Hypersurface geometry and moment map

Reiko MIYAOKA (Tohoku University, JAPAN)

UK-Japan Mathematical Forum (15-20 July 2012)

Keio University, 17 July 2012

- I. Motivation and Introduction
- II. Theory of isoparametric hypersurfaces
- III. Moment map of the spin action

References

- 1. R. Miyaoka, Isoparametric hypersurfaces with (g, m) = (6, 2), Annals of Math. to appear **176**, no.3 (2012) http://annals.math.princeton.edu/toappear
- R. Miyaoka, Moment map of the spin action and the Cartan-Münzner polynomial of degree four, Math. Ann. to appear (2012).

Characterization:

These surfaces have constant principal curvatures:

plane:
$$\lambda_1 = \lambda_2 = 0$$

sphere: $\lambda_1 = \lambda_2 = 1/r$
cylinder: $\lambda_1 = 1/r, \lambda_2 = 0$.

- **Q.** Which surface M has parallel surfaces similar to itself? (In particular, all regular?)
- **A.** In E^3 , plane, sphere and cylinder.

$$\mathcal{H} = \{ \texttt{parallel hypersurfaces} \}$$

parallel curves

A similar fact holds in H^n and E^n , namely, such M is either totally geodesic, totally umbilic or product of these (cylinder).

Origin: <u>geometric optics</u>, or <u>wave fronts</u> of the evolution of surfaces following Huygens principle.

Q. How do we express M?

Level set expression: $M = f^{-1}(t), f : E^3 \to \mathbb{R}$. (a global expression) is suitable for "surface evolution". e.g. mean curvature flows

Warning: The function f is not unique.

• f(x) = |x| and $g(x) = \cos |x|$ describe same surfaces.

 \overline{M} : a complete connected Riemannian manifold

 ∇ : the Levi-Civita connection, $\ \bigtriangleup$: the Laplacian

Definition.

(1) A C^2 function $f: \overline{M} \to \mathbb{R}$ satisfying

(I)
$$|\nabla f|^2 = \varphi(f), \quad \varphi : f(\overline{M}) \to \mathbb{R} : C^2$$

(II) $\Delta f = \psi(f), \quad \psi : f(\overline{M}) \to \mathbb{R} : C^0$

is called an isoparametric function.

(2) A level set of a regular value of an isoparametric function is called an **isoparametric hypersurface**.

(I) ==> The level sets are mutually parallel.

(II) ==> The level sets have CMC (constant mean curvature)

Fact 1. (É. Cartan)

Let \overline{M} be a space form $(E^n, S^n \text{ or } \mathbb{H}^n)$, and consider a family of parallel hypersurfaces $\{M_t\}$. Then the following are equivalent:

(i) {M_t} is a family of isoparametric hypersurfaces.
(ii) All M_t have constant mean curvatures.
(iii) One of M_t has constant principal curvatures.

Remark. A local notion (iii) implies a global notion (i).

Known examples:

\overline{M}	M^{n-1}						
E^n	E^{n-1} or S^{n-1}	$E^k \times S^{n-k-1}$	—				
H^n	H_{eq} or S^{n-1}	$H_{eq}^k \times S^{n-k-1}$	—				
S^n	S^{n-1}	$S^k \times S^{n-k-1}$	more				

 H_{eq} : an equidistant h's, including a horosphere. {homogeneous h'surfaces} \subset {isoparametric h'surfaces}

- The equality holds for E^n and H^n .
- In S^n , \exists more homogeneous and <u>non-homogeneous</u> examples. [Ozeki-Takeuchi, Ferus-Karcher-Münzner]

Fact 3. (Münzner, '81) For isop. h's. $M_t \underline{in S^n}$:

(a) $g = \#\{distinct \ principal \ curvatures\} \in \{1, 2, 3, 4, 6\}.$

(b) For the principal curvatures $\lambda_1 > \lambda_2 > \cdots > \lambda_g$, the multiplicities m_1, m_2, \ldots, m_g satisfy $m_i = m_{i+2}$.

