Yang-Baxter maps and integrability

Alexander Veselov, Loughborough University, UK

Complement to the lectures at UK-Japan Winter School, Manchester 2010

History

C.N. Yang (1967), R.J. Baxter (1972):

Yang-Baxter equation in quantum theory and statistical mechanics

C.N. Yang (1967), R.J. Baxter (1972):

Yang-Baxter equation in quantum theory and statistical mechanics
Set-theoretical solutions of quantum Yang-Baxter equation:

C.N. Yang (1967), R.J. Baxter (1972):

Yang-Baxter equation in quantum theory and statistical mechanics
Set-theoretical solutions of quantum Yang-Baxter equation:
E.K. Sklyanin Classical limits of $\mathrm{SU}(2)$-invariant solutions of the Yang-Baxter equation. J. Soviet Math. 40 (1988), no. 1, 93-107.

History

C.N. Yang (1967), R.J. Baxter (1972):

Yang-Baxter equation in quantum theory and statistical mechanics
Set-theoretical solutions of quantum Yang-Baxter equation:
E.K. Sklyanin Classical limits of $\mathrm{SU}(2)$-invariant solutions of the Yang-Baxter equation. J. Soviet Math. 40 (1988), no. 1, 93-107.
V.G. Drinfeld On some unsolved problems in quantum group theory. In "Quantum groups" (Leningrad, 1990), Lecture Notes in Math., 1510, Springer, 1992, 1-8.

History

C.N. Yang (1967), R.J. Baxter (1972):

Yang-Baxter equation in quantum theory and statistical mechanics
Set-theoretical solutions of quantum Yang-Baxter equation:
E.K. Sklyanin Classical limits of $\mathrm{SU}(2)$-invariant solutions of the Yang-Baxter equation. J. Soviet Math. 40 (1988), no. 1, 93-107.
V.G. Drinfeld On some unsolved problems in quantum group theory. In "Quantum groups" (Leningrad, 1990), Lecture Notes in Math., 1510, Springer, 1992, 1-8.

Dynamical point of view:
A.P. Veselov Yang-Baxter maps and integrable dynamics. Physics Letters A, 314 (2003), 214-221.

Quantum Yang-Baxter equation

Quantum Yang-Baxter equation

C.N. Yang (1967), R. Baxter (1972)

Quantum Yang-Baxter equation

C.N. Yang (1967), R. Baxter (1972)

$$
\mathbf{R}_{12} R_{13} R_{23}=R_{23} R_{13} R_{12}
$$

where $R: V \otimes V \rightarrow V \otimes V$ is a linear operator

Quantum Yang-Baxter equation

C.N. Yang (1967), R. Baxter (1972)

$$
\mathbf{R}_{12} \mathbf{R}_{13} \mathbf{R}_{23}=\mathbf{R}_{23} \mathbf{R}_{13} \mathbf{R}_{12}
$$

where $R: V \otimes V \rightarrow V \otimes V$ is a linear operator

Figure: Yang-Baxter relation

Quantum Yang-Baxter equation

C.N. Yang (1967), R. Baxter (1972)

$$
\mathbf{R}_{12} \mathbf{R}_{13} \mathbf{R}_{23}=\mathbf{R}_{23} \mathbf{R}_{13} \mathbf{R}_{12}
$$

where $R: V \otimes V \rightarrow V \otimes V$ is a linear operator

Figure: Yang-Baxter relation

Important consequence: Transfer-matrices $T(\lambda)=t r_{0} R_{0 n} \ldots R_{01}$ commute:

$$
T(\lambda) T(\mu)=T(\mu) T(\lambda)
$$

Yang-Baxter maps (= Set-theoretical solutions of YBE)

Let X be any set and R be a map:

$$
R: X \times X \rightarrow X \times X
$$

Yang-Baxter maps ($=$ Set-theoretical solutions of YBE)

Let X be any set and R be a map:

$$
R: X \times X \rightarrow X \times X
$$

The map R is called Yang-Baxter map if it satisfies the Yang-Baxter relation

$$
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} .
$$

Yang-Baxter maps (= Set-theoretical solutions of YBE)

