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Abstract. The sign-propagation algorithm for inference with a  In this paper, we address the propagation of multiple observations
gualitative probabilistic network has been designed to handle a single a qualitative probabilistic network. We will show that the dynam-
observation at a time. Multiple observations can in essence be deatts of the set of influences over which signs are propagated, can af-
with by entering them consecutively and combining the results offect the results of inference. We further show that some influences
the successive propagations, or by entering them for a newly addeatre guaranteed to be dominated by others and should be disregarded
dummy node. We demonstrate that both approaches can yield weakéuring sign propagation. Building upon these properties, we adapt
results than necessary. We identify the causes underlying this unnetiie basic algorithm to yield the strongest possible inference results.
essary weakness and adapt the propagation algorithm so as to provitlee paper is organised as follows. Section 2 briefly reviews quali-

for the strongest possible results upon inference. tative networks and the basic sign-propagation algorithm. Section 3
discusses propagating multiple observations with the two approaches
1 INTRODUCTION outlined above. In the Sections 4 and 5 we study the dynamics of in-

fluences and their dominance properties. In Section 6, we revisit the
Qualitative probabilistic networks (QPNs) were introduced in thebasic algorithm. The paper ends with some conclusions in Section 7.
early 1990s for probabilistic reasoning in a qualitative way [1]. A
gualitative network encodes statistical variables and the probabilisti% QUALITATIVE PROBABILISTIC NETWORKS
relationships between them in a directed graph. The encoded rela-
tionships in essence represent influences on probability distribution#\ qualitative probabilistic networlencodes statistical variables and
Each such influence captures the shift in distribution for a variableghe probabilistic relationships between them in a directed acyclic
that is occasioned by a shift in another variable’s distribution. ThegraphG = (V(G), A(G)). Each noded € V (G) represents a vari-
direction of the occasioned shift is summarised by a qualitative signable. For ease of exposition, we assume all variables to be binary
Qualitative networks can play an important role in the constructionwith a > @, writing a for A = true anda for A = false but our
of quantitative probabilistic networks for real-life applications. The results are readily generalised to non-binary variables. The &}
construction of a quantitative network begins with the constructionof arcs captures probabilistic independence between the represented
of its graph. Assessment of the various probabilities required, whiclvariables. We say that a chain between two nodédoiekedif it in-
often is very hard, is typically performed only when the network’s cludes either an observed node with at least one outgoing arc, or an
graph is considered robust. Now, by associating signs with the relainobserved node with two incoming arcs and no observed descen-
tionships modelled in the graph, a qualitative network is obtained thatlants; a node with two incoming arcs is termduead-to-head node
can be used for studying the reasoning behaviour of the quantitativif all chains between two nodes are blocked, then these nodes are
network prior to the assessment of its probabilities. For this purposesaid to bed-separatedand the corresponding variables are consid-
it is important to derive as much information as possible from theered conditionally independent given the observations present [4].
qualitative network. Associated with its digraph, a qualitative probabilistic network
Inference with a qualitative probabilistic network is based uponspecifies influences and synergies [1].gAalitative influencebe-
the idea of combining and propagating signs [2]. The basic algorithntween two nodes expresses how the values of one node influence the
computes the effect of a single observation on all the variables in thprobability distribution over the values of the other node.
network. It yields, for each variable, a sign indicating the direction of
the shift in distribution that is occasioned by the new observation. IfP€finition 2.1 Let G be an acyclic digraph with — B € A(G).
real-life applications, often the simultaneous, joint effect of multiple A Positive qualitative influencef A on B, denotedS™ (4, B), ex-
observations is of interest. Multiple observations can in essence bresses that observing a higher value fbrmakes the higher value
dealt with in two ways [3]. One way is to add a dummy descendant tdor B more likely, regardless of any other direct influencesRrthat
the observed nodes, for which an appropriate observation is enterd® Pr(b | az) > Pr(b | az) for any combination of values for the
and subsequently propagated. Another way is to enter and propaga¥tm(B) \{A} of predecessors @ other thanA.
the various observations one after the other and combine the result% T . . . .
of the successive propagations to yield the joint effect. UnfortunaterT e'+'in 57 (4, B) is termed thesignof the influence. A negative

