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What have we learned about the symmetry approach?

It is based on a concept of formal recursion operator.

Advantages: Not sensitive to lacunas in the hierarchy of symmetries;

Not assumed equations to be polynomial.

Disadvantages: Difficult to draw a global picture (in all orders);

difficult to apply for non-local, non-evolutionary and multi-dimensional

equations.
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The symmetry approach in symbolic representation

It is based on a symbolic representation of the ring of differential

polynomials.

Advantages: Enable to use powerful results from algebraic geometry

and number theory; enable to draw a global picture (in all orders);

suitable for studying integrability of noncommutative, non-local, non-

evolutionary and multi-dimensional equations.

Disadvantages: Restriction to the ring of differential polynomials,

which can be amended in some cases by suitable extension of the

ring.
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Plan of the lecture

• The ring of differential polynomials;

• Introduction of the symbolic representation;

• Symmetries of evolutionary equations in symbolic representation;

• Global classification of scalar homogeneous evolutionary equa-

tions;

• Further developments.
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The ring of differential polynomials:

• Let u = u(x, t) and ui = ∂i
xu. A u-monomial is of the form

u
α0
0 u

α1
1 · · ·uαk

k (uα) and the total degree is |α| = α0+α1+· · ·αk > 0.

• A differential polynomial is a finite linear combination of u-monomials

with degrees |α| > 0 with coefficients in C.

• The set of all such differential polynomials forms a ring R.

• R is a differential ring and C 6⊆ R. The linear operator Dx =∑
k≥0

(
uk+1

∂
∂uk

)
is a derivation corresponding to the total x-derivative.
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Gradations of the ring of differential polynomials:

Monomials uα are eigenvectors of the commuting linear operators

Du =
∑
k≥0

uk
∂

∂uk
, Xu =

∑
k≥1

kuk
∂

∂uk

with Du(uα) = |α|uα and Xu(uα) = (
∑

k≥1 kαk)u
α.

The ring R is graded and is a direct sum of eigenspaces
R =

⊕
n∈N

Rn =
⊕

n,p∈N
Rn

p−1,

Rn = {f ∈ R |Du(f) = nf} , Rn
p = {f ∈ Rn |Xu(f) = pf}.

Example. u2
1u7 + 2u2u3u4 − u2

0u9 ∈ R3
9 ⊂ R3.

Notation. ”Little oh”: f = o(Rn) if f ∈
⊕

k>nRk.
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Weighted homogeneous differential polynomials

Assume that dependent variable u has a weight λ. Define

Wλ = λDu + Xu.

Differential monomials are eigenvectors of Wλ and the spectrum of
Wλ is a set Sλ = {nλ + m− 1 |n, m ∈ N}.

R =
⊕

µ∈Sλ

Wµ , Wµ = {f ∈ R |Wλ(f) = µf} .

Elements of Wµ are called λ-homogeneous polynomials of weight
µ.

Example. u3 + 6uu1 is a 2-homogeneous polynomial of weight 5.

Note. If λ > 0, subspaces Wµ are finite dimensional.
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Lie algebra of differential polynomials

For any f, g ∈ R, define a Lie bracket

[f, g] = f∗(g)− g∗(f) .

Here f∗ is the Fréchet derivative, defined as h∗ =
∑

k≥0
∂h
∂uk

Dk
x .

We say that an element f ∈ R has order n if the corresponding

differential operator h∗ is of order n.

The grading of R induces the grading of the Lie algebra:

[Rn
p ,Rm

q ] ⊂ Rn+m−1
p+q and [Wµ,Wν] ⊂ Wµ+ν−λ .
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Symmetries and approximate symmetries

ut = K = K1[u] + K2[u] + K3[u] + · · · , Ki ∈ Ri.

A differential polynomial S ∈ R is a symmetry iff the Lie bracket of
K and S vanishes.

A differential polynomial S ∈ R is said to be an approximate sym-
metry of degree p if [K, S] = o(Rp).

• Every equation possesses infinitely many approximate symmetries
of degree 1;

• Equation ut = u5+5uu1 has infinitely many approximate symme-
try of degree 2, e.g., u7 + 7uu3 + 14u1u2;

• An integrable equation possesses infinitely many approximate sym-
metries of any degree.

9



Symbolic representation R̂ of differential polynomials ring R

• Linear monomials ui: uk 7−→ ûξk
1;

• Quadratic monomials uiuj: uiuj 7−→ û2

2 (ξi
1ξ

j
2 + ξ

j
1ξi

2);

• General monomial:

ui1ui2 · · ·uin ∈ Rn 7−→ ûn〈ξi1
1 ξ

i2
2 · · · ξin

n 〉Sξ
n
∈ R̂n,

where 〈〉Sξ
n

means the symmetrisation over the permutation group
of n elements.