Let X be any set and R be a map:

$$
R: X \times X \rightarrow X \times X
$$

The map R is called Yang-Baxter map if it satisfies the Yang-Baxter relation

$$
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} .
$$

The reversible Yang-Baxter maps additionally satisfy the relation

$$
R_{21} R=I d .
$$

Yang-Baxter maps (= Set-theoretical solutions of YBE)

Let X be any set and R be a map:

$$
R: X \times X \rightarrow X \times X
$$

The map R is called Yang-Baxter map if it satisfies the Yang-Baxter relation

$$
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} .
$$

The reversible Yang-Baxter maps additionally satisfy the relation

$$
R_{21} R=I d .
$$

Figure: Reversibility

Parameter-dependent Yang-Baxter maps

One can consider also the parameter-dependent Yang-Baxter maps $R(\lambda, \mu)$ with λ, μ from some parameter set Λ, satisfying

$$
R_{12}\left(\lambda_{1}, \lambda_{2}\right) R_{13}\left(\lambda_{1}, \lambda_{3}\right) R_{23}\left(\lambda_{2}, \lambda_{3}\right)=R_{23}\left(\lambda_{2}, \lambda_{3}\right) R_{13}\left(\lambda_{1}, \lambda_{3}\right) R_{12}\left(\lambda_{1}, \lambda_{2}\right)
$$

and reversibility condition

$$
R_{21}(\mu, \lambda) R(\lambda, \mu)=I d
$$

Parameter-dependent Yang-Baxter maps

One can consider also the parameter-dependent Yang-Baxter maps $R(\lambda, \mu)$ with λ, μ from some parameter set Λ, satisfying

$$
R_{12}\left(\lambda_{1}, \lambda_{2}\right) R_{13}\left(\lambda_{1}, \lambda_{3}\right) R_{23}\left(\lambda_{2}, \lambda_{3}\right)=R_{23}\left(\lambda_{2}, \lambda_{3}\right) R_{13}\left(\lambda_{1}, \lambda_{3}\right) R_{12}\left(\lambda_{1}, \lambda_{2}\right)
$$

and reversibility condition

$$
R_{21}(\mu, \lambda) R(\lambda, \mu)=I d
$$

Although this case can be considered as a particular case of the previous one by introducing $\tilde{X}=X \times \Lambda$ and $\tilde{R}(x, \lambda ; y, \mu)=R(\lambda, \mu)(x, y)$ it is often convenient to keep the parameter separately.

Example 1: Interaction of matrix solitons

Matrix KdV equation

$$
U_{t}+3 U U_{x}+3 U_{x} U+U_{x x x}=0
$$

has the soliton solution of the form

$$
U=2 \lambda^{2} P \operatorname{sech}^{2}\left(\lambda x-4 \lambda^{3} t\right)
$$

where "polarisation" P must be a projector: $P^{2}=P$.

Example 1: Interaction of matrix solitons

Matrix KdV equation

$$
U_{t}+3 U U_{x}+3 U_{x} U+U_{x x x}=0
$$

has the soliton solution of the form

$$
U=2 \lambda^{2} P \operatorname{sech}^{2}\left(\lambda x-4 \lambda^{3} t\right)
$$

where "polarisation" P must be a projector: $P^{2}=P$.
The change of polarisations P after the soliton interaction is non-trivial:

$$
\begin{aligned}
& \tilde{L}_{1}=\left(I+\frac{2 \lambda_{2}}{\lambda_{1}-\lambda_{2}} P_{2}\right) L_{1} \\
& \tilde{L}_{2}=\left(I+\frac{2 \lambda_{1}}{\lambda_{2}-\lambda_{1}} P_{1}\right) L_{2}
\end{aligned}
$$

where L is the image of P (Goncharenko, AV (2003)).
Tsuchida (2004), Ablowitz, Prinari, Trubatch (2004): vector NLS equation

