Hypersurface geometry and moment map

Reiko MIYAOKA (Tohoku University, JAPAN)

UK-Japan Mathematical Forum (15-20 July 2012)
Keio University, 17 July 2012
I. Motivation and Introduction
II. Theory of isoparametric hypersurfaces
III. Moment map of the spin action

References

1. R. Miyaoka, Isoparametric hypersurfaces with $(g, m)=$ (6,2), Annals of Math. to appear 176, no. 3 (2012) http://annals.math.princeton.edu/toappear
2. R. Miyaoka, Moment map of the spin action and the Cartan-Münzner polynomial of degree four, Math. Ann. to appear (2012).

Examples

Characterization:

These surfaces have constant principal curvatures:

$$
\begin{aligned}
& \text { plane: } \lambda_{1}=\lambda_{2}=0 \\
& \text { sphere: } \lambda_{1}=\lambda_{2}=1 / r \\
& \text { cylinder: } \lambda_{1}=1 / r, \lambda_{2}=0 .
\end{aligned}
$$

Q. Which surface M has parallel surfaces similar to itself?
(In particular, all regular?)
A. In E^{3}, plane, sphere and cylinder.

$\mathcal{H}=\{$ parallel hypersurfaces $\}$

parallel curves

not parallel

A similar fact holds in H^{n} and E^{n}, namely, such M is either totally geodesic, totally umbilic or product of these (cylinder).

Origin: geometric optics, or wave fronts of the evolution of surfaces following Huygens principle.

Q. How do we express M ?

Level set expression: $M=f^{-1}(t), f: E^{3} \rightarrow \mathbb{R}$.
(a global expression) is suitable for "surface evolution". e.g. mean curvature flows

Warning: The function f is not unique.

- $f(x)=|x|$ and $g(x)=\cos |x|$ describe same surfaces.
\bar{M} : a complete connected Riemannian manifold
∇ : the Levi-Civita connection, \triangle : the Laplacian

Definition.

(1) A C^{2} function $f: \bar{M} \rightarrow \mathbb{R}$ satisfying

$$
\begin{aligned}
& \text { (I) }|\nabla f|^{2}=\varphi(f), \quad \varphi: f(\bar{M}) \rightarrow \mathbb{R}: C^{2} \\
& \text { (II) } \triangle f=\psi(f), \quad \psi: f(\bar{M}) \rightarrow \mathbb{R}: C^{0}
\end{aligned}
$$

is called an isoparametric function.
(2) A level set of a regular value of an isoparametric function is called an isoparametric hypersurface.

(I) ==> The level sets are mutually parallel.
(II) ==> The level sets have CMC (constant mean curvature)

Fact 1. (É. Cartan)

Let \bar{M} be a space form $\left(E^{n}, S^{n}\right.$ or $\left.\mathbb{H}^{n}\right)$, and consider a family of parallel hypersurfaces $\left\{M_{t}\right\}$. Then the following are equivalent:
(i) $\left\{M_{t}\right\}$ is a family of isoparametric hypersurfaces.
(ii) All M_{t} have constant mean curvatures.
(iii) One of M_{t} has constant principal curvatures.

Remark. A local notion (iii) implies a global notion (i).

Known examples:

\bar{M}	M^{n-1}		
E^{n}	E^{n-1} or S^{n-1}	$E^{k} \times S^{n-k-1}$	-
H^{n}	$H_{e q}$ or S^{n-1}	$H_{e q}^{k} \times S^{n-k-1}$	-
S^{n}	S^{n-1}	$S^{k} \times S^{n-k-1}$	more

$H_{e q}$: an equidistant h's, including a horosphere.
$\{$ homogeneous h'surfaces $\} \subset\{$ isoparametric h'surfaces $\}$

- The equality holds for E^{n} and H^{n}.
- In S^{n}, \exists more homogeneous and non-homogeneous examples. [Ozeki-Takeuchi, Ferus-Karcher-Münzner]

Fact 3. (Münzner, '81) For isop. h's. M_{t} in S^{n} :
(a) $g=\sharp\{$ distinct principal curvatures $\} \in\{1,2,3,4,6\}$.
(b) For the principal curvatures $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{g}$, the multiplicities $m_{1}, m_{2}, \ldots, m_{g}$ satisfy $m_{i}=m_{i+2}$.
(c) There exists a Cartan-Münzner polynomial
$F: E^{n+1} \rightarrow \mathbb{R}$, homogeneous and of degree g, satisfying

$$
\begin{align*}
& \text { (i) } \quad\|D F(x)\|^{2}=g^{2}\|x\|^{2 g-2} \\
& \text { (ii) } \quad \triangle F(x)=\frac{m_{2}-m_{1}}{2} g^{2}\|x\|^{g-2}, \tag{1}
\end{align*}
$$

and $M_{t}=F^{-1}(t) \cap S^{n},-1<t<1$.
Remark. $M_{ \pm}=f^{-1}(\pm 1)$ are called the focal submanifolds.

Why isoparametric h'surfaces in S^{n} are interesting?

(partially from the talk in Manchester in Jan. 2010)

- give many explicit examples of special Lagrangian submanifolds in $T \mathbb{R}^{n+1} \cong \mathbb{C}^{n+1}$.
- give many Lagrangian minimal submanifolds in $Q^{n-1}(\mathbb{C})$.
- give many self-similar solutions to the mean curvature flow.
- give a hint to solve Yau's conjecture on the first eigenvalue (recently Tang and Yan solved it for all isoparametric minimal hypersurfaces).
- All the representations of the Clifford algebra are realized geometrically by isoparametric hypersurfaces.