T - ; 0 .
both approaches can yield weaker results than necessary. qualitative |nﬂuencé‘ and a zero influencé’ are _d_ef_lned analo-
gously. If the influence oft on B is not monotonic or if it is unknown

1 Institute of Information and Computing Sciences, Utrecht Univer- after inference, we say that itiBnbiguousdenotedS'?(A,B).The
?gﬁjaﬁh%é Box }Sg‘pgssiu §|508 TB Utrecht, The Netherlands. Email: gefinition of qualitative influence is generalised straightforwardly to
2 Massachusetts Institute of Technology, Sloan School of Managemenf,nﬂuenceS along:halnSWIthout headjto-_head nodes. - .
3 Cambridge Center, NE20-336 Cambridge, MA 02142, USA. Email: The set of influences of a qualitative network exhibits various
sparsons@mit.edu properties. Thesymmetryproperty states that, if the network in-




observed node and to every node on which it exerts an induced in-
fluencé. The sign of this message is the-product of the node’s

(new) sign and the sign of the influence it traverses. This process is
repeated throughout the network, building on the properties of sym-
metry, transitivity, and composition of influences. Since each node
can change its sign at most twice, the algorithm is guaranteed to halt.

Table 1. The®- and®-operators.

~o |+ ®
~ o | |+
~ o+ |
OSSO O OO
O g o
~o | +|D
~+ |+
|
vo | +Ho
0 0 0 g o

3 PROPAGATING MULTIPLE OBSERVATIONS

The sign-propagation algorithm for inference with a qualitative net-
work basically serves to compute the effects afregleobservation.

the algorithm can, however, be used to handle multiple observations
[3]. The first approach is to add a dummy nabBeto the network,

cludes the influenc&® (A, B), then it also includes? (B, A), § €

{+, —, 0, 7}. Thetransitivity property asserts that the qualitative in-
fluences along a chain without head-to-head nodes combine into
single influence with thex-operator from Table 1. The property

of compositionasserts that multiple parallel influences between two " . .
P ple p with arcsO; — D for each observed nod@;; the sign of the in-

n mbine in ingle influence with rator. ; . .
odes co b e into asingie Influence t t_ha)pe ato fluence associated with the af2; — D corresponds to the sign
A qualitative probabilistic network further includpsoduct syner- - . s .
of the observation fo©;. Running the basic sign-propagation algo-

gies[5], that express how the value of one node influences the prob-

ability distribution of another node given a value for a third node. rithm with a *+ for. the dummy node wil now yield the joint effect
of all the observations. The other approach is to enter and propagate

Definition 2.2 Let G be as before, withd, B,C' € V(G) and the various observations one after the other. The joint effect on unob-

m(C) = {A, B}. Anegative product synergyf A on B (and vice served nodes then equals the sign-sum of the results of the successive
versa) giver; the value for node C, denotedX~ ({4, B}, c), ex- propagations; observed nodes retain their sign of observation. Both
presses that, given, a higher value forA renders the higher value approaches, unfortunately, tend to yield upnecess_arily weak re_sults.
for B less likely, that isPr(c| ab)-Pr(c|ab) < Pr(c|ab)-Pr(c|ab). In the dl_Jmmy-node approach to han_dlmg multiple obser_vatlons,
the node sign of the newly added node is setitd The node signs
Positive, zero, and ambiguous synergies are defined analogously. TRéthe truly observed nodes, however, are not fixed and can therefore
product synerg;X‘S({A, B}, ¢) serves, upon observing to induce change during inference, as is illustrated by the following example.

a qualitativeintercausalinfluence with signj betweend and B. . o )
Example 3.1 We consider the qualitative network from Figure 2.