Example 2: KdV and Adler map

Darboux transformation

$$
\begin{gathered}
L=-\frac{d^{2}}{d x^{2}}+u(x)=A^{*} A \rightarrow L_{1}=A A^{*} \\
A=\frac{d}{d x}-f(x), \quad A=-\frac{d}{d x}-f(x)
\end{gathered}
$$

Example 2: KdV and Adler map

Darboux transformation

$$
\begin{gathered}
L=-\frac{d^{2}}{d x^{2}}+u(x)=A^{*} A \rightarrow L_{1}=A A^{*} \\
A=\frac{d}{d x}-f(x), \quad A=-\frac{d}{d x}-f(x)
\end{gathered}
$$

A.B.Shabat, A.V. (1993): periodic dressing chain

$$
\left(f_{i}+f_{i+1}\right)^{\prime}=f_{i}^{2}-f_{i+1}^{2}+\alpha_{i}, i=1, \ldots, 2 m+1
$$

Example 2: KdV and Adler map

Darboux transformation

$$
\begin{gathered}
L=-\frac{d^{2}}{d x^{2}}+u(x)=A^{*} A \rightarrow L_{1}=A A^{*} \\
A=\frac{d}{d x}-f(x), \quad A=-\frac{d}{d x}-f(x)
\end{gathered}
$$

A.B.Shabat, A.V. (1993): periodic dressing chain

$$
\left(f_{i}+f_{i+1}\right)^{\prime}=f_{i}^{2}-f_{i+1}^{2}+\alpha_{i}, i=1, \ldots, 2 m+1
$$

V. Adler (1993): symmetry of dressing chain

$$
\begin{aligned}
& \tilde{f}_{1}=f_{2}-\frac{\beta_{1}-\beta_{2}}{f_{1}+f_{2}} \\
& \tilde{f}_{2}=f_{1}-\frac{\beta_{2}-\beta_{1}}{f_{1}+f_{2}}
\end{aligned}
$$

Geometric realisation: Recuttings of polygon

Geometric realisation：Recuttings of polygon

Geometric realisation：Recuttings of polygon

Geometric realisation：Recuttings of polygon

Transfer dynamics

Define the transfer maps

$$
T_{i}^{(n)}: X^{n} \rightarrow X^{n}, i=1, \ldots, n
$$

by

$$
T_{i}^{(n)}=R_{i i+n-1} R_{i i+n-2} \ldots R_{i i+1},
$$

where the indices are considered modulo n. In particular $T_{1}^{(n)}=R_{1 n} R_{1 n-1} \ldots R_{12}$.

Transfer dynamics

Define the transfer maps

$$
T_{i}^{(n)}: X^{n} \rightarrow X^{n}, i=1, \ldots, n
$$

by

$$
T_{i}^{(n)}=R_{i i+n-1} R_{i i+n-2} \ldots R_{i i+1}
$$

where the indices are considered modulo n. In particular $T_{1}^{(n)}=R_{1 n} R_{1 n-1} \ldots R_{12}$.

For any reversible Yang-Baxter map R the transfer maps $T_{i}^{(n)}$ commute with each other:

$$
T_{i}^{(n)} T_{j}^{(n)}=T_{j}^{(n)} T_{i}^{(n)}
$$

and satisfy the property

$$
T_{1}^{(n)} T_{2}^{(n)} \ldots T_{n}^{(n)}=I d
$$

Conversely, if $T_{i}^{(n)}$ satisfy these properties then R is a reversible YB map.

Commutativity of the transfer maps

Figure: Commutativity of the transfer maps

Recutting of polygons: dynamics

Some other initial data

Lax matrices and matrix factorisations

Matrix $A(x, \lambda, \zeta)$ with spectral parameter $\zeta \in \mathbb{C}$ is called Lax matrix of the map R if it satisfies the relation

$$
A(x, \lambda ; \zeta) A(y, \mu ; \zeta)=A(\tilde{y}, \mu ; \zeta) A(\tilde{x}, \lambda ; \zeta)
$$

whenever $(\tilde{x}, \tilde{y})=R(\lambda, \mu)(x, y)$.

