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Characterization:

These surfaces have constant principal curvatures:

plane: �1 = �2 = 0

sphere: �1 = �2 = 1/r

cylinder: �1 = 1/r, �2 = 0.

Q. Which surface M has parallel surfaces similar to itself?

(In particular, all regular?)

A. In E3, plane, sphere and cylinder.
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A similar fact holds in Hn and En, namely, such M is either

totally geodesic, totally umbilic or product of these (cylinder).

Origin: geometric optics, or wave fronts of the evolution of

surfaces following Huygens principle.

Q. How do we express M?

Level set expression: M = f�1(t), f : E3 ! R.

(a global expression) is suitable for “surface evolution”.

e.g. mean curvature flows

Warning: The function f is not unique.

• f(x) = |x| and g(x) = cos |x| describe same surfaces.



M : a complete connected Riemannian manifold

r : the Levi-Civita connection，4 : the Laplacian

Definition.

(1) A C2 function f : M ! R satisfying

(I) |rf |2 = '(f), ' : f(M) ! R : C2

(II) 4f =  (f),  : f(M) ! R : C0

is called an isoparametric function.

(2) A level set of a regular value of an isoparametric function

is called an isoparametric hypersurface.
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(I) ==>      The level sets are mutually parallel.

(II) ==>     The level sets have CMC (constant mean 
curvature)



Fact 1. (É. Cartan)

Let M be a space form (En, Sn or Hn), and consider a

family of parallel hypersurfaces {Mt}. Then the following are

equivalent:

(i) {Mt} is a family of isoparametric hypersurfaces.

(ii) All Mt have constant mean curvatures.

(iii) One of Mt has constant principal curvatures.

Remark. A local notion (iii) implies a global notion (i).



Known examples:

M Mn�1

En En�1 or Sn�1 Ek ⇥ Sn�k�1 –

Hn Heq or Sn�1 Hk
eq ⇥ Sn�k�1 –

Sn Sn�1 Sk ⇥ Sn�k�1 more

Heq : an equidistant h’s, including a horosphere.

{homogeneous h’surfaces} ⇢ {isoparametric h’surfaces}
• The equality holds for En and Hn.

• In Sn, 9 more homogeneous and non-homogeneous

examples. [Ozeki-Takeuchi, Ferus-Karcher-Münzner]



Fact 3. (Münzner, ‘81) For isop. h’s. Mt in Sn :

(a) g = ]{distinct principal curvatures} 2 {1, 2, 3, 4, 6}.
(b) For the principal curvatures �1 > �2 > · · · > �g, the

multiplicities m1, m2, . . . , mg satisfy mi = mi+2.

(c) There exists a Cartan-Münzner polynomial

F : En+1 ! R, homogeneous and of degree g, satisfying

(i) kDF (x)k2 = g2kxk2g�2

(ii) 4F (x) =
m2 �m1

2
g2kxkg�2,

(1)

and Mt = F�1(t) \ Sn, �1 < t < 1.

Remark. M± = f�1(±1) are called the focal submanifolds.



Why isoparametric h’surfaces in Sn are interesting?

(partially from the talk in Manchester in Jan. 2010)

• give many explicit examples of special Lagrangian subman-

ifolds in TRn+1 ⇠= Cn+1.

• give many Lagrangian minimal submanifolds in Qn�1(C).

• give many self-similar solutions to the mean curvature flow.

• give a hint to solve Yau’s conjecture on the first eigenvalue

(recently Tang and Yan solved it for all isoparametric minimal

hypersurfaces).

• All the representations of the Cli↵ord algebra are realized

geometrically by isoparametric hypersurfaces.



Classification of isoparametric h’s. in Sn:

g 1 2 3 4⇤ 6

M Sn�1

hom.

Sk ⇥ Sn�k�1

hom.

CF

hom.

hom. or

OT-FKM

N6, M12

hom.

g = 3: Cartan hypersurfaces C3d
F

Theorem. [Cartan ‘38] Isoparametric hypersurfaces with

g = 3 are given by tubes C3d
F over the standard embedding

of the projective planes FP 2 in S4, S7, S13 and S25, where

F = R, C, H, C (Cayley numbers). (d = 1, 2, 4, 8).



Theorem. [Abresch, ‘83] When g = 6, mi = m 2 {1, 2}.

