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Motivations

Unification algorithms have become popular in recent years, due to
their key role in the fields of logic programming and theorem
proving.

Logic Programming Languages

• Use logic to express knowledge, describe a problem.

• Use inference to compute a solution to a problem.

Prolog is one of the most popular logic programming languages.
Prolog = Clausal Logic + Resolution + Control Strategy
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Prolog

• Knowledge-based programming: the program just describes
the problem.

• Declarative programming: the program says what should be
computed, rather than how it is computed (although this is
not true for impure languages).

• Precise and simple semantics.

• The same program can be used in many different ways,
thanks to the use of UNIFICATION.

Example:
SWI Prolog (Free Software Prolog compiler) developed at the
University of Amsterdam, http://www.swi-prolog.org/
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Unification Algorithms in Prolog

Domain of computation:
Herbrand Universe: set of terms over a universal alphabet of

• variables: X , Y , . . .

• and function symbols (f , g , h, . . .) with fixed arities (the arity
of a symbol is the number of arguments associated with it).

A term is either a variable, or has the form f (t1, . . . , tn) where f is
a function symbol of arity n and t1, . . . , tn are terms.

Example: f (f (X , g(a)),Y ) where a is a constant, f a binary
function, and g a unary function.

In Prolog no specific alphabet is asssumed, the programmer can
freely choose the names of functions (but there are some built-in
functions with specific meanings, e.g. arithmetic operations).
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Prolog Programs

Prolog programs are sets of definite clauses (or Horn clauses).
A definite clause is a disjunction of literals with at most one
positive literal.
A literal is an atomic formula or a negated atomic formula.
To build atomic formulas we use terms and predicate symbols
(with fixed arities):
If p is a predicate of arity n and t1, . . . , tn are terms, then
p(t1, . . . , tn) is an atomic formula, or simply an atom.
Example:
value(number(1),1), ¬raining
are literals, where we use the binary predicate value and 0-ary
predicate raining; number is a unary function.
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Definite Clauses

A definite clause P1 ∨ ¬P2 ∨ . . . ∨ ¬Pn (where P1 is the only
positive literal) will be written:

P1 :- P2, . . . ,Pn.

and we read it as: “P1 if P2 and . . . and Pn”
If the clause contains just P1 and no negative atoms, then we write

P1.

Both kinds of clauses are called Program Clauses, and the second
kind is called a Fact.
If the clause contains only negative literals, we call it a Goal or
Query and write

:-P2, . . . ,Pn.
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Example - Horn Clauses

based(prolog,logic).
based(haskell,functions).
likes(claire,functions).
likes(max,logic).
likes(X,P) :- based(P,Y), likes(X,Y).

The first four clauses are facts, the last clause is a rule. The
following is a goal:
:- likes(Z,prolog).
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Prolog programs

A list of program clauses in Prolog can be seen as the definition of
a series of predicates. For instance, in the program

based(prolog,logic).
based(haskell,maths).
likes(max,logic).
likes(claire,maths).
likes(X,P) :- based(P,Y), likes(X,Y).

we are defining the predicates likes and based.
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Prolog programs

In the program

append([],L,L).
append([X|L],Y,[X|Z]) :- append(L,Y,Z).

the atomic formula append(S,T,U) expresses that the result of
appending the list T onto the end of list S is the list U.
Any term of the form [X|T] denotes a list where the first element
is X (the head of the list) and T is the rest of the list (also called
the tail of the list). The constant [] denotes the empty list. We
abbreviate [X|[Y|[]]] as [X,Y].
Goals such as:
:- append([0],[1,2],U)
:- append(X,[1,2],U)
:- append([1,2],X,[0])
are questions to be solved using the program.
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Values:

Values are also terms, that are associated to variables by means of
automatically generated substitutions, called most general unifiers.

Definition: A substitution is a partial mapping from variables to
terms, with a finite domain. We denote a substitution σ by:
{X1 7→ t1, . . . ,Xn 7→ tn}. dom(σ) = {X1, . . . ,Xn}.

