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Abstract. The sign-propagation algorithm for inference with a
qualitative probabilistic network has been designed to handle a single
observation at a time. Multiple observations can in essence be dealt
with by entering them consecutively and combining the results of
the successive propagations, or by entering them for a newly added
dummy node. We demonstrate that both approaches can yield weaker
results than necessary. We identify the causes underlying this unnec-
essary weakness and adapt the propagation algorithm so as to provide
for the strongest possible results upon inference.

1 INTRODUCTION

Qualitative probabilistic networks (QPNs) were introduced in the
early 1990s for probabilistic reasoning in a qualitative way [1]. A
qualitative network encodes statistical variables and the probabilistic
relationships between them in a directed graph. The encoded rela-
tionships in essence represent influences on probability distributions.
Each such influence captures the shift in distribution for a variable
that is occasioned by a shift in another variable’s distribution. The
direction of the occasioned shift is summarised by a qualitative sign.

Qualitative networks can play an important role in the construction
of quantitative probabilistic networks for real-life applications. The
construction of a quantitative network begins with the construction
of its graph. Assessment of the various probabilities required, which
often is very hard, is typically performed only when the network’s
graph is considered robust. Now, by associating signs with the rela-
tionships modelled in the graph, a qualitative network is obtained that
can be used for studying the reasoning behaviour of the quantitative
network prior to the assessment of its probabilities. For this purpose,
it is important to derive as much information as possible from the
qualitative network.

Inference with a qualitative probabilistic network is based upon
the idea of combining and propagating signs [2]. The basic algorithm
computes the effect of a single observation on all the variables in the
network. It yields, for each variable, a sign indicating the direction of
the shift in distribution that is occasioned by the new observation. In
real-life applications, often the simultaneous, joint effect of multiple
observations is of interest. Multiple observations can in essence be
dealt with in two ways [3]. One way is to add a dummy descendant to
the observed nodes, for which an appropriate observation is entered
and subsequently propagated. Another way is to enter and propagate
the various observations one after the other and combine the results
of the successive propagations to yield the joint effect. Unfortunately,
both approaches can yield weaker results than necessary.
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In this paper, we address the propagation of multiple observations
in a qualitative probabilistic network. We will show that the dynam-
ics of the set of influences over which signs are propagated, can af-
fect the results of inference. We further show that some influences
are guaranteed to be dominated by others and should be disregarded
during sign propagation. Building upon these properties, we adapt
the basic algorithm to yield the strongest possible inference results.
The paper is organised as follows. Section 2 briefly reviews quali-
tative networks and the basic sign-propagation algorithm. Section 3
discusses propagating multiple observations with the two approaches
outlined above. In the Sections 4 and 5 we study the dynamics of in-
fluences and their dominance properties. In Section 6, we revisit the
basic algorithm. The paper ends with some conclusions in Section 7.

2 QUALITATIVE PROBABILISTIC NETWORKS

A qualitative probabilistic networkencodes statistical variables and
the probabilistic relationships between them in a directed acyclic
graphG = (V (G); A(G)). Each nodeA 2 V (G) represents a vari-
able. For ease of exposition, we assume all variables to be binary
with a > �a, writing a for A = true and�a for A = false, but our
results are readily generalised to non-binary variables. The setA(G)
of arcs captures probabilistic independence between the represented
variables. We say that a chain between two nodes isblockedif it in-
cludes either an observed node with at least one outgoing arc, or an
unobserved node with two incoming arcs and no observed descen-
dants; a node with two incoming arcs is termed ahead-to-head node.
If all chains between two nodes are blocked, then these nodes are
said to bed-separatedand the corresponding variables are consid-
ered conditionally independent given the observations present [4].

Associated with its digraph, a qualitative probabilistic network
specifies influences and synergies [1]. Aqualitative influencebe-
tween two nodes expresses how the values of one node influence the
probability distribution over the values of the other node.

Definition 2.1 LetG be an acyclic digraph withA ! B 2 A(G).
A positive qualitative influenceof A onB, denotedS+(A;B), ex-
presses that observing a higher value forA makes the higher value
forB more likely, regardless of any other direct influences onB, that
is,Pr(b j ax) � Pr(b j �ax) for any combination of valuesx for the
set�(B) nfAg of predecessors ofB other thanA.