(c) There exists a Cartan-Münzner polynomial $F: E^{n+1} \to \mathbb{R}$, homogeneous and of degree g, satisfying

(i)
$$||DF(x)||^2 = g^2 ||x||^{2g-2}$$

(ii) $\Delta F(x) = \frac{m_2 - m_1}{2} g^2 ||x||^{g-2}$, (1)

and $M_t = F^{-1}(t) \cap S^n$, -1 < t < 1.

Remark. $M_{\pm} = f^{-1}(\pm 1)$ are called the <u>focal submanifolds</u>.

Why isoparametric h'surfaces in S^n are interesting?(partially from the talk in Manchester in Jan. 2010)

• give many explicit examples of special Lagrangian submanifolds in $T\mathbb{R}^{n+1} \cong \mathbb{C}^{n+1}$.

- give many Lagrangian minimal submanifolds in $Q^{n-1}(\mathbb{C})$.
- give many self-similar solutions to the mean curvature flow.

• give a hint to solve Yau's conjecture on the first eigenvalue (recently Tang and Yan solved it for all isoparametric minimal hypersurfaces).

• All the representations of the Clifford algebra are realized geometrically by isoparametric hypersurfaces.

Classification of isoparametric h's. in S^n :

g	1	2	3	4^{*}	6
M	S^{n-1} hom.	$S^k \times S^{n-k-1}$ hom.	$C_{\mathbb{F}}$ hom.	hom. or OT-FKM	N^6, M^{12} hom.

g = 3: Cartan hypersurfaces $C_{\mathbb{F}}^{3d}$

Theorem. [Cartan '38] Isoparametric hypersurfaces with g = 3 are given by tubes $C_{\mathbb{F}}^{3d}$ over the standard embedding of the projective planes $\mathbb{F}P^2$ in S^4, S^7, S^{13} and S^{25} , where $\mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathcal{C}$ (Cayley numbers). (d = 1, 2, 4, 8).

Theorem. [Abresch, '83] When g = 6, $m_i = m \in \{1, 2\}$.

For each case there is a homogeneous example:

m = 1: isotropy orbits of $G_2/SO(4)$ in S^7 .

m = 2: isotropy orbits of $G_2 \times G_2/G_2$ in S^{13} .

Proposition. [M. '93] The homogeneous hypersurface N^6 with (g,m) = (6,1) has a fibration $\pi : N \to S^3$ with fiber $C_{\mathbb{R}} = SO(3)/Z_2 \oplus Z_2$.

Proposition. [M. '08] The homogeneous hypersurface M^{12} with (g,m) = (6,2) has a Kähler fibration $\pi : M \to S^6$ with fiber $C_{\mathbb{C}} = SU(3)/T^2$.

$$m = 1$$

$$N^{6} \cong SO(4)/Z_{2} \oplus Z_{2}$$

$$\downarrow \leftarrow C_{\mathbb{R}} \cong SO(3)/Z_{2} \oplus Z_{2}$$

$$S^{3} \cong SO(4)/SO(3)$$

$$m = 2$$

$$M^{12} \cong G_2/T^2$$

$$\downarrow \leftarrow C_{\mathbb{C}} \cong SU(3)/T^2$$

$$S^6 \cong G_2/SU(3)$$

Remark. The focal submanifolds M_{\pm} of (g, m) = (6, 2) are related to Bryant's twistor fibrations:

- (ii) $M_+ \cong \mathbb{Q}^5 \to S^6 = G_2/SU(3)$ with fiber $\mathbb{C}P^2$. This is diffeomorphic to the twistor fibration over S^6 .
- (iii) $M_{-} \cong \mathbb{Q}^5 \to G_2/SO(4)$ with fiber $\mathbb{C}P^1$. This is diffeomorphic to the twistor fibration over the quaternionic Kähler manifold $G_2/SO(4)$.

Theorem. [Dorfmeister-Neher, '85, M. '09] Isoparametric hypersurfaces with (g, m) = (6, 1) are homogeneous, i.e., isotropy orbits of $G_2/SO(4)$.