Lax matrices and matrix factorisations

Matrix $A(x, \lambda, \zeta)$ with spectral parameter $\zeta \in \mathbb{C}$ is called Lax matrix of the $\operatorname{map} R$ if it satisfies the relation

$$
A(x, \lambda ; \zeta) A(y, \mu ; \zeta)=A(\tilde{y}, \mu ; \zeta) A(\tilde{x}, \lambda ; \zeta)
$$

whenever $(\tilde{x}, \tilde{y})=R(\lambda, \mu)(x, y)$.
Define monodromy matrix

$$
M=A\left(x_{n}, \lambda_{n}, \zeta\right) A\left(x_{n-1}, \lambda_{n-1}, \zeta\right) \ldots A\left(x_{1}, \lambda_{1}, \zeta\right)
$$

The transfer maps $T_{i}^{(n)}$ preserve the spectrum of M for all ζ. The coefficients of the characteristic polynomial

$$
\chi=\operatorname{det}(M(x, \lambda, \zeta)-\mu I)
$$

are the integrals of the transfer-dynamics.

Lax matrix from Yang-Baxter map

Suris, AV (2003):
Suppose that the Yang-Baxter map $R(\lambda, \mu)$ has the following special form:

$$
\tilde{x}=B(y, \mu, \lambda)[x], \quad \tilde{y}=A(x, \lambda, \mu)[y]
$$

for some action of $G L(N)$ on X. Then both $A(x, \lambda, \zeta)$ and $B^{\mathrm{T}}(x, \lambda, \zeta)$ are Lax matrices for R.

Lax matrix from Yang-Baxter map

Suris, AV (2003):
Suppose that the Yang-Baxter map $R(\lambda, \mu)$ has the following special form:

$$
\tilde{x}=B(y, \mu, \lambda)[x], \quad \tilde{y}=A(x, \lambda, \mu)[y]
$$

for some action of $G L(N)$ on X. Then both $A(x, \lambda, \zeta)$ and $B^{\mathrm{T}}(x, \lambda, \zeta)$ are Lax matrices for R.

Indeed, LHS gives $z_{12}=A\left(y_{1}, \mu, \nu\right) A\left(x_{2}, \lambda, \nu\right)[z]$, while the RHS gives $z_{12}=A(x, \lambda, \nu) A(y, \mu, \nu)[z]$.

Example: Lax matrix for Adler map

For Adler map

$$
\begin{aligned}
& \tilde{x}=y-\frac{\lambda-\mu}{x+y} \\
& \tilde{y}=x-\frac{\mu-\lambda}{x+y}
\end{aligned}
$$

we can write

$$
\tilde{y}=x-\frac{\mu-\lambda}{x+y}=\frac{x^{2}+x y-(\mu-\lambda)}{x+y}=A(x, \lambda, \mu)[y]
$$

so we come to the Lax matrix

$$
A=\left(\begin{array}{cc}
x & x^{2}+\lambda-\zeta \\
1 & x
\end{array}\right)
$$

(which was actually known from the theory of the dressing chain).

Close relative: integrable discrete equations

Bianchi (1880s):
Superposition of Bäcklund transformations:

Bianchi (1880s):
Superposition of Bäcklund transformations:

Bianchi's important observation was the results of these commuting transformations satisfy an algebraic relation.

Bianchi (1880s):
Superposition of Bäcklund transformations:

Bianchi's important observation was the results of these commuting transformations satisfy an algebraic relation.

In KdV case the Darboux transformations satisfy

$$
\left(v_{12}-v\right)\left(v_{1}-v_{2}\right)=\beta_{1}-\beta_{2},
$$

which is the discrete KdV equation.

Discrete integrability: 3D consistency condition

Bianchi (1880s), Tsarev (1990s), Doliwa and Santini (1997), Bobenko and Suris, Nijhoff (2001): 3D consistency as the definition of integrability.