For each case there is a homogeneous example:

m = 1: isotropy orbits of G2/SO(4) in S7.

m = 2: isotropy orbits of G2 ⇥G2/G2 in S13.

Proposition. [M. ‘93] The homogeneous hypersurface N6 with

(g, m) = (6, 1) has a fibration ⇡ : N ! S3 with fiber CR =

SO(3)/Z2 � Z2.

Proposition. [M. ‘08] The homogeneous hypersurface M12

with (g, m) = (6, 2) has a Kähler fibration ⇡ : M ! S6 with

fiber CC = SU(3)/T 2.



m = 1

N6 ⇠= SO(4)/Z2 � Z2????y  CR ⇠= SO(3)/Z2 � Z2

S3 ⇠= SO(4)/SO(3)

m = 2

M12 ⇠= G2/T 2????y  CC ⇠= SU(3)/T 2

S6 ⇠= G2/SU(3)



Remark. The focal submanifolds M± of (g, m) = (6, 2) are

related to Bryant’s twistor fibrations:

(ii) M+
⇠= Q5 ! S6 = G2/SU(3) with fiber CP 2. This is

di↵eomorphic to the twistor fibration over S6.

(iii) M� ⇠= Q5 ! G2/SO(4) with fiber CP 1. This is di↵eo-

morphic to the twistor fibration over the quaternionic

Kähler manifold G2/SO(4).



Theorem. [Dorfmeister-Neher, ‘85, M. ‘09] Isoparametric hy-

persurfaces with (g, m) = (6, 1) are homogeneous, i.e., isotropy

orbits of G2/SO(4).

Theorem 1. (M. to appear in Ann. Math.) The isopara-

metric hypersurfaces with (g, m) = (6, 2) are homogeneous,

i.e., isotropic orbits of G2 ⇥G2/G2.

Key Proposition. (M. ‘93, ‘98) Isoparametric hypersurfaces

with g = 6 are homogeneous , Condition A is satisfied, namely,

the shape operators of a focal submanifold have the kernel indep-

endent of the normal directions.

(To prove Condition A is extremely di�cult.)



Non-homogeneous case occurs only when g = 4.

Known isoparametric hypersurfaces in Sn with g = 4:

non-homogeneous (m1, m2) = (3, 4k), (7, 8k), . . .

G/K : non-Hermitian

OT-FKM type (4, 4k � 1)

homogeneous: *Hermitian

isotropy orbits (1, k), (2, 2k � 1), (9, 6)

non OT-FKM of G/K *Hermitian (4, 5)

non-Hermitian (2, 2)

They are all classfied except for (m1, m2) = (7, 8) (Cecil-

Chi-Jensen, Immervoll, and Chi, 2007⇠2012).



Cli↵ord systems and h’s of OT-FKM type

O(n) : the orthogonal group, o(n): its Lie algebra.

Definition. P0, . . . Pm 2 O(2l) is called a Cli↵ord system

, PiPj + PjPi = 2�ij id, 0  i, j  m.

• Cli↵ord system corresponds to a representation of Cli↵ord alge-

bra in a one-to-one way.

Remark. (1) The possible pairs (m, l) :

m 1 2 3 4 5 6 7 8 · · · m + 8 · · ·
l = �(m) 1 2 4 4 8 8 8 8 · · · 16�(m) · · ·

(2) W.r.t. the inner product hP, Qi =
1

2l
Tr(P tQ), P0, . . . , Pm give

an orthonormal basis of the linear space V of symmetric orthogonal

operators, which they span.



Fact 4. (Ferus-Karcher-Münzner ‘81)

When a Cli↵ord system P0, . . . , Pm is given,

F (x) = hx, xi2 � 2
mX

i=0

hPix, xi2 (2)

is a Cartan-Münzner polynomial of degree 4．If l�m� 1 > 0,

F |S2l�1 defines isoparametric hypersurfaces in S2l�1 with g =

4 and m1 = m, m2 = l �m� 1．

Goal: We express F (x) via the moment map of a spin action.



P0, . . . , Pm: Cli↵ord system ) PiPj , 0  i < j  m, are skew,

and generate a Lie subalgebra of o(2l) isomorphic to o(m+1).

Fact 5. [FKM, ‘81] Spin(m + 1) acts on R2l, and preserves

F (x), namely, F (x) is constant on each Spin(m + 1) orbit.