Theorem 1. (M. to appear in Ann. Math.) The isoparametric hypersurfaces with (g, m) = (6, 2) are homogeneous, i.e., isotropic orbits of $G_2 \times G_2/G_2$.

Key Proposition. (M. '93, '98) Isoparametric hypersurfaces with g = 6 are homogeneous \Leftrightarrow Condition A is satisfied, namely, the shape operators of a focal submanifold have the kernel independent of the normal directions.

(To prove Condition A is extremely difficult.)

Non-homogeneous case occurs only when g = 4.

Known isoparametric hypersurfaces in S^n with g = 4:

	non-homogeneous	$(m_1, m_2) = (3, 4k), (7, 8k), \dots$
		G/K: non-Hermitian
OT-FKM type		(4, 4k - 1)
	homogeneous:	*Hermitian
	isotropy orbits	(1,k), (2,2k-1), (9,6)
non OT-FKM	of G/K	*Hermitian $(4,5)$
		non-Hermitian $(2,2)$

They are all classfied except for $(m_1, m_2) = (7, 8)$ (Cecil-Chi-Jensen, Immervoll, and Chi, 2007~2012).

Clifford systems and h's of OT-FKM type

O(n) : the orthogonal group, $\mathfrak{o}(n)$: its Lie algebra.

Definition. $P_0, \ldots P_m \in O(2l)$ is called a <u>Clifford system</u> $\Leftrightarrow P_i P_j + P_j P_i = 2\delta_{ij}$ id, $0 \le i, j \le m$.

• Clifford system corresponds to a representation of Clifford algebra in a one-to-one way.

Remark.	(1)) The possible	pairs	(m, l)) :
---------	-----	----------------	-------	--------	-----

m	1	2	3	4	5	6	7	8	•••	m+8	•••
$l = \delta(m)$	1	2	4	4	8	8	8	8	•••	$16\delta(m)$	•••

(2) W.r.t. the inner product $\langle P, Q \rangle = \frac{1}{2l} \operatorname{Tr}(P^t Q), P_0, \dots, P_m$ give an orthonormal basis of the linear space V of symmetric orthogonal operators, which they span.

Fact 4. (Ferus-Karcher-Münzner '81)

When a Clifford system P_0, \ldots, P_m is given,

$$F(x) = \langle x, x \rangle^2 - 2 \sum_{i=0}^{m} \langle P_i x, x \rangle^2$$
(2)

is a Cartan-Münzner polynomial of degree 4. If l - m - 1 > 0, $F|_{S^{2l-1}}$ defines isoparametric hypersurfaces in S^{2l-1} with g = 4 and $m_1 = m$, $m_2 = l - m - 1$.

Goal: We express F(x) via the moment map of a spin action.

 P_0, \ldots, P_m : Clifford system $\Rightarrow P_i P_j, 0 \le i < j \le m$, are skew, and generate a Lie subalgebra of $\mathfrak{o}(2l)$ isomorphic to $\mathfrak{o}(m+1)$.

Fact 5. [FKM, '81] <u>Spin(m + 1)</u> acts on \mathbb{R}^{2l} , and preserves F(x), namely, F(x) is constant on each Spin(m + 1) orbit.

Remark. Spin(m + 1) action is small, and in general, never transitive on the hypersurface.

Review of symplectic geometry

Definition.

(1) (P^{2n}, ω) is a symplectic manifold

 $\Leftrightarrow \omega$ is a non-degenerate closed 2-form on P.

(2) The Hamiltonian vector field H_f of $f \in \mathbb{C}^{\infty}(P)$ $\Leftrightarrow df = \omega(H_f,).$

Put Ham(P) = { $H_f \mid f \in \mathbb{C}^{\infty}(P)$ }.

K: a compact Lie group acting on P.

Definition.

