfy the Markov assumption so thatknowledge of the urrent state renders information about the past irrelevant tomaking preditions about the future. In a pomdp, we represent the fat thatthe knowledge of the agent is not omplete by de�ning a probability distributionover all possible states. An agent then updates this distribution when it observesits environment.Let a set of states be denoted by S and let this set orrespond to the set ofthe agent's internal states as de�ned above. This means that a state in the mdprepresents an internal state of the agent. We let the set of ations be denoted byA. (We later show that A 6= A in our model.) An agent might not have ompleteknowledge of its environment, and must thus observe its surroundings in order toaquire knowledge: let 
 be a �nite set of observations that the agent an makeof the environment. We introdue an observation funtion O : S � A ! �(
)that de�nes a probability distribution over the set of observations; this funtionrepresents what observations an agent an make resulting from performing anation a 2 A in a state s 2 S. The agent reeives rewards for performing ationsin ertain states: this is represented by a reward funtion R : S�A! IR. Finally,a state transition funtion � : S � A ! �(S) de�nes a probability distributionover states resulting from performing an ation in a state { this enables us tomodel non-deterministi ations.Having de�ned these sets, we solve a pomdp by omputing an optimal poliy:an assignment of an ation to eah possible belief state suh that the expetedsum of rewards gained along the possible trajetories in the pomdp is a max-imum. Optimal poliies an be omputed by applying dynami programmingmethods to the pomdp, based on bakwards indution; value iteration and pol-iy iteration are the most well known algorithms to solve pomdps [1℄. A majordrawbak of applying pomdps is that these kinds of algorithms tend to be highlyintratable; we later return to the issue of omputational omplexity as it relatesto our model.



Intention Reonsideration as a pomdpWe regard the bdi as a domain dependent objet level reasoner, onerned di-retly with performing the best ation for eah possible situation; the pomdpframework is then used as a domain independent meta level reasoning ompo-nent, whih lets the agent reonsider its intentions e�etively. We de�ne a metalevel bdi-pomdp as a tuple hS;A;
;O;R; �i. We have explained above that astate s 2 S in this model denotes an internal state of the agent, ontaining abelief part and intention part. As intention reonsideration is mainly onernedwith states, ations and rewards, we leave the implementation of observations
, the observation funtion O and the state transition funtion � to the designerfor now.Sine the pomdp is used to model intention reonsideration, we are merelyonerned with two possible meta level ations: the agent either performs anobjet level ation (at) or the agent deliberates (del). The possible ationsA = fat; delg orrespond to the agent either ating (at) or deliberating (del).Beause the optimality riterion of poliies depends on the reward struture ofthe pomdp, we de�ne the rewards for ation at and deliberation del in states 2 S as follows: R(s; a) = �W (sint) if a = atW (s) if a = delwhere sint 2 S refers to the state the agent intends to be in while urrentlybeing in state s. Imagine a robot that has just piked up an item whih has tobe delivered at some loation. The agent has adopted the intention to deliverthe item, i.e., to travel to that loation and to drop o� the item. The reward fordeliberation is the worth of the agent's urrent state (e.g., 0) whereas the rewardfor ation is the worth of the intented state (e.g., 10) for having delivered theitem. The robot onsequently ats, whih brings it loser to its \orret" inten-tions. Intentions are orret in ase the agent does not waste e�ort while atingupon them. An agent wastes e�ort if it is deliberating over its intentions unne-essarily. If an agent does not deliberate when that would have been neessary,the agent has wrong intentions. The reward for ating is thus the worth of thestate that the agent intends to reah, whereas the reward for deliberation is theworth of the state as it urrently is.This struture of reward agrees with the intuition that the agent eventuallyreeives a reward if it has orret intentions, it reeives no reward if it has wrongintentions, and it reeives no diret reward for deliberation. With respet to thislast intuition, however, we must mention that the \real" reward for deliberationis indiretly de�ned, by the very nature of pomdps, as the expeted worth offuture states in whih the agent has orret intentions. As intentions resist reon-sideration [2℄, the agent prefers ation over deliberation and the implementationof the reward struture should thus favour ation if the rewards are equivalent.For illustrative purposes, onsider the simple deterministi mdp in Figure 1.This Figure shows a 5� 1 gridworld, in whih an agent an move either right orleft or stay at its urrent loation. The agent's urrent loation is indiated with