A substitution σ is applied to a term t or a literal l by
simultaneously replacing each variable occurring in dom(σ) by the
corresponding term. The resulting term is denoted tσ.

Example:
Let σ = {X 7→ g(Y ),Y 7→ a} and t = f (f (X , g(a)),Y ).
Then

tσ = f (f (g(Y ), g(a)), a)
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Solving Queries in Prolog - Example

To solve the query :- append([0],[1,2],U)
we use the clause

append([X|L],Y,[X|Z]) :- append(L,Y,Z).

The substitution
{X 7→ 0, L 7→ [], Y 7→[1,2], U 7→ [0|Z]}
unifies append([X|L],Y,[X|Z]) with the query
append([0],[1,2],U), and then we have to prove that
append([],[1,2],Z) holds.
Since we have a fact append([],L,L) in the program, it is
sufficient to take {Z 7→ [1,2]}.
Thus, {U 7→ [0,1,2]} is an answer substitution.

This method is based on the Principle of Resolution.
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Operational Semantics of Prolog

Unification is a key step in the Principle of Resolution.
History:
The unification algorithm was first sketched by Jacques Herbrand
in his thesis (in 1930).

In 1965 Alan Robinson introduced the Principle of Resolution and
gave a unification algorithm.

Around 1974 Robert Kowalski, Alain Colmerauer and Philippe
Roussel defined and implemented a logic programming language
based on these ideas (Prolog).

The version of the unification algorithm that we present is based
on work by Martelli and Montanari (1982).
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Unification

A unification problem U is a set of equations between terms
containing variables.

{s1 = t1, . . . , sn = tn}

A solution to U , also called a unifier, is a substitution σ such that
when we apply σ to all the terms in the equations in U we obtain
syntactical identities: for each equation si = ti , the terms siσ and
tiσ coincide.
The most general unifier of U is a unifier σ such that any other
unifier ρ is an instance of σ.
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Unification Algorithm

Martelli and Montanari’s algorithm finds the most general unifier
for a unification problem if a solution exists, otherwise it fails,
indicating that there are no solutions.

To find the most general unifier for a unification problem, the
algorithm simplifies the set of equations until a substitution is
generated.

The way equations are simplified is specified by a set of
transformation rules, which apply to sets of equations and produce
new sets of equations or a failure.
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Unification Algorithm

Input: A finite set of equations: {s1 = t1, . . . , sn = tn}
Output: A substitution (mgu for these terms), or failure.

Transformation Rules:
Rules are applied non-deterministically, until no rule can be applied
or a failure arises.

(1) f (s1, . . . , sn) = f (t1, . . . , tn),E → s1 = t1, . . . , sn = tn,E
(2) f (s1, . . . , sn) = g(t1, . . . , tm),E → failure
(3) X = X ,E → E
(4) t = X ,E → X = t,E if t is not a

variable
(5) X = t,E → X = t,E{X 7→ t} if

X not in t and X in E
(6) X = t,E → failure if X in t

and X 6= t
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Remarks

• We are working with sets of equations, therefore their order in
the unification problem is not important.

• The test in case (6) is called occur-check, e.g. X = f (X )
fails. This test is time consuming, and for this reason in some
systems it is not implemented.

• In case of success, by changing in the final set of equations
the “=” by 7→ we obtain a substitution, which is the most
general unifier (mgu) of the initial set of terms.

• Cases (1) and (2) apply also to constants: in the first case the
equation is deleted and in the second there is a failure.
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Examples:

We start with {f (a, a) = f (X , a)}:
• using rule (1) it rewrites to {a = X , a = a},
• using rule (4) we get {X = a, a = a},
• using rule (1) again we get {X = a}.

Now no rule can be applied, the algorithm terminates with the
most general unifier {X 7→ a}
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Examples:

In the example with append, we solved the unification problem:
{[X|L] = [0], Y = [1,2], [X|Z] = U}
Recall that the notation [ | ] represents a binary list constructor
(the arguments are the head and the tail of the list).
[0] is a shorthand for [0|[]], and [] is a constant.