Remark. Spin(m + 1) action is small, and in general, never

transitive on the hypersurface.



Review of symplectic geometry

Definition.

(1) (P 2n,!) is a symplectic manifold

, ! is a non-degenerate closed 2-form on P .

(2) The Hamiltonian vector field Hf of f 2 C1(P )

, df = !(Hf , ).

Put Ham(P ) = {Hf | f 2 C1(P )}.



K : a compact Lie group acting on P .

Definition.

(1) a fundamental vector field on P

, X⇣ =
d
dt

���
t=0

(exp t⇣)x, ⇣ 2 k

(2) K y P is a symplectic action

, k⇤! = !, 8k 2 K.

(3) K y P is a Hamiltonian action

, X⇣ 2 Ham(P ), 8⇣ 2 k.

i.e., 9µ⇣ 2 C1(P ) s.t. dµ⇣ = !(X⇣ , ).



(4) With respect to the coadjoint action of K on k⇤,

µ : P ! k⇤ is a moment map

, (i) µ is K equivariant

(ii) dµ(⇣) = !(X⇣ , )

• K y P is Hamiltonian

, 9µ : P ! k⇤, the moment map

) for ⇣ 2 k, µ⇣(p) = µ(p)(⇣) 2 C1(P )

and Hµ⇣ = X⇣ .



Example. (1) (Cn, J,!) with !(X, ) = �hJX, i
K y Cn : Hamiltonian) dµ⇣(Y ) = !(X⇣ , Y ) = �hJX⇣ , Y i

) X⇣ = Jrµ⇣ .

(2) G/K : a Hermitian symmetric space,

g = k� p : the Cartan decomposition,

9 a center c of k ) 9 a Kähler structure J on p given by

Jx = adz(x) = �adx(z), z 2 c, x 2 p.

) the isotropy action K y p is a Hamiltonian action with

the moment map: µH(x) = 1
2 (adx)2z (Ohnita).

Remark. In general, there does not exist symplectic (nor Kähler)

structure on p of symmetric spaces.



Symplectic structure on TRn

A complex structure J̃ on TRn is given by

J̃(U, V ) = (�V, U), (U, V ) 2 T(x,Y )(TRn) ⇠= Rn � Rn.

) TRn : a symplectic manifold with a symplectic form

!(Z̃, W̃ ) = �hJ̃ Z̃, W̃ i, Z̃, W̃ 2 T(x,Y )(TRn),

J̃ : parallel ) ! is a non-degenerate closed 2-form.

TRn has a standard symplectic structure.



Hamiltonian action on TRn

K ⇢ O(n): acting on Rn

Extend K y Rn naturally to TRn, then for ⇣ 2 o(n),

X⇣ = ⇣x.

Proposition. K y TRn is a Hamiltonian action with the

moment map µ : TRn ! k⇤ given by

µ(x, Y )(⇣) = �h⇣x, Y i.



e.g. n = 3, ⇣1, ⇣2, ⇣3 2 o(3) is an o.n.basis, then for (x, Y ) 2
TR3,

µ(x, Y )(⇣i) = �h⇣ix, Y i

is the angular momentum.

In particular, we have

µ(x, Y ) = �
3X

i=1

h⇣ix, Y i⇣i.



Spin(m + 1) action on TR2l

Let P0, . . . , , Pm be a Cli↵ord system on R2l:

) ⇣ij = PiPj 2 o(2l), 0  i < j  m, generate o(m + 1),

acting on R2l.

Apply the previous argument to the Spin(m + 1) action on

R2l given by (exp tPiPj)x for x 2 R2l.

We may regard ⇣ij = PiPj as an orthonormal frame of o(m+

1), and hence obtain:



Proposition 1. The moment map of the Spin(m + 1) action

on TR2l is given by

µ(x, Y ) = �
X

0i<jm

h⇣ijx, Y i⇣ij 2 o(m + 1) ⇠= o⇤(m + 1).

And thus it follows kµ(x, Y )k2 =
P

0i<jmhPiPjx, Y i2.

Since the U(1) y TR2l associated with J is commutes with

!, this action is synplectic, and moreover, Hamiltonian．



Theorem 2. (M, to appear in Math. Ann.)