Example 2.1 We consider the qualitative network from Figure 1, Again pertaining to the invasion of an oesophageal tumour into adja-
which is a simplified fragment of a real-life network in the field of centstructures beyond the oesophagus, it describes that the longer the
oesophageal cancer. Nod& represents whether or not a patient's tumour, the more likely it is to have grown through the oesophageal
tumour is u|Cerating; nodé& models whether or not the tumour is wall. The IengthL of the tumour is Strongly correlated with whether
longer thanl0 cm. NodeW indicates whether or not the tumour has ©r not the tumour is circular, modelled by noGe We now address
grown beyond the oesophageal wall into adjacent structifesid ~ entering the observations = trueandC' = false

L are modelled as the possible causes of tumour growth outside the Figure 2 shows the results of propagating the two observations
oesophagus. Since the presence of either cause suffices to incre¥¥éh the dummy-node approach. First, a dummy n@lenmyis

the probability of invasion of adjacent structures, bbttand L ex-  added to the network, with ards — DummyandC' — Dummy

ert a positive qualitative influence 6#, indicated by the signs over and influencess™ (L, Dummy and S~ (C, Dummy. A ‘ +' is then

the arcs. The network further models that either valudffoinduces ~ entered for the dummy nodBummysends a+'to nodeL. L there-

a negative intercausal influence betwéérand L, indicated by the ~ upon sends a+' to both C andW. The dummy node also sends a
two signs over the dashed line. Given a tumour’s growth beyond the—' to nodeC, which in turn passes the-" on to L. All nodes end
oesophageal wall, for example, the negative synergy expresses tH#® With the ambiguous node sighi after inference]

observation of one cause explains away the other calise.

) o ) ) Figure 2. The effect of entering af’ for node L and a -’ for node C,
Figure 1. The qualitativewall invasionnetwork. using the dummy-node approach.

Inference with a qualitative network is based upon the idea of propThe example illustrates a typical problem with the dummy-node ap-
agating and combining signs [2]. The algorithm traces the effectgroach: since multiple observations are entered as a single observa-
of observing a node’s value on the other nodes in the network byion for a dummy node, the actual observations do not block chains
message-passing between neighbours. For each nodegessignis as they would in the original network. The set of influences over
determined, indicating the direction of shift in its probability distri- which signs are propagated may thus be too large. In fact, observa-
bution as occasioned by the new observation. Initially, all node signsions can even be propagated to nodes from which they are actually

equal 0. For the newly observed node, an appropriate sign is en - - — .
3 The literature on sign propagation is not clear on whether or not an inter-

tere(;i,_that Is, a" for the Value.true.or a N for false Each node causal influence that is induced by an observation is immediately used upon
receiving a message updates its sign withdheperator, and then  propagating that observation. Here we assume that induced influences are

sends a message to each neighbour that is not d-separated from theot used immediately. In Section 5 we will justify our assumption.




@C.+@L +.@W @-—@ -0 v (0) @ &) ()
@ N N () ' e ;L/V : e :
@‘_@_’@ @ (b)

(©

Figure 3. The separate effects of entering-g for L (a) and a*~' for C
(b), and their joint effect (c).
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d-separated. This can result in weaker signs than necessary, that is, it i
P g Y ’Fllgure 5. The separate effects of entering-g for L (a) and a4+’ for W

can resultin ‘?’s instead oft’, * —’ or ‘ 0's. Although not incorrect, (b), and their joint effect (c).
these ambiguous signs are very uninformative and, moreover, tend to '
spread to large parts of the network. Figure 6 now shows the results from first enterifig= true and

Using the sequential-propagation approach to handling multiplghen L, = true. After entering the first observation, no#é propa-
observations, the order in which observations are entered can affeghtes a 4’ to both its causes. The observation in addition induces
the net result of inference. The differences upon inference originatg negative intercausal influence betwéeand L. Subsequently en-
from thedynamic&f the set of influences over which Signs are prop- tering the second observation causes nbde send a <’ over the
agated: the set shrinks as chains are blocked and expands as intgftercausal influence to nodé. It further sends a+' to W, but node
causal influences are induced. We present two illustrative examplesy has been observed and will not change sign. The joint effect of the

observations now reveals an ambiguous net effe€f'srprobability

Example 3.2 We consider again the network fragment from Fig- gistribution, which is a correct but unnecessarily weak resilt.
ure 2, this time without the dummy node. We again address entering

the Mo observationg = trueandC = false _ The previous examples demonstrate that, by sequential propagation
Figure 3 shows the results from first enterihg= true and then  of multiple observations and adding the results, the order in which
C = false To propagate the first observation, nalsends a+’  the various observations are entered can influence the results and can

to bothC andW . All three nodes end up with a positive node sign. yield unnecessary ambiguous node signs. As mentioned before, the