We now apply the unification algorithm to this set of the equations:
using rule (1) in the first equation, we get:
{X = 0, L = [], Y = [1,2], [X|Z] = U}
using rule (5) and the first equation we get:
{X = 0, L = [], Y = [1,2], [0|Z] = U}
using rule (4) and the last equation we get:
{X = 0, L = [], Y = [1,2], U = [0|Z]}
and the algorithm stops.
Therefore the most general unifier is:
{X 7→ 0, L 7→ [],Y 7→ [1,2], U 7→ [0|Z]}
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The Principle of Resolution

In order to solve a query
:- A1,...,An

with respect to a set P of program clauses, resolution seeks to
show that P, ¬A1,. . . , ¬An leads to a contradiction. It is based on
refutation.

A contradiction is obtained when a literal and its negation are
stated at the same time: A, ¬A.

If a contradiction does not arise directly, new literals are derived by
resolution using the clauses, until a contradiction arises (or the
search continues forever). The derived literals are called resolvents.
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Computing Resolvents with SLD-Resolution:

If we have a query :- a(u1, . . . , un)
and a program clause a(t1, . . . , tn) :- S1, . . . ,Sm

such that a(t1, . . . , tn) and a(u1, . . . , un) are unifiable with mgu
σ, then we obtain a resolvent: :- S1σ, . . . ,Smσ.

In general, if the query has several atoms
:- A1, . . . ,Ak

the resolvent is computed between the first atom in the goal (A1)
and a program clause, and we obtain
:- S1σ, . . . ,Smσ,A2σ, . . . ,Akσ
Note that when we compute a resolvent using a fact (m = 0), the
atom disappears from the query.
An empty resolvent indicates a contradiction, denoted by ♦. The
substitution that has been computed is the answer to the original
goal. The idea is to continue generating resolvents until we obtain
an empty one.
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SLD-Resolution

Each resolution step computes a resolvent between the last
resolvent obtained and a clause in the program. Prolog uses the
clauses in the program in the order they are written.
When an empty resolvent is generated, the composition of all the
substitutions (mgu) applied at each resolution step, restricted to
the variables of the query, is the answer to the query.
We represent each resolution step graphically as follows:

Query
| mgu

Resolvent

Since there might be several clauses in the program that can be
used to generate a resolvent, we obtain an SLD-resolution tree.
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Example

Program:
based(prolog,logic).
based(haskell,maths).
likes(max,logic).
likes(claire,maths).
likes(X,P) :- based(P,Y), likes(X,Y).
Query:
:- likes(Z,prolog).
Using the last clause, and the mgu {X 7→ Z ,P 7→ prolog} we
obtain the resolvent
:- based(prolog,Y), likes(Z,Y).
Now using the first clause and the mgu {Y 7→ logic} we obtain the
new resolvent
:- likes(Z,logic).
We can now unify with likes(max,logic) using {Z 7→ max},
and we obtain an empty resolvent (success). Answer to the initial
query: {Z 7→ max}
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Example

Graphically, the SLD-resolution tree for this query contains:

likes(Z,prolog)

| {X 7→ Z ,P 7→ prolog}

based(prolog,Y), likes(Z,Y)

| {Y 7→ logic}

likes(Z,logic).

{Z 7→ max} / \ {X ′ 7→ Z ,P ′ 7→ logic}

♦ based(logic,Y’),likes(Z,Y’)
Failure
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SLD-resolution:

SLD-resolution using unification is complete (if there is an answer,
it will eventually be generated), although Prolog’s implementation
is not complete (due to the use of a depth first search strategy, for
efficiency reasons).

Horn clauses use first-order terms — simple but not very
expressive. Extensions of the language involve extending the
unification algorihtm.
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More expressive languages

How do we represent binding operations? Informally:

• Operational semantics:

let a = N in M −→ (fun a → M)N

• β and η-reductions in the λ-calculus:

(λx .M)N → M[x/N]
(λx .Mx) → M (x 6∈ fv(M))

• π-calculus: P | νa.Q → νa.(P | Q) (a 6∈ fv(P))

• Logic equivalences:

P and (∀x .Q) ⇔ ∀x(P and Q) (x 6∈ fv(P))

Renaming of bound variables (α-equality) is implicit.
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Formally: Rewrite Systems

There are several alternatives.

