Dynamics of a Spinning Disk Impacting with Friction

Karin Mora Chris Budd
Patrick Keogh (Mechanical Engineering)

Centre for Nonlinear Mechanics University of Bath, UK

UK-Japan Mathematical Forum, Keio University, July 19, 2012

UNIVERSITY OF
BATH

Piecewise smooth dynamical systems (PWS DS)

PWS systems are dynamical systems for which orbits lose smoothness as they intersect certain manifolds.

- harbour rich and fascinating dynamics, e.g. period-adding \& grazing.
- can model impacts and / or friction
- arise in many applications:
- firing neurons model [Bressloff et al., 1990]
- switching phenomena in electrical circuits [di Bernado et al., 1998]
- church bells [Hinrichs, Oestereich \& Popp, 1998]
- earthquakes [Virgin, 2012]
- problems with noise [Simpson]
- have rich mathematical theory: B., Hogan, Kunze, Küpper, Nordmark

Applications:

- Turbomolecular Pumps
- Turbines (e.g. Gas)
- Flywheel Energy Storage (VYCON)
- Cutting spindles

The Magnetic Bearing System

Dynamics is a combination of free rotor motion interrupted by impacts.

Assumption: Ω remains constant even at impact [Keogh \& Cole, 2003]

A Simplified Model

The rotor in free motion in Cartesian coordinates (x, y) :

$$
\begin{array}{r}
\ddot{x}+2 \xi \omega_{n} \dot{x}+\omega_{n}^{2} x=e \Omega^{2} \cos (\Omega t+\phi) \\
\ddot{y}+2 \xi \omega_{n} \dot{y}+\omega_{n}^{2} y=e \Omega^{2} \sin (\Omega t+\phi) \tag{2}
\end{array}
$$

if $r(t):=\sqrt{x(t)^{2}+y(t)^{2}}<c_{R}$.
Note: $\xi=$ damping ratio, $\omega_{n}=$ undamped frequency, $e=$ unbalance eccentricity, $\phi=$ unbalance phase, $\Omega=$ const. rotational speed.

A instantaneous contact occurs when $r(t)=c_{R}$. Then reset law in polar coordinates is:

$$
\begin{align*}
\dot{r}^{+} & =-d \dot{r}^{-} \tag{3}\\
\dot{\theta}^{+} & =\dot{\theta}^{-}-(1+d) \mu \dot{r}^{-} / c_{R} \tag{4}
\end{align*}
$$

Note: $d=$ coeff. of restitution, $\mu=$ coeff. of friction, $c_{R}=$ radial clearance. [Keogh \& Cole, 2003]

Stable Periodic Impacts

Impact map $P:\left(t_{n}, \theta_{n}, r_{n}^{\prime-}, \theta_{n}^{\prime-}\right) \rightarrow\left(t_{n+1}, \theta_{n+1}, r_{n+1}^{\prime-}, \theta_{n+1}^{\prime-}\right)$
yields periodic, quasi-periodic and chaotic orbits.

For example:

- stable: $\max \left|\lambda_{i}\right| \leq 1$
- contracting
- $\dot{r}^{-}, \dot{\theta}^{-}$same value at each impact

where $\lambda_{i}=$ eigenvalues of P, for $i=1,2,3,4$.

Stable Manifolds: Smooth Bifurcations

Varying rotational speed Ω while fixing all other parameters yields stable impacting orbits via Monte Carlo method.

- Period doubling \& Hopf bifurcation
- boundary crises

Grazing occurs when radial impact velocity, $r^{\prime}(t-)$, is zero. Perturbing initial radial velocity gives

- non-impacting orbit for $\epsilon \geq 0$
- transient giving rise to stable p.o. for $\epsilon<0$

- 4 solutions are intersection of two algebraic surfaces
- coincident folds
- one solution is virtual but becomes admissible at grazing bifurcation, $r^{\prime}(t-)=0$.

Grazing Bifurcations can give rise to Period Adding cascades or Farey tree sequences in $1 D$ maps

Chattering Phenomenon

Chattering: large (∞) number of impacts in finite time.

Open question: what comes after chattering? Experimentally observed

- rolling: forward or backward whirl
- sliding: forward rub
\Longrightarrow Require different reset law.

Conclusions

We have observed smooth

- Period doubling, fold and Hopf bifurcations
- boundary crisis
... and non-smooth dynamics
- grazing bifurcation
- chattering

Open questions

- Global and local existence theory
- Require different reset law to model sliding and rolling
- Material damage analysis
- Compare to experimental data (noise).

Conclusions

We have observed smooth

- Period doubling, fold and Hopf bifurcations
- boundary crisis
... and non-smooth dynamics
- grazing bifurcation
- chattering

Open questions

- Global and local existence theory
- Require different reset law to model sliding and rolling
- Material damage analysis
- Compare to experimental data (noise).

Backward Whirl

Very damaging: Rotor cannot be recovered and hence immediate shutdown necessary. [Keogh \& Cole, 2003]

固 V．Avrutin，M．Schanz．， 2006.
On multi－parametric bifurcations in a scalar piecewise－linear map．
Nonlinearity，19：1875 Ű 1906
C．J．Budd，S．Pring．， 2011.
The Dynamics of a Simplified Pin－ball Machine．
The IMA Journal of Applied Mathematics，76，67－84
國 C．J．Budd，S．Pring．， 2010.
The dynamics of regularized discontinuous maps with applications to impacting systems．
SIAM J．Appl．Dyn．Syst．，9，188－219
囯 W．Chin，E．Ott，C．Grebogi，H．Nusse．， 1994.
Grazing bifurcations in impact oscillators．
Phys．Rev．E，50，4427－4444
䡒 J．F．Mason，P．T．Piiroinen，T．Küpper， 2011.
Mathematical Physiology
New York，Springer．

目 V．Ryabov， 2009.
Mathematical Physiology New York，Springer．
围 P．C．Bressloff，J．Stark．， 1990.
Neuronal dynamics based on discontinuous circle maps Phys．Let．A，150，87－195
圊 A．Nordmark．， 1991.
Non－periodic motion caused by grazing incidence in impact oscillators．
J．Sound Vibration，145（2），279－297

A．B．Nordmark， 2001.
Existence of priodic orbits in grazing bifurcations of impacting mechanical oscillators．
Nonlinearity，14， 1517 Ű 1542.
围 M．di Bernado，F．Garofalo，L．Glielmo，F．Vasca．， 1998. Switchings，Bifurcations and Chaos in DC／DC converters．
IEEE Transactions on Circuits and Systems，Part I，45，133－141

围 P．S．Dutta，S．Banerjee， 2010.
Period Increment Cascade in a Discontinuous Map with Square－Root Singularity．

```
DCDS-B, 14 (3), 961-976
```

围 P．S．Keogh，M．O．T．Cole， 2003
Rotor vibration with auxiliary bearing contact in magnetic bearing systems， Part 1：synchronous dynamics．
J．Mech．Eng．Sci，217，377－392
目 V．Avrutin，M．Schanz．， 2006.
On multi－parametric bifurcations in a scalar piecewise－linear map． Nonlinearity，19：1875 Ü 1906
國 H．Hinrichs，M．Oestereich．，K．Popp．， 1998.
Dynamics of oscillators with impact and Friction．
Chaos，Solitons and Fractals，8（4）：535－558