(1) a fundamental vector field on P $\Leftrightarrow X_{\zeta} = \frac{d}{dt}\Big|_{t=0} (\exp t\zeta)x, \quad \zeta \in \mathfrak{k}$ (2) $K \curvearrowright P$ is a symplectic action

$$\Leftrightarrow k^*\omega = \omega, \, \forall k \in K.$$

(3) $K \curvearrowright P$ is a Hamiltonian action $\Leftrightarrow X_{\zeta} \in \operatorname{Ham}(P), \forall \zeta \in \mathfrak{k}.$ i.e., $\exists \mu_{\zeta} \in \mathbb{C}^{\infty}(P)$ s.t. $d\mu_{\zeta} = \omega(X_{\zeta},).$ (4) With respect to the coadjoint action of K on \mathfrak{k}^* , $\mu: P \to \mathfrak{k}^*$ is **a moment map** $\Leftrightarrow \begin{array}{l} \text{(i) } \mu \text{ is } K \text{ equivariant} \\ \text{(ii) } d\mu(\zeta) = \omega(X_{\zeta}, \) \end{array}$

• $K \curvearrowright P$ is Hamiltonian

 $\Leftrightarrow \exists \mu : P \to \mathfrak{k}^*, \text{ the moment map}$ $\Rightarrow \text{ for } \zeta \in \mathfrak{k}, \ \mu_{\zeta}(p) = \mu(p)(\zeta) \in C^{\infty}(P)$ and $H_{\mu_{\zeta}} = X_{\zeta}.$

Example. (1) $(\mathbb{C}^n, J, \omega)$ with $\omega(X,) = -\langle JX, \rangle$

 $K \curvearrowright \mathbb{C}^n$: Hamiltonian $\Rightarrow d\mu_{\zeta}(Y) = \omega(X_{\zeta}, Y) = -\langle JX_{\zeta}, Y \rangle$ $\Rightarrow X_{\zeta} = J \nabla \mu_{\zeta}.$

(2) G/K: a Hermitian symmetric space,

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: the Cartan decomposition,

 \exists a center \mathfrak{c} of $\mathfrak{k} \Rightarrow \exists$ a Kähler structure J on \mathfrak{p} given by

$$Jx = \mathrm{ad}\mathfrak{z}(x) = -\mathrm{ad}x(\mathfrak{z}), \quad \mathfrak{z} \in \mathfrak{c}, \, x \in \mathfrak{p}.$$

 \Rightarrow the isotropy action $K \curvearrowright \mathfrak{p}$ is a Hamiltonian action with **the moment map:** $\mu^H(x) = \frac{1}{2}(\mathrm{ad} x)^2\mathfrak{z}$ (Ohnita).

Remark. In general, there <u>does not</u> exist symplectic (nor Kähler) structure on \mathfrak{p} of symmetric spaces.

Symplectic structure on $T\mathbb{R}^n$

A complex structure \tilde{J} on $T\mathbb{R}^n$ is given by

 $\tilde{J}(U,V) = (-V,U), \quad (U,V) \in T_{(x,Y)}(T\mathbb{R}^n) \cong \mathbb{R}^n \oplus \mathbb{R}^n.$

 $\Rightarrow T\mathbb{R}^n$: a symplectic manifold with a symplectic form

$$\omega(\tilde{Z},\tilde{W}) = -\langle \tilde{J}\tilde{Z},\tilde{W}\rangle, \quad \tilde{Z},\tilde{W} \in T_{(x,Y)}(T\mathbb{R}^n),$$

 \tilde{J} : parallel $\Rightarrow \omega$ is a non-degenerate closed 2-form. $T\mathbb{R}^n$ has a standard symplectic structure.

Hamiltonian action on $T\mathbb{R}^n$

 $K \subset O(n)$: acting on \mathbb{R}^n

Extend $K \curvearrowright \mathbb{R}^n$ naturally to $T\mathbb{R}^n$, then for $\zeta \in \mathfrak{o}(n)$,

 $X_{\zeta} = \zeta x.$

Proposition. $K \curvearrowright T\mathbb{R}^n$ is a Hamiltonian action with the moment map $\mu: T\mathbb{R}^n \to \mathfrak{k}^*$ given by

$$\mu(x,Y)(\zeta) = -\langle \zeta x, Y \rangle.$$

e.g. $n = 3, \zeta_1, \zeta_2, \zeta_3 \in \mathfrak{o}(3)$ is an o.n.basis, then for $(x, Y) \in T\mathbb{R}^3$,

$$\mu(x,Y)(\zeta_i) = -\langle \zeta_i x, Y \rangle$$

is the angular momentum.