• Use a first-order system and encode α-equality.

• No binders. (-)
• First-order matching: we need to ’specify’ α-conversion. (-)
• Simple notion of substitution. (+)

• Algebraic λ-calculi: First-order rewriting + λ-calculus

• λ is a binder. (+)
• First-order matching: we need to ’specify’ α-conversion. (-)
• Simple notion of substitution. (+)

Maribel Fernández Unification Algorithms



Formally: Rewrite Systems

There are several alternatives.

• Use a first-order system and encode α-equality.

⇒ No binders. (-)

• First-order matching: we need to ’specify’ α-conversion. (-)
• Simple notion of substitution. (+)

• Algebraic λ-calculi: First-order rewriting + λ-calculus

• λ is a binder. (+)
• First-order matching: we need to ’specify’ α-conversion. (-)
• Simple notion of substitution. (+)

Maribel Fernández Unification Algorithms



Formally: Rewrite Systems

There are several alternatives.

• Use a first-order system and encode α-equality.

• No binders. (-)
⇒ First-order matching: we need to ’specify’ α-conversion. (-)

• Simple notion of substitution. (+)

• Algebraic λ-calculi: First-order rewriting + λ-calculus

• λ is a binder. (+)
• First-order matching: we need to ’specify’ α-conversion. (-)
• Simple notion of substitution. (+)

Maribel Fernández Unification Algorithms



Formally: Rewrite Systems

There are several alternatives.

• Use a first-order system and encode α-equality.

• No binders. (-)
• First-order matching: we need to ’specify’ α-conversion. (-)
⇒ Simple notion of substitution. (+)

• Algebraic λ-calculi: First-order rewriting + λ-calculus

• λ is a binder. (+)
• First-order matching: we need to ’specify’ α-conversion. (-)
• Simple notion of substitution. (+)

Maribel Fernández Unification Algorithms



Formally: Rewrite Systems

There are several alternatives.

• Use a first-order system and encode α-equality.

• No binders. (-)
• First-order matching: we need to ’specify’ α-conversion. (-)
• Simple notion of substitution. (+)

• Algebraic λ-calculi: First-order rewriting + λ-calculus

• λ is a binder. (+)
• First-order matching: we need to ’specify’ α-conversion. (-)
• Simple notion of substitution. (+)

Maribel Fernández Unification Algorithms



Formally: Rewrite Systems

There are several alternatives.

• Use a first-order system and encode α-equality.

• No binders. (-)
• First-order matching: we need to ’specify’ α-conversion. (-)
• Simple notion of substitution. (+)

• Algebraic λ-calculi: First-order rewriting + λ-calculus

⇒ λ is a binder. (+)

• First-order matching: we need to ’specify’ α-conversion. (-)
• Simple notion of substitution. (+)

Maribel Fernández Unification Algorithms



Formally: Rewrite Systems

There are several alternatives.

• Use a first-order system and encode α-equality.

• No binders. (-)
• First-order matching: we need to ’specify’ α-conversion. (-)
• Simple notion of substitution. (+)

• Algebraic λ-calculi: First-order rewriting + λ-calculus

• λ is a binder. (+)
⇒ First-order matching: we need to ’specify’ α-conversion. (-)

• Simple notion of substitution. (+)

Maribel Fernández Unification Algorithms



Formally: Rewrite Systems

There are several alternatives.

• Use a first-order system and encode α-equality.

• No binders. (-)
• First-order matching: we need to ’specify’ α-conversion. (-)
• Simple notion of substitution. (+)

• Algebraic λ-calculi: First-order rewriting + λ-calculus

• λ is a binder. (+)
• First-order matching: we need to ’specify’ α-conversion. (-)
⇒ Simple notion of substitution. (+)

Maribel Fernández Unification Algorithms



Higher-order frameworks

• Higher-order rewrite systems (CRS, HRS, etc.) include a
general binding construct.
Example: β-rule

app(lam([a]Z (a)),Z ′) → Z (Z ′)

Then app(lam([a]f (a, g(a)), b) → f (b, g(b))
using higher-order matching.

