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Plan

1. A (very) brief introduction to the theory of Frobenius
manifolds.

2. Getting from Frobenius manifolds to evolution equations of
hydrodynamic type.

3. Symmetries of Frobenius manifolds lifted to hydrodynamic
systems.

This is joint work with my supervisor Dr. Ian Strachan.
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Why Study Frobenius Manifolds?

Frobenius manifolds lie at the cross roads between many branches
of mathematics...
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Singularity Theory

Integrable Systems
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Frobenius Algebras

Definition. The triple (A, ◦, 〈 · , · 〉) is said to constitute a
(commutative, associative) Frobenius algebra if:

• (A, ◦) is a commutative associative algebra over C with unity
e;

• The bilinear pairing 〈 · , · 〉 and mutiplication ◦ satisfy the
following Frobenius condition

〈X ◦ Y ,Z 〉 = 〈X ,Y ◦ Z 〉, X ,Y ,Z ∈ A.

Example. Let G = {g1, g2, ..., gn} be a finite (commutative) group
with identity g1, and let CG be the group ring over G . Then
〈 · , · 〉 defined on the basis by

〈gi , gj〉 =

{
1 if gigj = g1,
0 else

endows CG with the structure of a (commutative) Frobenius
algebra.
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Frobenius Manifolds

Definition. Let M be an N-dimensional smooth manifold with a
smoothly varying Frobenius algebra structure on each tangent
space. We say the data (M, ◦, 〈 · , · 〉, e,E ) define a Frobenius
manifold if

(i) η := 〈 · , · 〉 defines a flat metric on M;

(ii) ∇e = 0;

(iii) ∇W c(X ,Y ,Z ) is a totally symmetric (0, 4)-tensor, where
c(X ,Y ,Z ) := 〈X ◦ Y ,Z 〉;

(iv) ∃E ∈ Γ(TM) such that

∇(∇(E )) = 0, LEη = (2− d)η, LE◦ = ◦, LE e = −e,

for some constant d .
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Frobenius Manifolds and the WDVV Equations

There is a correspondence between Frobenius manifolds and
solutions of the WDVV equations, which is established as follows.

• Since η is flat, one may choose flat coordinates (t1, ..., tN)
such that the functions ηαβ = 〈 ∂

∂tα ,
∂
∂tβ
〉 are constants.

• The condition (ii) ∇e = 0 means this can be done in such a
way that e = ∂

∂t1 .

• Symmetry of ∇c reads in t-coordinates cαβγ,κ = cαβκ,γ , and
so by the Poincaré lemma we may introduce a potential Aαβ
s.t.

cαβγ =
∂Aαβ
∂tγ

. (1)

Further symmetry of c implies the existence of F , called the
free energy of the Frobenius manifold such that

cαβγ =
∂3F

∂tα∂tβ∂tγ
(2)
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Frobenius Manifolds and the WDVV Equations contd.

• The components of ◦ are then given by cαβγ = ηαεcεβγ ,

∂α ◦ ∂β|t := cγαβ(t)∂γ .

The associativity condition gives the following system of
nonlinear PDEs for the function F :

∂3F

∂tα∂tβ∂tλ
ηλµ

∂3F

∂tµ∂tδ∂tγ
=

∂3F

∂tδ∂tβ∂tλ
ηλµ

∂3F

∂tµ∂tα∂tγ
, (3)

called the WDVV equations. Note: This is a strong, indeed
quadratic condition on cαβγ!

• The conditions (iv) lead to demanding F be a
quasihomogeneous function

LE F = (3− d)F modulo quadratic terms in t. (4)
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To Summarize

Frobenius
Manifold

A
A
AU

A
A

AK

Introduce flat coords.

@@R
@@I

cαβγ = ∂α∂β∂γF
ηαβ = c1αβ

e = ∂1 A
AAU

A
AAK

Assoc. ⇔ F
satisfies WDVV
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An Example

Consider the following three dimensional example:

F =
1

2
(t1)2t3 +

1

2
t1(t2)2 − (t2)4

16
γ(t3); E = t1∂1 +

1

2
t2∂2, (5)

where γ is some unknown 1-periodic function. In order for F to
satisfy WDVV, γ must satisfy Chazy’s equation,

γ′′′(t3) = 6γ(t3)γ′′(t3)− 9(γ′(t3))2. (6)

Here d = 1:
LE (F ) = 2F . (7)

The main property of the Chazy equation is an SL(2,C) invariance:

t3 7→ at3 + b

ct3 + d
, ad − bc = 1,

γ(t3) 7→ (ct3 + d)2γ(t3) + 2c(ct3 + d). (8)
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An Example contd.

The metric in flat coordinates is

∂1∂α∂βF = (c1αβ) = (ηαβ) =

 0 0 1
0 1 0
1 0 0

 . (9)

The remaining non-zero entries of the (covariant) multiplication
tensor are

c222 = −3
2γ(t3)t2, c223 = −3

4(t2)2γ′(t3),
c233 = −1

4(t2)3γ′′(t3), c333 = − 1
16(t2)4γ′′′(t3).