In particular, we have

$$\mu(x,Y) = -\sum_{i=1}^{3} \langle \zeta_i x, Y \rangle \zeta_i.$$

Spin(m+1) action on $T\mathbb{R}^{2l}$

Let P_0, \ldots, P_m be a Clifford system on \mathbb{R}^{2l} :

 $\Rightarrow \zeta_{ij} = P_i P_j \in \mathfrak{o}(2l), \ 0 \le i < j \le m, \text{ generate } \mathfrak{o}(m+1),$ acting on \mathbb{R}^{2l} .

Apply the previous argument to the Spin(m+1) action on \mathbb{R}^{2l} given by $(\exp tP_iP_j)x$ for $x \in \mathbb{R}^{2l}$.

We may regard $\zeta_{ij} = P_i P_j$ as an orthonormal frame of $\mathfrak{o}(m+1)$, and hence obtain:

Proposition 1. The moment map of the Spin(m+1) action on $T\mathbb{R}^{2l}$ is given by

$$\mu(x,Y) = -\sum_{0 \le i < j \le m} \langle \zeta_{ij} x, Y \rangle \zeta_{ij} \in \mathfrak{o}(m+1) \cong \mathfrak{o}^*(m+1).$$

And thus it follows $\|\mu(x,Y)\|^2 = \sum_{0 \le i < j \le m} \langle P_i P_j x, Y \rangle^2$.

Since the $U(1) \cap T\mathbb{R}^{2l}$ associated with J is commutes with ω , this action is synplectic, and moreover, Hamiltonian.

Theorem 2. (M, to appear in Math. Ann.)

$$P_0, \ldots, P_m$$
 on \mathbb{R}^{2l} : a Clifford system,
 $Y: \mathbb{R}^{2l} \to T\mathbb{R}^{2l}$: (not necessarily continuous) vector field;
 $Y_x = \begin{cases} P_0 x, & \text{if } \langle P_0 x, x \rangle = 0 \\ \frac{\langle P_1 x, x \rangle P_0 x - \langle P_0 x, x \rangle P_1 x}{\sqrt{\langle P_1 x, x \rangle^2 + \langle P_0 x, x \rangle^2}}, & \text{if } \langle P_0 x, x \rangle \neq 0. \end{cases}$

Then the Cartan Münzner polynomial is given by

$$F(x) = \|\mu_0(x, Y_x)\|^2 - 2\|\mu(x, Y_x)\|^2$$

where $\mu_0 + \mu$ is the moment map of $U(1) \times Spin(m+1) \curvearrowright T\mathbb{R}^{2l}$.

Remark. (1) The RHS is determined by $x \in \mathbb{R}^{2l}$.

(2) P_0, P_1 can be replaced by any two orthogonal unit elements of V. This corresponds to that there is no standard choice of a principal vector for λ_1 if $m_1 > 1$.

(3) $C = \{(x, Y_x) \in T\mathbb{R}^{2l}\}$ is a 2*l* dimensional cone (outside x such that $\langle P_0 x, x \rangle = 0$). However, C is not a Lagrangian cone of $T\mathbb{R}^{2l}$.

(4) For isotropy orbits of the Hermitian symmetric spaces, an expression of F(x) via moment map was first given by S. Fujii (2011), and Fujii and H. Tamaru.

Remaining case

F(x) for the OT-FKM type has been expressed by μ :

	non-homogeneous	$(m_1, m_2) = (3, 4k), (7, 8k),$
		etc.
		G/K: non-Hermitian
OT-FKM type		(4, 4k - 1)
	homogeneous:	*Hermitian
	isotropy orbits	(1, k), (2, 2k - 1), (9, 6)
non OT-FKM	of G/K	*Hermitian $(4,5)$
		non-Hermitian $(2,2)$

The last two homogeneous cases are not of OT-FKM type.