• Higher-Order Abstract Syntax:

let a = N in M(a) −→ (fun a → M(a))N

• Terms with binders. (+)
• Implicit α-equivalence. (+)
• We targeted α but now we have to deal with β too. (-)
• Substitution is a meta-operation using β. (-)
• Unification is undecidable in general. (-)
• Leaving name dependencies implicit is convenient (e.g. ∀x .P).
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Nominal Rewriting

Inspired by the work on Nominal Logic (Pitts et al.)
Key ideas: Freshness conditions a#t, name swapping (a b) · t.
Example: β and η rules as NRS:

app(lam([a]Z ),Z ′) → subst([a]Z ,Z ′)
a#M ` (λ([a]app(M, a)) → M

⇒ Terms with binders.

• Built-in α-equivalence.

• Simple notion of substitution (first order).

• Dependencies of terms on names are implicit.

• Easy to express conditions such as a 6∈ fv(M)
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• Dependencies of terms on names are implicit.

• Easy to express conditions such as a 6∈ fv(M)
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Nominal Syntax

• Function symbols: f , g . . .
Variables: M,N,X ,Y , . . .
Atoms: a, b, . . .
Swappings: (a b)

Def. (a b)a = b, (a b)b = a, (a b)c = c
Permutations: lists of swappings, denoted π (Id empty).

• Nominal Terms:

s, t ::= a | π · X | [a]t | f t | (t1, . . . , tn)

Id · X written as X .

• Example (ML): var(a), app(t, t ′), lam([a]t), let(t, [a]t ′),
letrec[f ]([a]t, t ′), subst([a]t, t ′)
Syntactic sugar:
a, (tt ′), λa.t, let a = t in t ′, letrec fa = t in t ′, t[a 7→ t ′]
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α-equivalence

We use freshness to avoid name capture.
a#X means a 6∈ fv(X ) when X is instantiated.

a ≈α a

ds(π, π′)#X

π · X ≈α π′ · X

s1 ≈α t1 · · · sn ≈α tn

(s1, . . . , sn) ≈α (t1, . . . , tn)

s ≈α t

fs ≈α ft

s ≈α t

[a]s ≈α [a]t

a#t s ≈α (a b) · t

[a]s ≈α [b]t

where
ds(π, π′) = {n|π(n) 6= π′(n)}

• a#X , b#X ` (a b) · X ≈α X

• b#X ` λ[a]X ≈α λ[b](a b) · X
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Freshness

Also defined by induction:

a#b a#[a]s

π−1(a)#X

a#π · X

a#s1 · · · a#sn

a#(s1, . . . , sn)

a#s

a#fs

a#s

a#[b]s
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Checking α-equivalence of terms

The syntax-directed derivation rules above suggest an algorithm to
check α-equivalence, using transformation rules:

a#b,Pr =⇒ Pr
a#fs,Pr =⇒ a#s,Pr

a#(s1, . . . , sn),Pr =⇒ a#s1, . . . , a#sn,Pr
a#[b]s,Pr =⇒ a#s,Pr
a#[a]s,Pr =⇒ Pr

a#π · X ,Pr =⇒ π-1 · a#X ,Pr π 6≡ Id

a ≈α a,Pr =⇒ Pr
(l1, . . . , ln) ≈α (s1, . . . , sn),Pr =⇒ l1 ≈α s1, . . . , ln ≈α sn,Pr

fl ≈α fs,Pr =⇒ l ≈α s,Pr
[a]l ≈α [a]s,Pr =⇒ l ≈α s,Pr
[b]l ≈α [a]s,Pr =⇒ (a b) · l ≈α s, a#l ,Pr

π · X ≈α π′ · X ,Pr =⇒ ds(π, π′)#X ,Pr
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Checking α-equivalence of terms

The relation =⇒ is confluent and strongly normalising; i.e. the
simplification process terminates and the result is unique: 〈Pr〉nf .
If 〈Pr〉nf is a consistent freshness context, Pr is valid.