The ‘+’ in S+(A;B) is termed thesignof the influence. A negative
qualitative influenceS� and a zero influenceS0 are defined analo-
gously. If the influence ofA onB is not monotonic or if it is unknown
after inference, we say that it isambiguous, denotedS?(A;B). The
definition of qualitative influence is generalised straightforwardly to
influences alongchainswithout head-to-head nodes.

The set of influences of a qualitative network exhibits various
properties. Thesymmetryproperty states that, if the network in-
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cludes the influenceSÆ(A;B), then it also includesSÆ(B;A), Æ 2
f+;�; 0; ?g. Thetransitivity property asserts that the qualitative in-
fluences along a chain without head-to-head nodes combine into a
single influence with the
-operator from Table 1. The property
of compositionasserts that multiple parallel influences between two
nodes combine into a single influence with the�-operator.

A qualitative probabilistic network further includesproduct syner-
gies[5], that express how the value of one node influences the prob-
ability distribution of another node given a value for a third node.

Definition 2.2 Let G be as before, withA;B;C 2 V (G) and
�(C) = fA;Bg. A negative product synergyof A onB (and vice
versa) given the valuec for nodeC, denotedX�(fA;Bg; c), ex-
presses that, givenc, a higher value forA renders the higher value
forB less likely, that is,Pr(c jab)�Pr(c j�a�b) � Pr(c ja�b)�Pr(c j�ab).

Positive, zero, and ambiguous synergies are defined analogously. The
product synergyXÆ(fA;Bg; c) serves, upon observingc, to induce
a qualitativeintercausalinfluence with signÆ betweenA andB.

Example 2.1 We consider the qualitative network from Figure 1,
which is a simplified fragment of a real-life network in the field of
oesophageal cancer. NodeU represents whether or not a patient’s
tumour is ulcerating; nodeL models whether or not the tumour is
longer than10 cm. NodeW indicates whether or not the tumour has
grown beyond the oesophageal wall into adjacent structures.U and
L are modelled as the possible causes of tumour growth outside the
oesophagus. Since the presence of either cause suffices to increase
the probability of invasion of adjacent structures, bothU andL ex-
ert a positive qualitative influence onW , indicated by the signs over
the arcs. The network further models that either value forW induces
a negative intercausal influence betweenU andL, indicated by the
two signs over the dashed line. Given a tumour’s growth beyond the
oesophageal wall, for example, the negative synergy expresses that
observation of one cause explains away the other cause.�

U L

W

�,�

+ +

Figure 1. The qualitativeWall invasionnetwork.

Inference with a qualitative network is based upon the idea of prop-
agating and combining signs [2]. The algorithm traces the effects
of observing a node’s value on the other nodes in the network by
message-passing between neighbours. For each node, anode signis
determined, indicating the direction of shift in its probability distri-
bution as occasioned by the new observation. Initially, all node signs
equal ‘0’. For the newly observed node, an appropriate sign is en-
tered, that is, a ‘+’ for the valuetrue or a ‘�’ for false. Each node
receiving a message updates its sign with the�-operator, and then
sends a message to each neighbour that is not d-separated from the

observed node and to every node on which it exerts an induced in-
fluence3. The sign of this message is the
-product of the node’s
(new) sign and the sign of the influence it traverses. This process is
repeated throughout the network, building on the properties of sym-
metry, transitivity, and composition of influences. Since each node
can change its sign at most twice, the algorithm is guaranteed to halt.

3 PROPAGATING MULTIPLE OBSERVATIONS

The sign-propagation algorithm for inference with a qualitative net-
work basically serves to compute the effects of asingleobservation.
The algorithm can, however, be used to handle multiple observations
[3]. The first approach is to add a dummy nodeD to the network,
with arcsOi ! D for each observed nodeOi; the sign of the in-
fluence associated with the arcOi ! D corresponds to the sign
of the observation forOi. Running the basic sign-propagation algo-
rithm with a ‘+’ for the dummy node will now yield the joint effect
of all the observations. The other approach is to enter and propagate
the various observations one after the other. The joint effect on unob-
served nodes then equals the sign-sum of the results of the successive
propagations; observed nodes retain their sign of observation. Both
approaches, unfortunately, tend to yield unnecessarily weak results.