Review of homogeneous case

Fact. (Hsiang-Lawson, '69) Every homogeneous hypersurface in S^n is given by an isotropy orbit of a rank two symmetric space.

G/K: a rank two symmetric space $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$: the Cartan decomposition Extend the isotropy action $K \curvearrowright \mathfrak{p}$ to $T\mathfrak{p}$ in a natural way: $k \cdot (x, Y) = (\mathrm{Ad}k(x), \mathrm{Ad}k(Y)), \quad (x, Y) \in T\mathfrak{p}, \ k \in K.$

• Since $\mathfrak{p} \cong \mathbb{R}^n$, we can apply the previous argument to this case.

Proposition 2. G/K: a rank two symmetric space, $\Rightarrow U(1) \times K \curvearrowright T\mathfrak{p}$ is a Hamiltonian action with the moment map $\mu_0 + \mu : T\mathfrak{p} \to \mathfrak{u}(1)^* \oplus \mathfrak{k}^*;$

$$\begin{split} \mu_0(x,Y) &= \frac{1}{2} (\|x\|^2 + \|Y\|^2)\eta, \\ \mu(x,Y) &= -\mathrm{ad} x(Y), \quad (x,Y) \in T\mathfrak{p} \end{split}$$

Corollary. If G/K is a Hermitian symmetric space, for $\mathfrak{z} \in \mathfrak{c} \subset \mathfrak{k}$ s.t. $J = \mathrm{ad}\mathfrak{z}$ $\Rightarrow \mu(x, \frac{1}{2}Jx) = \mu^H(x) = \frac{1}{2}(\mathrm{ad}x)^2\mathfrak{z}$ **Remark.** The proposition holds not only for g = 4, but also for all the homogeneous hypersurfaces.

In our case, $G/K = SO(5) \times SO(5)/SO(5)$ $((m_1, m_2) = (2, 2))$, or SO(10)/U(5) $((m_1, m_2) = (4, 5))$.

Put $G_{ij} = E_{ij} - E_{ji} \in \mathfrak{o}(5) \subset \mathfrak{u}(5), 1 \leq i < j \leq 5$, where, E_{ij} is the matrix with (i, j) component equal to one and all other components equal to 0.

Theorem 3. (M.)

When $(m_1, m_2) = (2, 2)$, (4, 5) which are not of OT-FKM, using $\tau = G_{25} + G_{45} \in \mathfrak{k}$, put $Y_H = [H, \tau] \in \mathfrak{p}$ for $H \in \mathfrak{a}$, and extend it to a vector field Y_x on \mathfrak{p} by the action of K. Restricting the moment map $\mu_0 + \mu$ of the action of $U(1) \times K$ to the cone $C = \{(x, Y_x) = \mathrm{Ad}k(H, Y_H)\} \subset T\mathfrak{p}$, we can express

$$F(x) = p \|\mu_0(x, Y_x)\|^2 - q \|\mu(x, Y_x)\|^2,$$

where (p,q) = (3,4) for $(m_1, m_2) = (2,2)$, and $(p,q) = (\frac{3}{4},1)$ for $(m_1, m_2) = (4,5)$.

Summary

Finally, the Cartan-Münzner polynomials with g = 4 are expressed by the square norm of the moment map on $T\mathbb{R}^{2l}$ of a certain group action restricted to the 2l dimensional cone, in both homogeneous and non-homogeneous cases. **Problem.** The extension to $T\mathbb{R}^n \cong \mathbb{C}^n$ is in other words the complexification of the object.

If we "complexify" the Cartan-Münzner polynomial suitably to a homogeneous polynomial on $T\mathbb{R}^n \cong \mathbb{C}^n$, then what follows about hypersurfaces in \mathbb{C}^n or in $\mathbb{C}P^{n-1}$ given by the level set of F?

THANK YOU FOR YOUR ATTENTION!