To solve equations we need to add instantiation rules:
Pr , π · X ≈α t =⇒ Pr{X 7→ π−1 · t} if X in Pr and X not in t.
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Solving Equations [Urban, Pitts, Gabbay 2003]

• Nominal Unification: l ?≈? t has solution (∆, θ) if

∆ ` lθ ≈α tθ

• Nominal Matching: s = t has solution (∆, θ) if

∆ ` sθ ≈α t

• Examples:
λ([a]X ) = λ([b]b) ??
λ([a]X ) = λ([b]X ) ??

• Solutions: (∅, [X 7→ a]) and ({a#X , b#X}, Id) resp.

• Nominal matching is decidable, and
linear in time [Calves, Fernandez 07].

• Nominal unification is decidable and polynomial. A solvable
unification problem has a unique most general solution
[Urban, Pitts, Gabbay 04].
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Implementing Nominal Unification — First Approach:
MAUDE

MAUDE is based on rewriting. Example program:

fmod LAMBDA is
sorts Var Term .
subsorts Var < Term .

op var : String − > Var .
op lam : Var Term − > Term .
op app : Term Term − > Term .

var x : Var .
var t1 t2 : Term .

rl [beta] : app(lam(x,t1),t2) => t1[t2/x]
endfm
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Implementing nominal unification in Maude

sorts Var Atom Perm Term .
subsorts Atom Var < Term .

op ˆ : Perm Var − > Term .
op [ ] : Atom Term − > Term .

eq perm1 ˆ (perm2 ˆ var) = (perm1 ◦ perm2) ˆ var .
eq a # f (t) = a # t .
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Maude implementation

• natural choice of language since the algorithm is specified as a
set of rewrite rules

• very easy to code (direct translation)

• easy to maintain

• but it is inefficient

• even standard (first-order) unification is exponential on trees,
due to copying: f (X ,X ) ?≈? t, X ?≈? u

• we need sharing
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Implementing nominal unification on DAGs

⇒ atoms, variables and 1 are represented as leaves

• a tuple (t1, . . . , tn) is represented as a node () with n children

• f (t) is represented as a node f with one child.

• [a]t is represented as a node [] with two children (a and t)
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Equivalence and Freshness in DAGs

⇒ Equivalence and Freshness constraints are also represented
with DAGs

• t ?≈? u is represented as a node ?≈? with two children

• a #? t is represented as a node #? with two children

• a whole unification problem is represented as a DAG
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Optimisation techniques for equivalence

⇒ the nodes t ?≈? t are erased

• π ◦ t ?≈? π′ ◦ t is replaced by ds(π, π′) #? t

• t ?≈? X or X ?≈? t, if X 6∈ Var(t), each pointer to X is
replaced by a pointer to t

• t ?≈? u not of the previous forms, unification rules are applied
and each pointer to u is replaced by a pointer to t.

• permutations on terms are evaluated ’by need’: push one level
down, only when needed to be able to apply a transformation
rule (use a ’neutralising’ permutation if necessary)

• the graph is kept in canonical form: after each application of
a unification rule, we compress consecutive permutation
nodes, etc.

Maribel Fernández Unification Algorithms



Optimisation techniques for equivalence

• the nodes t ?≈? t are erased

⇒ π ◦ t ?≈? π′ ◦ t is replaced by ds(π, π′) #? t

• t ?≈? X or X ?≈? t, if X 6∈ Var(t), each pointer to X is
replaced by a pointer to t

• t ?≈? u not of the previous forms, unification rules are applied
and each pointer to u is replaced by a pointer to t.

• permutations on terms are evaluated ’by need’: push one level
down, only when needed to be able to apply a transformation
rule (use a ’neutralising’ permutation if necessary)

• the graph is kept in canonical form: after each application of
a unification rule, we compress consecutive permutation
nodes, etc.