Then, a =’ is entered for nod€’. As nodeL is observed, its signis  differences in results can be attributed to the dynamics of the set of
not affected. In addition, as nodeblocks the chain front’ to W, no influences over which signs are propagated.

sign is passed on to nod®. The joint effect of the two observations
thus is positive for nodes andW, and negative for nod€'. These
are the strongest possible results derivable from the network. 4 EXPLOITING DYNAMICS
Figure 4 shows the results from first enterifig= falseand then  Wwhen a single observation is entered into a qualitative network, the
L = true. The joint effect of these observations on the probabil- hasic algorithm propagates the associated sign to each node that is
ity distribution of nodel’’ now is unknown. Note that this result is not d-separated from the observed node. The set of influences over
weaker than necessafyl. which the sign is propagated is then unique. By entering multiple ob-
servations one after the other, however, this set changes dynamically.
Example 3.3 We consider once again the network fragment from On the one hand, influences are removed as chains are blocked; on
Figure 1 and address the observatidns: true andW = true. the other hand, intercausal influences are added [7]. In the previous
Figure 5 shows the results from first enteribg= true and then  section we have shown that these dynamics can give rise to unnec-
W = true. After entering the first observation, nodlepropagates a  essary ?’s and can yield different results upon inference, dependent
‘+’tonodeW . AsU and[L are independent causesidf, it does not  upon the order in which the observations are entered.
pass on a messagelto U's probability distribution is not affected by The order of entering observations for two nod&sandO; can
the observation. Then, & is entered for nodéV. W sends a4+’ influence the sign resulting for a nodeif A is d-separated from,
to bothU and L. As nodeL is observed, its sign is not affected by for exampleO; givenO:. Then, if the observation fap, is entered
the new observation. The joint effect of the two observations shows
a positive net influence on nodé's probability distribution, which
is the strongest possible result that can be derived from the network.

c L W . .
@‘_@_’@ ‘ ' . g ‘ @)
@ (b)

(©

Figure 4. The separate effects of entering-a for C (a) and a4’ for L Figure 6. The separate effects of entering-g for W (a) and forL (b),
(b), and their joint effect (c). and their joint effect (c).
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first, a sign may be propagated to nodiéhat would not have reached The previous proposition only pertains to the effect of the intercausal
it if the observation forO, had been entered first. To ensure that influence on nodel. Any other influences or from C’s predeces-
the order in which multiple observations are entered is immaterialsors are handled by the propagation algorithm. We would like to note
therefore, the sign of an observation should be propagated only alorthat the proposition holds also when a descendant i observed.
chains that will not be blocked by subsequent observations. To this We now show that, if an observation pertains to a node from a set
end, for each nod@; in the setD of simultaneously observed nodes, of multiple simultaneously observed nodes, then the intercausal in-
we determine the set of nodes that are d-separated fpmiven fluence induced by that observation should also be disregarded when
0O\ {0;} and the sefP of all previously observed nodes. We call propagating th@ther observations; more specifically, we show that
this set theexclusion sefX (O;) for O;. We now have that any node direct influences always dominate over intercausal ones.
in X (0;) is independent of); given(O U P) \ {0;}. Dominance of direct influences over intercausal ones was already
suggested by M.J. Druzdzel [3, Section 6.4.3]. Druzdzel focuses on
Proposition 4.1 Let G be an acyclic digraph and Idtr be a prob-  the situation where a head-to-head node and one of its parents are
ability distribution that respectér. Now, letP be a set of previously  gpserved. As we will show presently, in this situation the effect of
observed nodes and Iét be the set of newly observed nodes. Then.the observation of the head-to-head node on an unobserved parent
foreachO; € O, Pr(X(0;) |OUP) = Pr(X(0:) | (OUP\{O:}). s larger than the effect of the observation for the observed parent
via the induced intercausal influence. Druzdzel claims that this dom-

Now, to ensure that the order of entering multiple observations doe%ance property follows from the following propositioffor parents