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Fig. 1. A 5� 1 gridworld example whih illustrates the de�nition of rewards in a bdi-pomdp. Rewards, being either 0 or 10, are indiated per loation. With eah state wehave indiated the expeted reward for exeuting a physial ation and for deliberation;the best meta ation to exeute is indiated in square brakets.a square and the loation it intends to travel to is denoted by a irle. Assumethe agent is urrently in state s1: its loation is ell 4 and it intends to visit ell1. Ation will get the agent loser to ell 1: it exeutes a move left ation whihresults in state s2. Deliberation results in dropping the intention to travel to ell1, and adopting the intention to travel to ell 5 instead; this results in state s3.Obviously, deliberation is the best meta ation here and the expeted rewardsfor the meta ations in s1 reet this: the expeted reward for deliberation ishigher than the one for ation. In all other states, these expeted rewards areequivalent, whih means that the agent ats in all other states.Solving a bdi-pomdp means obtaining an optimal intention reonsiderationpoliy: at any possible state the agent might �nd itself in, this poliy tells theagent either to at or to deliberate. The main ontribution of our work is thatour approah gives a well-founded means of establishing a domain dependentoptimal reonsideration strategy. Thus the agent is programmed with a domainindependent strategy, whih it uses to ompute a domain dependent strategyo�-line, and then exeutes it on-line. Until now, empirial researh on meta levelreasoning aimed at eÆient intention reonsideration has, to the best of ourknowledge, involved hardwiring agents with domain dependent strategies.It is important that deiding whether to reonsider intentions or not is om-putationally heap ompared to the deliberation proess itself [10℄; otherwiseit is just as eÆient to deliberate at any possible moment. Using a pomdp todetermine the reonsideration poliy satis�es this riterion, sine it learly dis-tinguishes between design time omputation, i.e., omputing the poliy, and run



time omputation, i.e., exeuting the poliy. We reognise that the design timeproblem of omputing a poliy is very hard; this problem orresponds with thegeneral problem of solving pomdps and we do not attempt to solve this problemin this paper. However, the omputation that onerns us most is the run timeomputation, and in our model this merely boils down to looking up the urrentstate and exeuting the ation assigned to that state, i.e., either to at or todeliberate. This is a omputationally heap operation and is therefore suitablefor run time exeution.4 Experimental ResultsIn this setion, we apply our model in the Tileworld testbed [5℄, and show thatthe model yields better results than were obtained in previous investigations ofintention reonsideration in this testbed4.The Tileworld [5℄ is a grid environment on whih there are agents andholes. An agent an move up, down, left, right and diagonally. Holes have tobe visited by the agent in order for it to gain rewards. The Tileworld startsin some randomly generated world state and hanges over time with the ap-pearane and disappearane of holes aording to some �xed distributions. Anagent moves about the grid one step at a time5. The experiments are based onthe methodology desribed in [8℄. (We repeated the experiments desribed in [8℄to ensure that our results were onsistent; these experiments yielded identialresults, whih are omitted here for reasons of spae.)The Tileworld testbed is easily represented in our model. Let L denotethe set of loations, i.e., L = fi : 1 � i � ng represents the mutually disjointloations, where n denotes the size of the grid. A proposition pi then denotesthe presene (pi = 1) or absene (pi = 0) of a hole at loation i. An intentionvalue orresponds to the reward reeived by the agent for reahing a hole, andan intention ost is the distane between the urrent loation of the agent andthe loation that the agent intends to reah. An environment state is a pairhfpi; : : : ; png;mi, where fpi; : : : ; png are the propositions representing the holesin the grid, and m 2 L is the urrent loation of the agent.Combining the 2n�n possible environment states with n possible intentionsmeans that, adopting expliit state desriptions, the number of states is 2n�n2,where n denotes the number of loations. Computations on a state spae of suhsize is impratial, even for small n. In order to render the neessary ompu-tations feasible, we abstrated the Tileworld state spae. In the Tileworlddomain, we abstrat the state spae by letting an environment state e be a pairhp1; p2i, where p1 refers to the loation of the hole whih is urrently losest to4 Whereas until now we have disussed non-deterministi pomdps, in the experimentalsetion we restrit our attention to deterministi mdps in order to ompare our newresults with previous results.5 Although it may be argued that the Tileworld is simplisti, it is a well-reognisedtestbed for evaluating situated agents. Beause of the dynami nature of the Tile-world, the testbed sales up to diÆult and unsolvable problems.