P0, . . . , Pm on R2l : a Cli↵ord system,

Y : R2l ! TR2l : (not necessarily continuous) vector field;

Yx =

8<
:

P0x, if hP0x, xi = 0
hP1x, xiP0x� hP0x, xiP1xp

hP1x, xi2 + hP0x, xi2
, if hP0x, xi 6= 0.

Then the Cartan Münzner polynomial is given by

F (x) = kµ0(x, Yx)k2 � 2kµ(x, Yx)k2

where µ0 + µ is the moment map of U(1)⇥ Spin(m + 1) y TR2l.



Remark. (1) The RHS is determined by x 2 R2l.

(2) P0, P1 can be replaced by any two orthogonal unit el-

ements of V . This corresponds to that there is no standard

choice of a principal vector for �1 if m1 > 1.

(3) C = {(x, Yx) 2 TR2l} is a 2l dimensional cone (outside x

such that hP0x, xi = 0). However, C is not a Lagrangian cone

of TR2l.

(4) For isotropy orbits of the Hermitian symmetric spaces,

an expression of F (x) via moment map was first given by S.

Fujii (2011), and Fujii and H. Tamaru.



Remaining case

F (x) for the OT-FKM type has been expressed by µ:

non-homogeneous (m1, m2) = (3, 4k), (7, 8k),

etc.

G/K : non-Hermitian

OT-FKM type (4, 4k � 1)

homogeneous: *Hermitian

isotropy orbits (1, k), (2, 2k � 1), (9, 6)

non OT-FKM of G/K *Hermitian (4, 5)

non-Hermitian (2, 2)

The last two homogeneous cases are not of OT-FKM type.



Review of homogeneous case

Fact. (Hsiang-Lawson,‘69) Every homogeneous hypersurface

in Sn is given by an isotropy orbit of a rank two symmetric

space.

G/K : a rank two symmetric space

g = k + p : the Cartan decomposition

Extend the isotropy action K y p to Tp in a natural way:

k · (x, Y ) = (Adk(x), Adk(Y )), (x, Y ) 2 Tp, k 2 K.

• Since p ⇠= Rn, we can apply the previous argument to this

case.



Proposition 2. G/K : a rank two symmetric space,

) U(1) ⇥K y Tp is a Hamiltonian action with the moment

map µ0 + µ : Tp ! u(1)⇤ � k⇤;

µ0(x, Y ) =
1
2
(kxk2 + kY k2)⌘,

µ(x, Y ) = �adx(Y ), (x, Y ) 2 Tp.

Corollary. If G/K is a Hermitian symmetric space, for z 2
c ⇢ k s.t. J = adz

) µ(x, 1
2Jx) = µH(x) = 1

2 (adx)2z



Remark. The proposition holds not only for g = 4, but also

for all the homogeneous hypersurfaces.

In our case, G/K = SO(5)⇥SO(5)/SO(5) ((m1, m2) = (2, 2)),

or SO(10)/U(5) ((m1, m2) = (4, 5)).

Put Gij = Eij � Eji 2 o(5) ⇢ u(5), 1  i < j  5, where, Eij

is the matrix with (i, j) component equal to one and all other

components equal to 0.



Theorem 3. (M.)

When (m1, m2) = (2, 2)，(4, 5) which are not of OT-FKM,

using ⌧ = G25 + G45 2 k, put YH = [H, ⌧ ] 2 p for H 2 a,

and extend it to a vector field Yx on p by the action of K.

Restricting the moment map µ0 + µ of the action of

U(1)⇥K to the cone C = {(x, Yx) = Adk(H, YH)} ⇢ Tp,

we can express

F (x) = pkµ0(x, Yx)k2 � qkµ(x, Yx)k2,

where (p, q) = (3, 4) for (m1, m2) = (2, 2), and (p, q) = (
3
4
, 1)

for (m1, m2) = (4, 5).



Summary

Finally, the Cartan-Münzner polynomials with g = 4 are

expressed by the square norm of the moment map on TR2l of

a certain group action restricted to the 2l dimensional cone, in

both homogeneous and non-homogeneous cases.



Problem. The extension to TRn ⇠= Cn is in other words the

complexification of the object.

If we “complexify” the Cartan-Münzner polynomial suitably

to a homogeneous polynomial on TRn ⇠= Cn, then what follows

about hypersurfaces in Cn or in CP n�1 given by the level set

of F?



THANK YOU FOR YOUR ATTENTION!