?hOt affect nett_ resuflts, ths S|gn-tpropﬁz;gatlcg1 talg:ﬁrlthm SQOUI.d rter:]strlch, B ofC, andA, C of D, the qualitative influence dp on B solely
€ propagation of an observation 10¢ € O 1o those nodes in the depends on the influence Bf on C and that ofC' on B.” In the net-

digraph that are not included i (0;). From Proposition 4.1, we work described, there are two chains fr@rto B, one consisting of

have that, by doing so, no node ever receives a sign it should nolt) « A— C « B and one consisting ab « C « B. Druzdzel

have received given the other observations. proves the proposition by observing that the latter chain is the only

With the dummy-node approach to handling multiple c’bs’erv"’l'unblocked chain. Note, however, that if nable a descendant of the

tions, the set of influences over which signs are propagated doq?ead-to-head nod€, is observed, then an intercausal influence is

not change dynamically upon inference since only a single Obse_ri'nduced between nodes andC, and the chain frort to B via O

vation for the dummy node is entered. However, as demonstrated Decomes unblocked as well. Unfortunately, as the proposition does

]Ehe prer\]/_lorlljfhsectlona observ?u((j)n_? can thenthbet p_ropagated to no?ﬁ t mention observed nodes nor intercausal influences, we feel that
rom which they are d-separated. 10 ensure thal signs are propaga@ oes not correctly capture the dominance property.

correctly, the sign-propagation algorithm should be adapted to sen We will formally show that the dominance property suggested by
signs to observed nodes over influences from the dummy node On%ruzdzel indeed holds. We say that the influence of a nBdm a

nodeC dominateghe influence of a nodd on C, if an observation
5 DOMINANCE OF INFLUENCES for B has a larger effect on the probability distribution @fthan

) . . . gn observation for4, that is, iff, for all observations; € {a,a}
In the previous section, we discussed the use of an exclusion set C} =
. . . ! .~ of Aandb; € {b,b} of B, we have thatPr(c | b;) — Pr(c)| >
prevent the order in which multiple observations are entered into . ! -
o . : . _[Pr(c | a;) — Pr(c)|. We now prove that direct influences dominate
qualitative network from affecting the net results of inference. In this .
. . - ; gver intercausal ones.
section, we demonstrate that any intercausal influences induced by
the observations should be disregarded during sign propagation. Teroposition 5.2 Let G be the digraph of a qualitative network with
this end, we investigate tismleeffect of these intercausal influences. A — C, B — C € A(G) and without any other chains betwedn
We begin by showing that the influences that are induced by a speand B than throughC'. Letég;...: be the sign of change for node
cific observation should not be used in propagating that observatiorgiven an observation for nodg and letd;,.., be the sign of change
for node A given a subsequent observation for ndgle_etd 4 be the

Proposition 5.1 LetG be the digraph of a qualitative network with sign of nodeA given both observations. Thefy = duiree.

A — C € A(G) and S%(A, C), and without any other chains be-
tweenA and C’s predecessors than throudfi. Let 6 be the sign
of an observation for nod€' and leté 4 be the sign of noddl given
this observation. Theda = dc ® 6.

Proof: We prove the proposition fof* (A, C), the observations
for nodeC' andb for nodeB, andX ™ ({A, B}, ¢). Note that we then
have thabg;rec: = + anddinter = —. Proofs for other combinations
of signs are analogous. The si@...: of the change imM’s proba-
Proof: We prove the proposition fof = ¢ = +; proofs for other  bility distribution equals the sign of the differenBe(a | ¢) —Pr(a).
combinations of signs are analogous. The sign of nddgiven the  The signd;,... of the change ind’s probability distribution occa-
observation foC equals the sign of the chane(a | c) —Pr(a)in  sioned by the subsequent observation for nBdequals the sign of
A’s probability distribution. We find for all combinations of values  Pr(a | bc) — Pr(a | ¢). The node sig4 of node A given both
for the setX of predecessors @ other thand, that observations equals the sign of the differefaga | bc) — Pr(a).