the agent, and p2 refers to the urrent loation of the agent. Then an agent's in-ternal state is hhp1; p2i; fi1gi where i1 refers to the hole whih the agent intendsto visit. This abstration means that the size of the state spae is now reduedto n3. However, the agent now has to �gure out at run time what is the losesthole in order to math its urrent situation to a state in the Tileworld statespae. This omputation an be done in time O(n), by simply heking whetherevery ell is oupied by a hole or not. Beause the main purpose of this exampleis merely to illustrate that our model is viable, we are urrently not onernedwith this inrease in run time omputation.In [8℄, the performane of a range of intention reonsideration poliies wasinvestigated in environments of di�ering struture. Environments were variedby hanging the degree of dynamism (), observability (referred to by [8℄ asaessibility), and determinism. Dynamism is denoted by an integer in the range1 to 80, representing the ratio between the world lok rate and the agent lokrate. If  = 1, then the world exeutes one yle for every yle exeuted by theagent and the agent's information is guaranteed to be up to date; if  > 1 thenthe information the agent has about its environment may not neessarily be upto date. (In the experiments in this paper we assume the environment is fullyobservable and deterministi.) The planning ost p was varied, representing thetime ost of planning, i.e., the number of time-steps required to form a plan, andtook values 0, 1, 2, and 4.Three dependent variables were measured: e�etiveness, ommitment, andost of ating. The e�etiveness � of an agent is the ratio of the atual soreahieved by the agent to the sore that ould in priniple have been ahieved.An agent's ommitment (�) is expressed as how many ations of a plan areexeuted before the agent replans. The agent's ommitment to a plan with lengthn is (k � 1)=(n� 1), where k is the number of exeuted ations. Observe thatommitment de�nes a spetrum from a autious agent (� = 0, beause k = 1)to a bold one (� = 1, beause k = n). The ost of ating is the total number ofations the agent exeutes.Solving the Tileworld mdp o�-line To summarise, the Tileworld mdpthat we have to solve o�-line onsists of the following parts. As desribed above,the state spae S ontains all possible internal states of the agent. Eah states 2 S is a tuple hhp1; p2i; fi1gi, where p1 refers to hole that is urrently losest tothe agent, p2 refers to the urrent loation of the agent, and i1 denotes the holewhih the agent intends to visit. The set of ations is A = fat; delg. (Note thatthe set of physial ations is A = fstay; n; ne; e; se; se; sw;w; nwg, but that isnot of onern to us while speifying the Tileworld mdp.) Sine we assumefull observability, the set of observations is 
 = S. Finally, state transitionsare de�ned as the deterministi outomes of exeuting an ation a 2 A. Asthe agent deliberates in state s resulting in state s0 (i.e., �(s; del) = s0), thenBels = Bels0 , but possibly Ints 6= Ints0 ; as the agent ats (i.e., �(s; at) = s00),then Ints = Ints00 , but possibly Bels 6= Bels00 . Thus deliberation means thatthe intention part of the agent's internal state possibly hanges, and ation
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Fig. 2. Overall e�etiveness of a bdi-pomdp agent. E�etiveness is measured as theresult of a varying degree of dynamism of the world. The four urves show the e�e-tiveness at a planning ost (denoted by p) from 0 to 4. The two other urves show thee�etiveness at p = 1 and p = 2 of Kinny and George�'s best reonsideration strategy(from [3℄).means that the belief part of the agent's internal state possibly hanges (botheteris paribus with respet to the other part of the internal state). Althoughsolving mdps in general is omputationally hard, we have shown above that byappropriate abstration of the Tileworld state spae, the omputations forour Tileworld mdp beome feasible.Results The experiments resulted in the graphs shown in Figures 2, 3(A) and3(B). In every graph, the environment's dynamism and the agent's planning ostp (for values 0, 1, 2 and 4) are varied. In Figure 2, the overall e�etiveness ofthe agent is plotted. In Figure 3(A) we plotted the agent's ommitment level6and in Figure 3(B) the ost of ating.Analysis The most important observation we make from these experimentsis that the results as presented in Figure 2 are overall better than results asobtained in previous investigations into the e�etiveness of reonsideration (as6 The olleted data was smoothed using a Bezier urve in order to get these ommit-ment graphs, beause the ommitment data showed heavy variation resulting fromthe way dynamism is implemented. Dynamism represents the ating ratio betweenthe world and the agent; this ratio osillates with the random distribution for holeappearanes, on whih the ommitment level depends.