Maribel Fernández Unification Algorithms



Optimisation techniques for equivalence

• the nodes t ?≈? t are erased

• π ◦ t ?≈? π′ ◦ t is replaced by ds(π, π′) #? t

⇒ t ?≈? X or X ?≈? t, if X 6∈ Var(t), each pointer to X is
replaced by a pointer to t

• t ?≈? u not of the previous forms, unification rules are applied
and each pointer to u is replaced by a pointer to t.

• permutations on terms are evaluated ’by need’: push one level
down, only when needed to be able to apply a transformation
rule (use a ’neutralising’ permutation if necessary)

• the graph is kept in canonical form: after each application of
a unification rule, we compress consecutive permutation
nodes, etc.

Maribel Fernández Unification Algorithms



Optimisation techniques for equivalence

• the nodes t ?≈? t are erased

• π ◦ t ?≈? π′ ◦ t is replaced by ds(π, π′) #? t

• t ?≈? X or X ?≈? t, if X 6∈ Var(t), each pointer to X is
replaced by a pointer to t

⇒ t ?≈? u not of the previous forms, unification rules are applied
and each pointer to u is replaced by a pointer to t.

• permutations on terms are evaluated ’by need’: push one level
down, only when needed to be able to apply a transformation
rule (use a ’neutralising’ permutation if necessary)

• the graph is kept in canonical form: after each application of
a unification rule, we compress consecutive permutation
nodes, etc.

Maribel Fernández Unification Algorithms



Optimisation techniques for equivalence

• the nodes t ?≈? t are erased

• π ◦ t ?≈? π′ ◦ t is replaced by ds(π, π′) #? t

• t ?≈? X or X ?≈? t, if X 6∈ Var(t), each pointer to X is
replaced by a pointer to t

• t ?≈? u not of the previous forms, unification rules are applied
and each pointer to u is replaced by a pointer to t.

⇒ permutations on terms are evaluated ’by need’: push one level
down, only when needed to be able to apply a transformation
rule (use a ’neutralising’ permutation if necessary)

• the graph is kept in canonical form: after each application of
a unification rule, we compress consecutive permutation
nodes, etc.

Maribel Fernández Unification Algorithms



Optimisation techniques for equivalence

• the nodes t ?≈? t are erased

• π ◦ t ?≈? π′ ◦ t is replaced by ds(π, π′) #? t

• t ?≈? X or X ?≈? t, if X 6∈ Var(t), each pointer to X is
replaced by a pointer to t

• t ?≈? u not of the previous forms, unification rules are applied
and each pointer to u is replaced by a pointer to t.

• permutations on terms are evaluated ’by need’: push one level
down, only when needed to be able to apply a transformation
rule (use a ’neutralising’ permutation if necessary)

⇒ the graph is kept in canonical form: after each application of
a unification rule, we compress consecutive permutation
nodes, etc.

Maribel Fernández Unification Algorithms



Complexity

⇒ The size of the problem (without counting freshness
constraints) does not grow.

• The number of constraints generated is linear in the size of
the problem.

• The number of transformation steps for each unification
constraint is polynomial
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Freshness

⇒ An efficient implementation should avoid computing freshness
of an atom on a node several times.
Example:
a #? f (X ,X ) X ?≈? t

• Need to remember which atoms have been already tested for
freshness on a term, so each node t is tagged by a set A of
atoms

• On a #? t, if a is not in A, the transformation rule (depending
on the form of t) is applied and a is added to A

• a #? π ◦ t is replaced by π−1(a) #? t
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Conclusion

• Nominal Terms: first-order syntax, with a notion of matching
modulo α.

• Higher-order substitutions are easy to define using freshness.

• Nominal matching is decidable and linear in time.

• Nominal rewriting has the expressive power of higher-order
rewriting.

• Nominal unification is polynomial (unknown lower bound).

• Nominal unificaiton is used in the language α-Prolog [Cheney
and Urban]

• Type systems for nominal terms are available.
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That’s all!

Questions ?
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