(10)

(Recall cαβγ = ∂α∂β∂γF .)
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The Dubrovin Connection

We may define on a Frobenius manifold a one parameter family of
flat connections:
Let ∇ be a flat connection, and ◦ define a multiplication of
tangent vectors on a manifold. Then we may define a 1-parameter
family of connections via

∇̃λX Y = ∇X Y + λX ◦ Y . (11)

Now, ◦ commutative ⇒ ∇̃λ is torsion free ∀λ. Further, requiring
zero curvature ∀λ,{

R̃λ = 0
}
≡
{

◦ is associative, and the tensor
∇W c(X ,Y ,Z ) := ∇W 〈X ◦ Y ,Z 〉 totally symm.

}
.

So, on a Frobenius manifold, ∇̃λ is flat for all λ.
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The Gauss-Manin Equation

Then we may choose flat coordinates t̃ i (t1, ..., tN , λ) satisfying
∇̃λdt̃ i = 0. In coordinates {tα} this reads:

∂2t̃k

∂tα∂tβ
= λcναβ

∂ t̃k

∂tν
. (12)

Note that for λ = 0 these are just the flat coordinates for 〈 · , · 〉.
In this spirit, we look for solutions of the form

t̃ i (t1, ..., tN , z) =
∞∑

n=0

λnh(n,i)(t1, ..., tN). (13)

Equating powers of λ we have,

∂2h(n,i)

∂tα∂tβ
= cναβ

∂h(n−1,i)

∂tν
. (14)

We start the recursion off by suitably defining h(0,α) := tα. (12) is
called the Gauss-Manin equation.
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An Example contd.

Solving the Gauss-Manin equation for the above mentioned
example, we have

h(0,1) = t3, h(1,1) = t1t3 + 1
2 (t2)2,

h(0,2) = t2, h(1,2) = t1t2 − 1
4γ(t3)(t2)3,

h(0,3) = t1, h(1,3) = 1
2 (t1)2 − (t2)4

16 γ′(t3),

h(2,1) =
1

2
t1(t2)2 − 1

8
γ(t3)(t2)4 +

1

2
(t1)2t3 − (t2)4t3

16
γ′(t3),

h(2,2) =
1

2
(t1)2t2 − 1

4
t1(t2)2γ(t3) +

9

160
(t2)5γ(t3)2 − 1

20
(t2)5γ′(t3),

h(2,3) =
1

6
(t1)3 − 1

16
t1(t2)4γ′(t3) +

1

80
γ(t3)γ′(t3)(t2)6 − 1

480
(t2)6γ′′(t3).
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Equations of Hydrodynamic Type

An evolution equation of hydrodynamic type is of the form

u,T = M(u)u,X , (15)

where M(u) is some n × n matrix of functions of u, and not its
derivatives. The eigenvalues of the matrix M are known as the
characteristic speeds.
An example of such an equation is the dispersionless or
quasiclassical limit of the Korteweg de Vries equation:

u,T =
3

2
uu,X . (16)

In this case, M(u) = 3
2u.
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Poisson Brackets of Differential Geometric Type

Let M be a manifold with a set of local coordinates (t1, ..., tN).
Regard the coordinates as functions of some parameter X ,
tα = tα(X ). We define on M a Poisson bracket of differential
geometric type,

{H(n,ε),H(m,ν)} =

∫
S1

δH(n,ε)

δtα

(
ηαβ

d

dX
+ bαβκ tκ,X

)
δH(m,ν)

δtβ
dX ,

(17)
where the functional densities for H(n,ε) depend on t and not its
derivatives. Indeed, we define

H(n,ε) =

∫
S1

h(n,ε)(t)dX .
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Frobenius Manifolds → Equations of Hydrodynamic Type

Such brackets were first studied by Dubrovin and Novikov (≈’89).
As the name suggests, they realized that properties of the brackets
depended on differential geometric structure on the target space
M.
In particular:

• For ηαβ non-degenerate on M, the inverse must define a flat
metric on M.

• The coefficients bαβκ are related to the Christoffel symbols for
this metric via bαβκ = −ηανΓβνκ.

Using the recursion relation (14) and (17), we construct the
equations of hydrodynamic type

dtα

dT(n,ε)
= {tα,H(n,ε)} = ηανcκνσ∂κh(n−1,ε)︸ ︷︷ ︸

(M(n,ε)(t))ασ

dtσ

dX
. (18)
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Symmetries of the WDVV Equations

A symmetry of WDVV is a map from one solution F to another F̂ .
Of interest to us here will be the so-called inversion symmetry I :

t̂1 =
1

2

tσtσ

tN
, t̂α =

tα

tN
(for α 6= 1,N), t̂N = − 1

tN
,

F̂ (t̂) = (t̂N)2F

(
1

2

t̂σ t̂σ

t̂N
,− t̂2

t̂N
, ...,− t̂N−1

t̂N
,− 1

t̂N

)
+

1

2
t̂1t̂σ t̂σ, (19)

η̂αβ = ηαβ.