In the dummy-node approach to handling multiple observations,
the node sign of the newly added node is set to ‘+’. The node signs
of the truly observed nodes, however, are not fixed and can therefore
change during inference, as is illustrated by the following example.

Example 3.1 We consider the qualitative network from Figure 2.
Again pertaining to the invasion of an oesophageal tumour into adja-
cent structures beyond the oesophagus, it describes that the longer the
tumour, the more likely it is to have grown through the oesophageal
wall. The lengthL of the tumour is strongly correlated with whether
or not the tumour is circular, modelled by nodeC. We now address
entering the observationsL = true andC = false.

Figure 2 shows the results of propagating the two observations
with the dummy-node approach. First, a dummy nodeDummy is
added to the network, with arcsL ! DummyandC ! Dummy,
and influencesS+(L;Dummy) andS�(C;Dummy). A ‘+’ is then
entered for the dummy node.Dummysends a ‘+’ to nodeL.L there-
upon sends a ‘+’ to bothC andW . The dummy node also sends a
‘�’ to nodeC, which in turn passes the ‘�’ on to L. All nodes end
up with the ambiguous node sign ‘?’ after inference.�
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Figure 2. The effect of entering a ‘+’ for nodeL and a ‘�’ for nodeC,
using the dummy-node approach.

The example illustrates a typical problem with the dummy-node ap-
proach: since multiple observations are entered as a single observa-
tion for a dummy node, the actual observations do not block chains
as they would in the original network. The set of influences over
which signs are propagated may thus be too large. In fact, observa-
tions can even be propagated to nodes from which they are actually

3 The literature on sign propagation is not clear on whether or not an inter-
causal influence that is induced by an observation is immediately used upon
propagating that observation. Here we assume that induced influences are
not used immediately. In Section 5 we will justify our assumption.
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Figure 3. The separate effects of entering a ‘+’ for L (a) and a ‘�’ for C
(b), and their joint effect (c).

d-separated. This can result in weaker signs than necessary, that is, it
can result in ‘?’s instead of ‘+’, ‘�’ or ‘ 0’s. Although not incorrect,
these ambiguous signs are very uninformative and, moreover, tend to
spread to large parts of the network.

Using the sequential-propagation approach to handling multiple
observations, the order in which observations are entered can affect
the net result of inference. The differences upon inference originate
from thedynamicsof the set of influences over which signs are prop-
agated: the set shrinks as chains are blocked and expands as inter-
causal influences are induced. We present two illustrative examples.

Example 3.2 We consider again the network fragment from Fig-
ure 2, this time without the dummy node. We again address entering
the two observationsL = true andC = false.

Figure 3 shows the results from first enteringL = true and then
C = false. To propagate the first observation, nodeL sends a ‘+’
to bothC andW . All three nodes end up with a positive node sign.
Then, a ‘�’ is entered for nodeC. As nodeL is observed, its sign is
not affected. In addition, as nodeL blocks the chain fromC toW , no
sign is passed on to nodeW . The joint effect of the two observations
thus is positive for nodesL andW , and negative for nodeC. These
are the strongest possible results derivable from the network.

Figure 4 shows the results from first enteringC = falseand then
L = true. The joint effect of these observations on the probabil-
ity distribution of nodeW now is unknown. Note that this result is
weaker than necessary.�

Example 3.3 We consider once again the network fragment from
Figure 1 and address the observationsL = true andW = true.

Figure 5 shows the results from first enteringL = true and then
W = true. After entering the first observation, nodeL propagates a
‘+’ to nodeW . AsU andL are independent causes ofW , it does not
pass on a message toU :U ’s probability distribution is not affected by
the observation. Then, a ‘+’ is entered for nodeW . W sends a ‘+’
to bothU andL. As nodeL is observed, its sign is not affected by
the new observation. The joint effect of the two observations shows
a positive net influence on nodeU ’s probability distribution, which
is the strongest possible result that can be derived from the network.
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Figure 4. The separate effects of entering a ‘�’ for C (a) and a ‘+’ for L
(b), and their joint effect (c).
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Figure 5. The separate effects of entering a ‘+’ for L (a) and a ‘+’ for W
(b), and their joint effect (c).

