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Piecewise smooth dynamical systems (PWS DS)

PWS systems are
dynamical systems for
which orbits lose
smoothness as they
intersect certain manifolds.

harbour rich and fascinating dynamics, e.g. period-adding & grazing.
can model impacts and / or friction
arise in many applications:

firing neurons model [Bressloff et al., 1990]
switching phenomena in electrical circuits [di Bernado et al., 1998]
church bells [Hinrichs, Oestereich & Popp, 1998]
earthquakes [Virgin, 2012]
problems with noise [Simpson]

have rich mathematical theory: B., Hogan, Kunze, Küpper, Nordmark



The Magnetic Bearing System

Applications:
Turbomolecular Pumps
Turbines (e.g. Gas)
Flywheel Energy Storage (VYCON)
Cutting spindles



The Magnetic Bearing System

Dynamics is a combination of free rotor motion interrupted by impacts.

Assumption: Ω remains constant even at impact [Keogh & Cole, 2003]



A Simplified Model

The rotor in free motion in Cartesian coordinates (x , y):

ẍ + 2ξωnẋ + ω2
nx = eΩ2 cos (Ωt + φ) (1)

ÿ + 2ξωnẏ + ω2
ny = eΩ2 sin (Ωt + φ) (2)

if r(t) :=
√

x(t)2 + y(t)2 < cR .
Note: ξ = damping ratio, ωn = undamped frequency, e = unbalance eccentricity,
φ = unbalance phase, Ω = const. rotational speed.

A instantaneous contact occurs when r(t) = cR . Then reset law in polar
coordinates is:

ṙ+ = −dṙ− (3)
θ̇+ = θ̇− − (1 + d)µṙ−/cR . (4)

Note: d = coeff. of restitution, µ = coeff. of friction, cR = radial clearance.
[Keogh & Cole, 2003]



Stable and Unstable Manifolds

Stable Periodic Impacts

Impact map P : (tn, θn, r ′−n , θ′−n )→ (tn+1, θn+1, r ′−n+1, θ
′−
n+1)

yields periodic, quasi-periodic and
chaotic orbits.

For example:

stable: max |λi | ≤ 1
contracting
ṙ−, θ̇− same value at each impact

where λi = eigenvalues of P, for
i = 1, 2, 3, 4.



Stable and Unstable Manifolds

Stable Manifolds: Smooth Bifurcations

Varying rotational speed Ω while fixing all other parameters yields stable
impacting orbits via Monte Carlo method.

Period doubling & Hopf bifurcation
boundary crises



Non-smooth Bifurcation: Grazing Phenomenon

Grazing Manifold

Grazing occurs when radial impact velocity, r ′(t−), is zero. Perturbing initial
radial velocity gives

non-impacting orbit for ε ≥ 0
transient giving rise to stable p.o. for ε < 0



Non-smooth Bifurcation: Grazing Phenomenon

Fixed point continuation

4 solutions are intersection of two algebraic surfaces
coincident folds
one solution is virtual but becomes admissible at grazing bifurcation,
r ′(t−) = 0.



Non-smooth Bifurcation: Grazing Phenomenon

.

Grazing Bifurcations can give rise to Period Adding cascades or Farey tree
sequences in 1D maps



Chattering Phenomenon

Chattering Phenomenon

Chattering: large (∞) number of impacts in finite time.

Open question: what comes after chattering? Experimentally observed
rolling: forward or backward whirl
sliding: forward rub

=⇒ Require different reset law.



Conclusions

Conclusions

We have observed smooth
Period doubling, fold and Hopf bifurcations
boundary crisis

... and non-smooth dynamics
grazing bifurcation
chattering

Open questions
Global and local existence theory
Require different reset law to model sliding and rolling
Material damage analysis
Compare to experimental data (noise).

Thank you for your attention
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Conclusions

Backward Whirl

Very damaging: Rotor cannot be recovered and
hence immediate shutdown necessary.
[Keogh & Cole, 2003]
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