The symmetrisation over the permutation group defines the symbol
uniquely.
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Some examples and properties

Dx(uu1) = uu2 + u2
1 7−→

û2

2
(ξ21 + ξ22) + û2ξ1ξ2 = (ξ1 + ξ2)ûu1

D̂u = û
∂

∂û
, X̂u =

∑
i=1

ξi
∂

∂ξi
.

Basic properties: If P ∈ Rk, then

D̂xP = (ξ1 + · · ·+ ξk) P̂ ,

P̂∗ = kP̂ (ξ1, . . . , ξk−1, η), Dx 7−→ η

P̂∗[un] = (ξn
1 + · · ·+ ξn

k) P̂ .

Example. let F = u3 + 6uu1, then F 7→ ûξ31 + 3û2(ξ1 + ξ2) and

F∗ 7→ η3 + 6û(ξ1 + η) .

Statement. A differential operator is a Fréchet derivative of an ele-
ment of R iff its symbol is symmetric with respect to all its arguments.
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Some immediate results

Let f ∈ Rn, f 7→ ûna(ξ1, . . . , ξn) and g ∈ Rm, g 7→ ûmb(ξ1, . . . , ξm), then
the Lie bracket [f, g] is represented by

[f, g] 7−→ ûn+m−1〈
na(ξ1, . . . , ξn−1, ξn + · · ·+ ξn+m−1)b(ξn, . . . , ξn+m−1)−

mb(ξ1, . . . , ξm−1, ξm + · · ·+ ξn+m−1)a(ξm, . . . , ξn+m−1)
〉
Sξ

n+m−1

For example, if f ∈ R1, f 7→ ûω(ξ1) then

[f, g] 7−→ (ω(ξ1 + · · ·+ ξm)− ω(ξ1)− · · · − ω(ξm)) ûmb(ξ1, . . . , ξm).

Statements. 1. The symmetries of the linear evolution equation
ut = un(n ≥ 2) are linear differential polynomials.
2. u1 is a symmetry for any evolutionary equation ut = g ∈ R.
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Symmetry Conditions in symbolic representation

Theorem. Consider equation ut = F ∈ R, where

F 7−→ ûξn
1 + û2a1(ξ1, ξ2) + û3a2(ξ1, ξ2, ξ3) + · · ·

and n ≥ 2. If

G 7−→ ûξk
1 + û2A1(ξ1, ξ2) + û3A2(ξ1, ξ2, ξ3) + · · ·

is a symmetry, then its coefficients can be found recursively

A1(ξ1, ξ2) =
Gk
1
Gn
1
a1(ξ1, ξ2)

Am−1(ξ1, ..., ξm) = 1
Gn

m−1
(Gk

m−1am−1(ξ1, ..., ξm)

+
∑m−2

j=1

〈
(j + 1)Aj(ξ1, ..., ξj,

∑m−1
l=j ξl+1)am−1−j(ξj+1, ..., ξm)

−(m− j)am−1−j(ξ1, ..., ξm−1−j,
∑j

l=0 ξm−l)Aj(ξm−j, . . . , ξm)
〉
Sξ

m
),

where Gn
m−1 = (ξ1 + · · ·+ ξm)n − (ξn

1 + · · ·+ ξn
m) .
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Number theoretical methods

The main question now is to determine the common zeros of the Gn
m.

There are basically three different cases.

Integrability To prove the existence of infinitely many symmetries,

we use the Lech-Mahler theorem, followed by the application of an

algorithm by C.J. Smyth.

Finite many symmetries To prove this, we use p–adic analysis.

Completeness This is the most difficult job. In the scalar case, it has

been done using Diophantine approximation theory by Frits Beukers.

For systems, it is still an open problem.
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Irreducibility of polynomials Gn
m for m ≥ 3

(F. Beukers) For any positive integer n ≥ 2 and m ≥ 3, the polyno-
mials Gn

m are irreducible over C.

Statement. The following equation has only trivial symmetries:

ut = un + f(un−1, . . . , u) , n ≥ 2, 0 6= f ∈
⊕

m>3

⊕
p<n

Rm
p .

Question Is equation ut = u3 + u3u1 integrable?
How about equation ut = u2 + u2u2

1?

Theorem. Assume that an equation of given form has a nontrivial
symmetry. Then for an approximate symmetry

∑3
j=1 hj, hj ∈ Rj of

degree 3, there exists a unique H =
∑

j≥1 hj, hj ∈ Rj such that H is
an approximate symmetry of any degree.
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Lech–Mahler Theorem

Let A1, A2, . . . , An be non-zero complex numbers and similarly for

a1, a2, . . . , an. Suppose that none of the ratios Ai/Aj with i 6= j is

a root of unity. Then the equation

a1Ak
1 + a2Ak

2 + · · ·+ anAk
n = 0

in the unknown integer k has finitely many solutions.
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The Lech-Mahler argument for Gn
1

Notice Gn
1 = ξn

1 ((1 + r)n − 1− rn) , r = ξ2
ξ1

. Let r be a root of Gn
1.