Yang-Baxter versus 3D consistency condition

Figure: "Cubic" representation of the Yang-Baxter relation

From IDE to YBM

Papageorgiou, Tongas, AV (2006): symmetry approach
Discrete KdV equation

$$
\left(v_{12}-v\right)\left(v_{1}-v_{2}\right)=\beta_{1}-\beta_{2}
$$

is invariant under the translation $v \rightarrow v+$ const.

From IDE to YBM

Papageorgiou, Tongas, AV (2006): symmetry approach
Discrete KdV equation

$$
\left(v_{12}-v\right)\left(v_{1}-v_{2}\right)=\beta_{1}-\beta_{2}
$$

is invariant under the translation $v \rightarrow v+$ const.
The invariants

$$
x_{1}=v_{1}-v, \quad x_{2}=v_{1,2}-v_{1}, \quad y_{1}=v_{1,2}-v_{2}, \quad y_{2}=v_{2}-v
$$

satisfy the relation

$$
x_{1}+x_{2}=y_{1}+y_{2}
$$

and the equation itself:

$$
\left(x_{1}+x_{2}\right)\left(x_{1}-y_{2}\right)=\beta_{1}-\beta_{2} .
$$

From IDE to YBM

Papageorgiou, Tongas, AV (2006): symmetry approach
Discrete KdV equation

$$
\left(v_{12}-v\right)\left(v_{1}-v_{2}\right)=\beta_{1}-\beta_{2}
$$

is invariant under the translation $v \rightarrow v+$ const.
The invariants

$$
x_{1}=v_{1}-v, \quad x_{2}=v_{1,2}-v_{1}, \quad y_{1}=v_{1,2}-v_{2}, \quad y_{2}=v_{2}-v
$$

satisfy the relation

$$
x_{1}+x_{2}=y_{1}+y_{2}
$$

and the equation itself:

$$
\left(x_{1}+x_{2}\right)\left(x_{1}-y_{2}\right)=\beta_{1}-\beta_{2} .
$$

This leads to the following YB map

$$
y_{1}=x_{2}+\frac{\beta_{1}-\beta_{2}}{x_{1}+x_{2}}, \quad y_{2}=x_{1}-\frac{\alpha_{1}-\beta_{2}}{x_{1}+x_{2}}
$$

which is nothing else but the Adler map.

Hamiltonian structures: Poisson Lie groups

Weinstein and Xu (1992), Reshetikhin, AV (2005)
Suppose that X can be embedded as a symplectic leaf in a Poisson Lie group $G: \phi_{\lambda}: X \rightarrow G$ and define the correspondence $R(\lambda, \mu): X \times X \rightarrow X \times X$ by the relation

$$
\phi_{\lambda}(x) \phi_{\mu}(y)=\phi_{\mu}(\tilde{y}) \phi_{\lambda}(\tilde{x}) .
$$

Hamiltonian structures: Poisson Lie groups

Weinstein and Xu (1992), Reshetikhin, AV (2005)
Suppose that X can be embedded as a symplectic leaf in a Poisson Lie group $G: \phi_{\lambda}: X \rightarrow G$ and define the correspondence $R(\lambda, \mu): X \times X \rightarrow X \times X$ by the relation

$$
\phi_{\lambda}(x) \phi_{\mu}(y)=\phi_{\mu}(\tilde{y}) \phi_{\lambda}(\tilde{x}) .
$$

Define the symplectic structure $\Omega^{(N)}$ on $X^{(N)}$ as

$$
\Omega^{(N)}=\omega_{\lambda_{1}} \oplus \omega_{\lambda_{2}} \oplus \ldots \oplus \omega_{\lambda_{N}} .
$$

Then $R(\lambda, \mu)$ is a reversible Yang-Baxter Poisson correspondence and transfer dynamics is Poisson with respect to $\Omega^{(N)}$.