I is an involution up to sign. Health warning: These
transformations are not tensorial! But they are almost: One can
show that, for example

ĉαβγ = (tN)−2 ∂tλ

∂ t̂α
∂tµ

∂ t̂β
∂tν

∂ t̂γ
cλµν . (20)
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Symmetries of the WDVV Equations contd.

Within the solution space of WDVV, there are functions F that lie
at a fixed point of I . For example, consider the free energy of the
above mentioned example:

F =
1

2
(t1)2t3 +

1

2
t1(t2)2 − (t2)4

16
γ(t3). (21)

Using (19), one can show that

F̂ =
1

2
(t̂1)2t̂3 +

1

2
t̂1(t̂2)2 − (t̂2)4

16
γ(t̂3).
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Lifting the Inversion Symmetry

A natural question may be to ask how the Hamiltonian densities,
and therefore systems of hydrodynamic type are affected by the
inversion. Consider our explicit example:

h(1,1)(t1, t2, t3) = t1t3 +
1

2
(t2)2

⇒ h(1,1)(t̂1 +
1

2

(t̂2)2

t̂3
,

t̂2

t̂3
,− 1

t̂3
) =

(
t̂1 +

1

2

(t̂2)2

t̂3

)(
− 1

t̂3

)
+

1

2

(
t̂2

t̂3

)2

= − t̂1

t̂3
= − 1

t̂3
h(0,3)(t̂1, t̂2, t̂3).
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Lifting the Inversion Symmetry contd.

h(1,2)(t1, t2, t3) = t1t2 − 1

4
γ(t3)(t2)3

⇒ h(1,2)(t̂1 +
1

2

(t̂2)2

t̂3
,

t̂2

t̂3
,− 1

t̂3
) =

(
t̂1 +

1

2

(t̂2)2

t̂3

)(
t̂2

t̂3

)
− 1

4
γ

(
− 1

t̂3

)(
t̂2

t̂3

)3

=

(
t̂1 +

1

2

(t̂2)2

t̂3

)(
t̂2

t̂3

)
− 1

4

(
(t̂3)2γ(t̂3) + 2t̂3

)( t̂2

t̂3

)3

Using (8)

=
t̂1t̂2

t̂3
− 1

4
(t̂3)2γ(t̂3) =

1

t̂3
h(1,2)(t̂1, t̂2, t̂3).
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Lifting the Inversion Symmetry contd.

In general, for the current example, we observed the following
pattern:

h(n,α)(t̂1 +
1

2

(t̂2)2

t̂3
,

t̂2

t̂3
,− 1

t̂3
) = ± 1

t̂3
h(ñ,α̃)(t̂1, t̂2, t̂3), (22)

where

ñ =

 n + 1, if α = 3,
n, if α = 2,
n − 1, if α = 1,

α̃ =

 1, if α = 3,
α, if α = 2,
3, if α = 1,

± =

{
+, if α = 2,
−, else.

(23)
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A Diagram...

α = 3 •
(14): ∂α∂βh(n,κ) = cσαβ∂σh(n−1,κ) -
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Lifting the Inversion Symmetry contd.

We found this pattern to hold in general, not just for solutions of
WDVV lying at fixed points:

h(n,α)(t̂1 +
1

2

(t̂2)2

t̂N
,

t̂2

t̂N
, ...,

t̂N−1

t̂N
,− 1

t̂N
) = ± 1

t̂N
h(ñ,α̃)(t̂1, t̂2, ..., t̂N),

(24)
where

ñ =

 n + 1, if α = N,
n, if α 6= 1,N,
n − 1, if α = 1,

α̃ =

 1, if α = N,
α, if α 6= 1,N,
3, if α = 1,

± =

{
+, if α 6= 1,N,
−, else.

(25)

Proof consists of showing that the formulae (24) satisfies the inverted

version of the recursion relations (14).
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Lifting the Inversion Symmetry contd.

Given that the respective flows were defined via

dtα

dT(n,ε)
= {tα,H(n,ε)} = ηανcκνσ∂κh(n−1,ε)︸ ︷︷ ︸

(M(n,ε)(t))ασ

dtσ

dX
, (26)

and we now know how the Hamiltonian densities are mapped under
I , the symmetry lifts also to the flows:

M(n,α)((t̂1+
1

2

(t̂2)2

t̂N
,

t̂2

t̂N
, ...,

t̂N−1

t̂N
,− 1

t̂N
)) = ±M̂(ñ,α̃)(t̂)∓ĥ(ñ−1,α̃)(t̂)1,

(27)
where ñ, α̃ and ± = −(∓) are as above.
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Further questions

• Do these symmetries exist for other hydrodynamic equations,
not just those constructed from a Frobenius manifold?

• Would like to start adding dispersive terms to equations using
a recipe of Dubrovin & Zhang. Does the symmetry extend to
dispersive equations?

• Do these shifts in the Hamiltonian densities, or change in
characteristic speeds look familiar?
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