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(A) (B)Fig. 3. (A) Average ommitment level for a bdi-pomdp agent. The ommitment levelis plotted as a funtion of the dynamism of the world with planning ost (denoted byp) of 0, 1, 2 and 4. (B) Average ost of ating for a bdi-pomdp agent. The ost ofating { the number of time steps that the agent moves { is plotted as a funtion ofthe dynamism of the world with planning ost (denoted by p) of 0, 1, 2 and 4.elaborated below). Our explanation for this observation is that solving the bdi-pomdp for our Tileworld domain delivers an optimal domain dependent re-onsideration strategy: the optimal bdi-pomdp poliy lets the agent deliberatewhen a hole appears that is loser than the intended hole (but not on the path tothe intended hole), and when the intended hole disappears. Kinny and George�[3℄ onluded that it is best for an agent to reonsider when a loser hole appearsor when the intended hole disappears. Besides this observation, we see in Figure3(A) that our bdi-pomdp agent is able to determine its plan ommitment at runtime, depending on the state of the environment. This ability ontributes to in-reasing the agent's level of autonomy, sine it pushes the hoie of ommitmentlevel from design time to run time.Our experimental results on�rm the results obtained in previous investi-gations on seleting an intention reonsideration strategy [3, 8, 9℄: the agent'se�etiveness and level of ommitment both derease as the dynamism or plan-ning ost inreases, and the ost of ating dereases as the dynamism or planningost inreases.Whereas the fous of previous researh was on investigating the e�etive-ness of �xed strategies in di�erent environments, the aim of the investigation inthis paper is to illustrate the appliability of our bdi-pomdp model. Kinny andGeorge� [3℄ have inluded empirial results for an agent that reonsiders basedon the ourrene of ertain events in the environment (see [3, p87℄ Figures 8and 9 for p = 2 and p = 1, respetively). Their onlusion from these resultswas that it is best for an agent to reonsider when the agent observes that ei-ther a loser hole appears or the intended hole disappears, as mentioned above.We implemented this strategy for the agent in our testbed and yielded identialresults. We observed that an agent using our bdi-pomdp model performs better



than the agent using the mentioned �xed strategy with a realisti planning ost(p � 2). Having ompared our results to the results of �xed strategies, we on-lude that, as mentioned above, in e�et, our agent indeed adopts the strategythat delivers maximum e�etiveness.In the ontext of exible strategies, we ompare our results to the resultsfrom [9℄, where the e�etiveness of an alternative exible strategy, based ondisrete deliberation sheduling [7℄, is explored. The main onlusion we drawfrom omparing the results from the two strategies is that the empirial outomesare analogous. Comparing the graphs from Figure 2 to the result graphs from [9℄,we observe that the agent's e�etiveness is generally higher for our bdi-pomdpmodel; when we ompare the graphs from Figure 3(B) to the ost of atinggraphs from [9℄, we see that the ost of ating is lower overall in the disretedeliberation model. However, in our bdi-pomdp model, the level of ommitmentis more onstant, sine the bdi-pomdp agent's deision mehanism depends lesson preditions of appearanes and disappearanes of holes.5 DisussionIn this paper we presented a formalisation of the intention reonsideration pro-ess in bdi agents based on the theory of pomdp planning. The motivation forthe formalism is that bdi agents in real world appliation domains have to re-onsider their intentions eÆiently in order to be as e�etive as possible. It isimportant that reonsideration happens autonomously, sine an agent's ommit-ment to its tasks hanges depending on how its environment hanges. The mainontribution of our model is that we deliver a meta level and domain independentframework apable of produing optimal reonsideration poliies in a variety ofdomains. The model applies pomdp planning to agents; in this paper we donot investigate how intentions an ontribute to eÆiently solving pomdps, butregard suh an investigation as important further work.In the work presented, we show that the environmental properties of dy-namism, observability and determinism are ruial for an agent's rate of inten-tion reonsideration. Our formalism takes all mentioned environmental proper-ties into aount, and they form the basis of the deision mehanism of the bdiagent. A distintive omponent in the bdi agent deides whether to reonsideror not, and we use the pomdp framework to determine an optimal reonsidera-tion strategy that is used for implementing this omponent. We leave open thequestion whether a similar result an be ahieved by the onstrution of om-plex sequential and onditional plans, sine this de�es the very nature of the bdionept. A bdi agent is onerned with the management of simple plans overtime, thus its intelligene is loated in its meta-reasoning apabilities and not inits planning apabilities.We have shown that an agent whih is designed aording to our formalism,is able to dynamially hange its ommitment to plans at run time, based onthe urrent state of the environment. (In the experiments that are desribed inthis paper, we assumed the environment to be fully observable and ompletely
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