Other relations: "box-ball" systems, geometric crystals

Hatayama, Hikami, Inoue, Kuniba, Noumi, Okado, Takagi, Tokihiro, Yamada (2000-): Takahashi-Satsuma "box-ball" systems and Kashiwara's crystal theory

Berenstein, Kazhdan (2000), Etingof (2001): geometric crystals
Yang-Baxter map:

$$
\begin{gathered}
R: X \times X \rightarrow X \times X, \quad X=\mathbf{C}^{n} \\
\tilde{x}_{j}=x_{j} \frac{P_{j}}{P_{j-1}}, \quad \tilde{y}_{j}=y_{j} \frac{P_{j-1}}{P_{j}}, \quad j=1, \ldots, n
\end{gathered}
$$

where

$$
P_{j}=\sum_{a=1}^{n}\left(\prod_{k=1}^{a-1} x_{j+k} \prod_{k=a+1}^{n} y_{j+k}\right)
$$

with the subscripts $j+k$ taken modulo n.

Classification

Adler, Bobenko, Suris (2004):
Quadrirational case, $X=\mathbb{C} P^{1}$

$$
\begin{array}{rlrl}
u & =\alpha y P, & v & =\beta x P, \\
& =\frac{y}{\alpha} P, & v & =\frac{x}{\beta} P, \\
u & =P=\frac{\alpha x-\beta y+\beta-\alpha}{x-y}, \\
u & =\frac{y}{\alpha} P, & v & =\frac{x}{\beta} P, \\
& P=\frac{\alpha x-\beta y}{x-y} \tag{5}\\
u & =y P, & v & =x P, \\
& P=1+\frac{\beta-\alpha}{x-y} \\
u & =y+P, & v & =x+P,
\end{array}
$$

Geometric interpretation

Figure: A quadrirational map on a pair of conics

Yang－Baxter property＝Geometric theorem

Yang-Baxter property $=$ Geometric theorem

Konopelchenko, Schief (2001): Menelaus' theorem, Clifford configurations and discrete KP hierarchy.

Additional H-families

Papageorgiou, Suris, Tongas, V (2009):

$$
\begin{array}{rlrl}
u & =y Q^{-1}, & v & =x Q, \\
& =y Q^{-1}, & v & =x Q, \\
u & =Q & =\frac{(1-\beta) x y+(\beta-\alpha) y+\beta(\alpha-1)}{(1-\alpha) x y+(\alpha-\beta) x+\alpha(\beta-1)} \\
u & =\frac{y}{\alpha} Q, & v & =\frac{x}{\beta} Q, \\
& =y Q^{-1}, & v & =x Q, \tag{10}\\
u & =\frac{\alpha x+\beta) x-\beta x y}{x+y}, \\
u & =y-P, & v & =x+P=\frac{\alpha x y+1}{\beta x y+1} \\
u
\end{array}
$$

The last map is the Adler map.

Some open questions

- Classification

Adler, Bobenko, Suris (2004), (2009), PSTV (2009)

Some open questions

- Classification

Adler, Bobenko, Suris (2004), (2009), PSTV (2009)

- Soliton interaction \Rightarrow Integrable hierarchy

Adler map \Rightarrow KdV hierarchy: S.P. Novikov (1974), Shabat, AV (1993)

Some open questions

- Classification

Adler, Bobenko, Suris (2004), (2009), PSTV (2009)

- Soliton interaction \Rightarrow Integrable hierarchy

Adler map \Rightarrow KdV hierarchy: S.P. Novikov (1974), Shabat, AV (1993)

- Alternative transfer-dynamics

Papageorgiou, AV: transfer KdV correspondences

Some open questions

- Classification

Adler, Bobenko, Suris (2004), (2009), PSTV (2009)

- Soliton interaction \Rightarrow Integrable hierarchy

Adler map \Rightarrow KdV hierarchy: S.P. Novikov (1974), Shabat, AV (1993)

- Alternative transfer-dynamics

Papageorgiou, AV: transfer KdV correspondences

- Discrete hierarchies and tropicalization

Kakei, Nimmo, Willox (2008)
Inoue, Takenawa (2008): tropical algebraic geometry