Figure 6 now shows the results from first enteringW = true and
thenL = true. After entering the first observation, nodeW propa-
gates a ‘+’ to both its causes. The observation in addition induces
a negative intercausal influence betweenU andL. Subsequently en-
tering the second observation causes nodeL to send a ‘�’ over the
intercausal influence to nodeU . It further sends a ‘+’ to W , but node
W has been observed and will not change sign. The joint effect of the
observations now reveals an ambiguous net effect onU ’s probability
distribution, which is a correct but unnecessarily weak result.�

The previous examples demonstrate that, by sequential propagation
of multiple observations and adding the results, the order in which
the various observations are entered can influence the results and can
yield unnecessary ambiguous node signs. As mentioned before, the
differences in results can be attributed to the dynamics of the set of
influences over which signs are propagated.

4 EXPLOITING DYNAMICS

When a single observation is entered into a qualitative network, the
basic algorithm propagates the associated sign to each node that is
not d-separated from the observed node. The set of influences over
which the sign is propagated is then unique. By entering multiple ob-
servations one after the other, however, this set changes dynamically.
On the one hand, influences are removed as chains are blocked; on
the other hand, intercausal influences are added [7]. In the previous
section we have shown that these dynamics can give rise to unnec-
essary ‘?’s and can yield different results upon inference, dependent
upon the order in which the observations are entered.

The order of entering observations for two nodesO1 andO2 can
influence the sign resulting for a nodeA if A is d-separated from,
for example,O1 givenO2. Then, if the observation forO1 is entered

+ +
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Figure 6. The separate effects of entering a ‘+’ for W (a) and forL (b),
and their joint effect (c).



first, a sign may be propagated to nodeA that would not have reached
it if the observation forO2 had been entered first. To ensure that
the order in which multiple observations are entered is immaterial,
therefore, the sign of an observation should be propagated only along
chains that will not be blocked by subsequent observations. To this
end, for each nodeOi in the setO of simultaneously observed nodes,
we determine the set of nodes that are d-separated fromOi given
O n fOig and the setP of all previously observed nodes. We call
this set theexclusion setX(Oi) for Oi. We now have that any node
in X(Oi) is independent ofOi given(O [ P ) n fOig.

Proposition 4.1 LetG be an acyclic digraph and letPr be a prob-
ability distribution that respectsG. Now, letP be a set of previously
observed nodes and letO be the set of newly observed nodes. Then,
for eachOi 2 O,Pr(X(Oi) jO[P ) = Pr(X(Oi) j(O[P )nfOig).

Now, to ensure that the order of entering multiple observations does
not affect net results, the sign-propagation algorithm should restrict
the propagation of an observation forOi 2 O to those nodes in the
digraph that are not included inX(Oi). From Proposition 4.1, we
have that, by doing so, no node ever receives a sign it should not
have received given the other observations.

With the dummy-node approach to handling multiple observa-
tions, the set of influences over which signs are propagated does
not change dynamically upon inference since only a single obser-
vation for the dummy node is entered. However, as demonstrated in
the previous section, observations can then be propagated to nodes
from which they are d-separated. To ensure that signs are propagated
correctly, the sign-propagation algorithm should be adapted to send
signs to observed nodes over influences from the dummy node only.

5 DOMINANCE OF INFLUENCES

In the previous section, we discussed the use of an exclusion set to
prevent the order in which multiple observations are entered into a
qualitative network from affecting the net results of inference. In this
section, we demonstrate that any intercausal influences induced by
the observations should be disregarded during sign propagation. To
this end, we investigate thesoleeffect of these intercausal influences.

We begin by showing that the influences that are induced by a spe-
cific observation should not be used in propagating that observation.

Proposition 5.1 LetG be the digraph of a qualitative network with
A ! C 2 A(G) andSÆ(A;C), and without any other chains be-
tweenA andC ’s predecessors than throughC. Let ÆC be the sign
of an observation for nodeC and letÆA be the sign of nodeA given
this observation. Then,ÆA = ÆC 
 Æ.