For all combinations of values for the setX of predecessors af'
= (Pr(c | ax);r(lz(;l ©)) - Pr(a) other than4 and B, we now have that

_ Pr(c|abzx)-Pr(a| bx)

Pr(a | cx) — Pr(a)

— (Pr(c | az) — Pr(c | az)) .(Prf(f;z(; T’;ga)> Pr(a | bez) — Pr(a) = Pr(e ] br) — Pr(a)
From S*(A,C) we have thatPr(c | ax) — Pr(c | az) > 0 = (Pr(c]| abx)P_r(Pj(bc |)bm)) - Pr(a)
| & T

for all z. We conclude thaPr(a | ¢) — Pr(a) =
cx) — Pr(a)) - Pr(z | ¢) > 0 and, hence, thats = ¢

0 (Pr(c | ab) — Pr(c | bx))(%>



From S+ (A, C) we have for all values thatPr(c | abz) — Pr(c | intercausal influences and exploits the fact that nGdé-separates
abz) > 0. We conclude thaPr(a | bc) — Pr(a) > 0 and, hence, the nodeH, I, J} from the other observed nodesl

thatda = dairect- UJ The adapted algorithm prevents the propagation of signs to nodes
- o ) that are d-separated from the observed node, given all other observed
We note that the proposition also holds for indirect observations for,qqas from the set of multiple observations. Each node therefore re-
nodeC. The dominance property tells us that during the sequentialgjes 5 sign if and only if its probability distribution is truly influ-
propagation of multiple simultaneous observations, intercausal influzceq by the entire set of observations. As no node ever receives
ences induced by any of these observations should be disregardedsigns it should not have received, no unnecesszisyare generated
and the algorithm returns the strongest possible signs that can be de-
rived from the specification of the network.

6 PROBABILISTIC INFERENCE REVISITED

In the previous sections, we argued that observations for the nodeb CONCLUSIONS

0O; from a setO of simultaneously observed nodes should be prop-The pasic algorithm for probabilistic inference with a qualitative net-
agated only to the nodes that are not d-separated @omiven all  \ork has been designed to determine the effect of a single obser-
other nodes fron®. In addition, we demonstrated that, upon propa- yation on the probability distributions of all nodes in the network.
gating multiple simultaneous observations, we should disregard thye demonstrated that handling multiple observations by applying
intercausal influences induced by these observations. The basic sigfie pasic algorithm for each observation separately and combining
propagation algorithm can be easily adapted to incorporate thesge results into their joint effect can yield weaker results than nec-
ideas. For this purpose, a node’s exclusion set can be computed &fssary. Furthermore, the results may depend on the order in which
ficiently with the well-knownBayes-Ballalgorithm [6]. This algo-  the observations are entered. As the cause of these problems, we
rithm computes the set of nodes that ateicturally irrelevantfor a  jgentified the dynamics of the set of influences over which signs
node of interest given all observed nodes. For an observed@gde ¢ propagated upon inference. We showed that the intercausal in-
the set of structurally irrelevant nodes given all other observations, i§,ences that are added to this set are always dominated by direct
exactly our exclusion seX (0;) of O;. influences and should therefore be disregarded upon inference. In
We now illustrate the impact of disregarding intercausal influencesyqgition, we showed that using exclusion sets for observed nodes
and using exclusion sets upon propagating multiple observations. g prevent the propagation of the sign of an observation to nodes
that will be d-separated from the observed node given subsequently
Example 6.1 We consider the qualitative network from Figure 7. entered observations. The adapted sign-propagation algorithm yields
Figure 7(a) shows the results of using the basic sign-propagatioresults that are the strongest that can be derived from the qualitative
algorithm, after entering the subsequent observatibns= true, network as specified.
B = true, C = falsg andG = falsg and combining the results.  The concept of exclusion set and the disregarding of intercausal
Note that the noded andE end up with the node sigri"as aresult  influences are not just valuable when sequentially propagating mul-
of propagating a negative sign over the intercausal links induced byiple observations, but can also be exploited with the dummy-node
the observations fob andB. The ‘7’ is propagated from nod# to approach. We feel however that the dummy-node approach, when
nodeG and onwards, before the observation ¢oiis entered. As a  compared to sequential propagation, bears the major drawback of
result, nodedd, I andJ also end up with the sigrt*. Figure 7(b) changing the structure of a network.
shows the results of using the adapted algorithm, which disregards
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