Integrability implies that there are infinitely many l such that

(1 + r)l − 1− rl = 0.

The Lech-Mahler theorem then implies that r and 1 + r are root of

unity, i.e., r = e±
2πi
3 = −1±i

√
3

2 = ζ3, or zero, i.e., r = 0 or r = −1.

This solves the original equation for all odd l if r = −1 and for all l if

r = 0. Since 1 + ζ3 is a sixth root of unity, ζ3 is a solution if l is 1 or

5 (mod 6).
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Divisibility of polynomials Gn
m for m = 1, 2

(F. Beukers) Gn
m = tnmgn

m, where (gn
m, gl

m) = 1 for all n < l, and tnm is

one of the following cases.

• m = 1:

n = 0 (mod 2): ξ1ξ2
n = 3 (mod 6): ξ1ξ2(ξ1 + ξ2)

n = 5 (mod 6): ξ1ξ2(ξ1 + ξ2)(ξ
2
1 + ξ1ξ2 + ξ22)

n = 1 (mod 6): ξ1ξ2(ξ1 + ξ2)(ξ
2
1 + ξ1ξ2 + ξ22)

2

• m = 2:

n = 0 (mod 2): 1

n = 1 (mod 2): (ξ1 + ξ2)(ξ1 + ξ3)(ξ2 + ξ3)
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The Cauchy-Liouville-Mirimanoff polynomials

Pk(x) = (1 + x)k − xk − 1 .

• 1839: Cauchy and Liouville established the periodicity;

• 1903: Mirimanoff conjectured g
p
1 is irreducible over Q for prime p;

• 1997: Beukers conjectured gn
1 is irreducible over Q;

• 2007: Tzermias proved Mirimanoff’s conjecture.
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Global classification results for scalar equations

Problem. Consider λ-homogeneous equations (λ > 0) of the form

ut = F = un + f2 + f3 + · · · , fi ∈ Ri, n ≥ 2

7−→ ûξn
1 + û2a1(ξ1, ξ2) + û3a2(ξ1, ξ2, ξ3) + · · · , deg(aj) = n− jλ.

Note that if λ is not integer and iλ /∈ N, then ai = 0.

Let G ∈ R be a nontrivial symmetry. Then it is of the form

G = um + g2 + g3 + · · · , gi ∈ Ri, m ≥ 2

7−→ ûξm
1 + û2A1(ξ1, ξ2) + û3A2(ξ1, ξ2, ξ3) + · · · , deg(Aj) = m− jλ.

Statement. The equation has nontrivial symmetries when i) f2 6= 0;

ii) f2 = 0, f3 6= 0 and n is odd.
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Observation. Assume n and m are both odd. Then we have

A1 =
a1Gm

1

Gn
1

=
a1 (ξ21 + ξ1ξ2 + ξ22)

s−s′ gm
1

gn
1

,

where s′ = n+3
2 (mod 3) and s = m+3

2 (mod 3).

The divisibility result of Gl
1 implies that λ ≤ 3 + 2min(s, s′).

If expression A1 is a polynomial, then it defines a symmetry G =
um + g2 + · · ·! The equations defined by G has the same symmetries
as ut = F . We consider the equation given by G instead. The lowest
possible m is 2s+3 for s = 0,1,2. Therefore we only need to consider
λ-homogeneous equations with λ ≤ 7 of orders not greater than 7.

Result. A nontrivial symmetry of a λ-homogeneous equation with
λ > 0 is part of a hierarchy starting at order 2, 3, 5 or 7.
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Theorem. Suppose a homogeneous polynomial evolution equation

ut = un + F (u, ux, · · · , un−1) λ > 0

has nontrivial symmetries. Then it is a symmetry of one of the fol-
lowing equations (up to a scaling):

ut = uxx + uux

ut = uxxx + uux

ut = uxxx + u2
x

ut = uxxx + u2ux

ut = uxxx + 3u2uxx + 9uu2
x + 3u4ux

ut = u5x + 10uuxxx + 25uxuxx + 20u2ux

ut = u5x + 10uuxxx + 10uxuxx + 20u2ux

ut = u5x + 10uxuxxx + 15
2 u2

xx + 20
3 u3

x
ut = u5x + 10uxuxxx + 20

3 u3
x

ut = u5x + 5uxuxxx + 5u2
xx − 5u2uxxx − 20uuxuxx − 5u3

x + 5u4ux
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Further developments

• Non-local equations: Benjamin-Ono and Camassa-Holm types;

• Boussinesq type equations: utt = F (u, u1, · · · , um;ut, ut,1, · · · , ut,m);

• Multi-component systems;

• Symmetry structure of (2 + 1)-dimensional integrable equations.

23