Proof: We prove the proposition forÆ = ÆC = +; proofs for other
combinations of signs are analogous. The sign of nodeA given the
observation forC equals the sign of the changePr(a j c)�Pr(a) in
A’s probability distribution. We find for all combinations of valuesx
for the setX of predecessors ofC other thanA, that

Pr(a j cx) � Pr(a) =
(Pr(c j ax)� Pr(c j x)) � Pr(a)

Pr(c j x)

= (Pr(c j ax)� Pr(c j �ax)) �

�
Pr(�a) � Pr(a)

Pr(c j x)

�

From S+(A;C) we have thatPr(c j ax) � Pr(c j �ax) � 0
for all x. We conclude thatPr(a j c) � Pr(a) =

P
x
(Pr(a j

cx)� Pr(a)) � Pr(x j c) � 0 and, hence, thatÆA = ÆC 
 Æ.�

The previous proposition only pertains to the effect of the intercausal
influence on nodeA. Any other influences onA fromC ’s predeces-
sors are handled by the propagation algorithm. We would like to note
that the proposition holds also when a descendant ofC is observed.

We now show that, if an observation pertains to a node from a set
of multiple simultaneously observed nodes, then the intercausal in-
fluence induced by that observation should also be disregarded when
propagating theother observations; more specifically, we show that
direct influences always dominate over intercausal ones.

Dominance of direct influences over intercausal ones was already
suggested by M.J. Druzdzel [3, Section 6.4.3]. Druzdzel focuses on
the situation where a head-to-head node and one of its parents are
observed. As we will show presently, in this situation the effect of
the observation of the head-to-head node on an unobserved parent
is larger than the effect of the observation for the observed parent
via the induced intercausal influence. Druzdzel claims that this dom-
inance property follows from the following proposition:“For parents
A,B ofC, andA,C ofD, the qualitative influence ofD onB solely
depends on the influence ofD onC and that ofC onB.” In the net-
work described, there are two chains fromD toB, one consisting of
D  A! C  B and one consisting ofD  C  B. Druzdzel
proves the proposition by observing that the latter chain is the only
unblocked chain. Note, however, that if nodeD, a descendant of the
head-to-head nodeC, is observed, then an intercausal influence is
induced between nodesA andC, and the chain fromA to B via C
becomes unblocked as well. Unfortunately, as the proposition does
not mention observed nodes nor intercausal influences, we feel that
it does not correctly capture the dominance property.

We will formally show that the dominance property suggested by
Druzdzel indeed holds. We say that the influence of a nodeB on a
nodeC dominatesthe influence of a nodeA onC, if an observation
for B has a larger effect on the probability distribution ofC than
an observation forA, that is, iff, for all observationsai 2 fa; �ag
of A andbi 2 fb;�b g of B, we have thatjPr(c j bi) � Pr(c)j �
jPr(c j ai)� Pr(c)j. We now prove that direct influences dominate
over intercausal ones.

Proposition 5.2 LetG be the digraph of a qualitative network with
A ! C, B ! C 2 A(G) and without any other chains betweenA
andB than throughC. LetÆdirect be the sign of change for nodeA
given an observation for nodeC and letÆinter be the sign of change
for nodeA given a subsequent observation for nodeB. LetÆA be the
sign of nodeA given both observations. Then,ÆA = Ædirect.

Proof: We prove the proposition forS+(A;C), the observationsc
for nodeC andb for nodeB, andX�(fA;Bg; c). Note that we then
have thatÆdirect = + andÆinter = �. Proofs for other combinations
of signs are analogous. The signÆdirect of the change inA’s proba-
bility distribution equals the sign of the differencePr(a j c)�Pr(a).
The signÆinter of the change inA’s probability distribution occa-
sioned by the subsequent observation for nodeB, equals the sign of
Pr(a j bc) � Pr(a j c). The node signÆA of nodeA given both
observations equals the sign of the differencePr(a j bc) � Pr(a).
For all combinations of valuesx for the setX of predecessors ofC
other thanA andB, we now have that

Pr(a j bcx)� Pr(a) =
Pr(c j abx) � Pr(a j bx)

Pr(c j bx)
� Pr(a)

=
(Pr(c j abx)� Pr(c j bx)) � Pr(a)

Pr(c j bx)

= (Pr(c j abx)� Pr(c j �abx))�

�
Pr(a) � Pr(�a)

Pr(c j bx)

�



FromS+(A;C) we have for all valuesx thatPr(c j abx)� Pr(c j
�abx) � 0. We conclude thatPr(a j bc) � Pr(a) � 0 and, hence,
thatÆA = Ædirect.�

We note that the proposition also holds for indirect observations for
nodeC. The dominance property tells us that during the sequential
propagation of multiple simultaneous observations, intercausal influ-
ences induced by any of these observations should be disregarded.

6 PROBABILISTIC INFERENCE REVISITED

In the previous sections, we argued that observations for the nodes
Oi from a setO of simultaneously observed nodes should be prop-
agated only to the nodes that are not d-separated fromOi given all
other nodes fromO. In addition, we demonstrated that, upon propa-
gating multiple simultaneous observations, we should disregard the
intercausal influences induced by these observations. The basic sign-
propagation algorithm can be easily adapted to incorporate these
ideas. For this purpose, a node’s exclusion set can be computed ef-
ficiently with the well-knownBayes-Ballalgorithm [6]. This algo-
rithm computes the set of nodes that arestructurally irrelevantfor a
node of interest given all observed nodes. For an observed nodeOi,
the set of structurally irrelevant nodes given all other observations, is
exactly our exclusion setX(Oi) of Oi.

We now illustrate the impact of disregarding intercausal influences
and using exclusion sets upon propagating multiple observations.

Example 6.1 We consider the qualitative network from Figure 7.
Figure 7(a) shows the results of using the basic sign-propagation
algorithm, after entering the subsequent observationsD = true,
B = true, C = false, andG = false, and combining the results.
Note that the nodesA andE end up with the node sign ‘?’ as a result
of propagating a negative sign over the intercausal links induced by
the observations forD andB. The ‘?’ is propagated from nodeE to
nodeG and onwards, before the observation forG is entered. As a
result, nodesH, I andJ also end up with the sign ‘?’. Figure 7(b)
shows the results of using the adapted algorithm, which disregards
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Figure 7. Propagation of multiple observations using the original
sign-propagation algorithm (a) and the adapted algorithm (b).

intercausal influences and exploits the fact that nodeG d-separates
the nodesfH; I; Jg from the other observed nodes.�

The adapted algorithm prevents the propagation of signs to nodes
that are d-separated from the observed node, given all other observed
nodes from the set of multiple observations. Each node therefore re-
ceives a sign if and only if its probability distribution is truly influ-
enced by the entire set of observations. As no node ever receives
signs it should not have received, no unnecessary ‘?’s are generated
and the algorithm returns the strongest possible signs that can be de-
rived from the specification of the network.

7 CONCLUSIONS

The basic algorithm for probabilistic inference with a qualitative net-
work has been designed to determine the effect of a single obser-
vation on the probability distributions of all nodes in the network.
We demonstrated that handling multiple observations by applying
the basic algorithm for each observation separately and combining
the results into their joint effect can yield weaker results than nec-
essary. Furthermore, the results may depend on the order in which
the observations are entered. As the cause of these problems, we
identified the dynamics of the set of influences over which signs
are propagated upon inference. We showed that the intercausal in-
fluences that are added to this set are always dominated by direct
influences and should therefore be disregarded upon inference. In
addition, we showed that using exclusion sets for observed nodes
can prevent the propagation of the sign of an observation to nodes
that will be d-separated from the observed node given subsequently
entered observations. The adapted sign-propagation algorithm yields
results that are the strongest that can be derived from the qualitative
network as specified.

The concept of exclusion set and the disregarding of intercausal
influences are not just valuable when sequentially propagating mul-
tiple observations, but can also be exploited with the dummy-node
approach. We feel however that the dummy-node approach, when
compared to sequential propagation, bears the major drawback of
changing the structure of a network.
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