Classification of isoparametric h's. in S^{n} :

g	1	2	3	4^{*}	6
M	S^{n-1} hom.	$S^{k} \times S^{n-k-1}$ hom.	$C_{\mathbb{F}}$ hom.	hom. or OT-FKM	N^{6}, M^{12} hom.

$g=3: \underline{\text { Cartan hypersurfaces } C_{\mathbb{F}}^{3 d}}$
Theorem. [Cartan '38] Isoparametric hypersurfaces with $g=3$ are given by tubes $C_{\mathbb{F}}^{3 d}$ over the standard embedding of the projective planes $\mathbb{F} P^{2}$ in S^{4}, S^{7}, S^{13} and S^{25}, where $\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathcal{C}$ (Cayley numbers). $(d=1,2,4,8)$.

Theorem. [Abresch, '83] When $g=6, m_{i}=m \in\{1,2\}$.
For each case there is a homogeneous example: $m=1$: isotropy orbits of $G_{2} / S O(4)$ in S^{7}. $m=2$: isotropy orbits of $G_{2} \times G_{2} / G_{2}$ in S^{13}.

Proposition. [M. '93] The homogeneous hypersurface N^{6} with $(g, m)=(6,1)$ has a fibration $\pi: N \rightarrow S^{3}$ with fiber $C_{\mathbb{R}}=$ $S O(3) / Z_{2} \oplus Z_{2}$.

Proposition. [M. '08] The homogeneous hypersurface M^{12} with $(g, m)=(6,2)$ has a Kähler fibration $\pi: M \rightarrow S^{6}$ with fiber $C_{\mathbb{C}}=S U(3) / T^{2}$.

$$
m=1 \quad \left\lvert\, \begin{aligned}
& N^{6} \cong S O(4) / Z_{2} \oplus Z_{2} \\
& \\
& S^{3} \cong S O(4) / S O(3)
\end{aligned}\right.
$$

$$
m=2 \quad \left\lvert\, \begin{aligned}
& M^{12} \cong G_{2} / T^{2} \\
& \leftarrow C_{\mathbb{C}} \cong S U(3) / T^{2} \\
& S^{6} \cong G_{2} / S U(3)
\end{aligned}\right.
$$

Remark. The focal submanifolds $M_{ \pm}$of $(g, m)=(6,2)$ are related to Bryant's twistor fibrations:
(ii) $M_{+} \cong \mathbb{Q}^{5} \rightarrow S^{6}=G_{2} / S U(3)$ with fiber $\mathbb{C} P^{2}$. This is diffeomorphic to the twistor fibration over S^{6}.
(iii) $M_{-} \cong \mathbb{Q}^{5} \rightarrow G_{2} / S O(4)$ with fiber $\mathbb{C} P^{1}$. This is diffeomorphic to the twistor fibration over the quaternionic Kähler manifold $G_{2} / S O(4)$.

Theorem. [Dorfmeister-Neher, ‘85, M. '09] Isoparametric hypersurfaces with $(g, m)=(6,1)$ are homogeneous, i.e., isotropy orbits of $G_{2} / S O(4)$.

Theorem 1. (M. to appear in Ann. Math.) The isoparametric hypersurfaces with $(g, m)=(6,2)$ are homogeneous, i.e., isotropic orbits of $G_{2} \times G_{2} / G_{2}$.

Key Proposition. (M. '93, '98) Isoparametric hypersurfaces with $g=6$ are homogeneous \Leftrightarrow Condition \mathbf{A} is satisfied, namely, the shape operators of a focal submanifold have the kernel independent of the normal directions.
(To prove Condition A is extremely difficult.)

Non-homogeneous case occurs only when $g=4$.

Known isoparametric hypersurfaces in S^{n} with $g=4$:

OT-FKM type	non-homogeneous	1, $\left.m_{2}\right)=(3,4 k),(7,8 k)$,
	homogeneous: isotropy orbits of G / K	G / K : non-Hermitian ($4,4 k-1$)
		$\begin{gathered} * \text { Hermitian } \\ (1, k),(2,2 k-1),(9,6) \end{gathered}$
non OT-FKM		*Hermitian (4, 5)
		non-Hermitian (2, 2)

They are all classfied except for $\left(m_{1}, m_{2}\right)=(7,8)$ (Cecil-Chi-Jensen, Immervoll, and Chi, 2007~2012).

Clifford systems and h's of OT-FKM type

$O(n)$: the orthogonal group, $\mathfrak{o}(n)$: its Lie algebra.
Definition. $P_{0}, \ldots P_{m} \in O(2 l)$ is called a Clifford system

$$
\Leftrightarrow P_{i} P_{j}+P_{j} P_{i}=2 \delta_{i j} \mathrm{id}, \quad 0 \leq i, j \leq m .
$$

- Clifford system corresponds to a representation of Clifford algebra in a one-to-one way.

Remark. (1) The possible pairs (m, l) :

m	1	2	3	4	5	6	7	8	\cdots	$m+8$	\cdots
$l=\delta(m)$	1	2	4	4	8	8	8	8	\cdots	$16 \delta(m)$	\cdots

(2) W.r.t. the inner product $\langle P, Q\rangle=\frac{1}{2 l} \operatorname{Tr}\left(P^{t} Q\right), P_{0}, \ldots, P_{m}$ give an orthonormal basis of the linear space V of symmetric orthogonal operators, which they span.

Fact 4. (Ferus-Karcher-Münzner '81)

When a Clifford system P_{0}, \ldots, P_{m} is given,

$$
\begin{equation*}
F(x)=\langle x, x\rangle^{2}-2 \sum_{i=0}^{m}\left\langle P_{i} x, x\right\rangle^{2} \tag{2}
\end{equation*}
$$

is a Cartan-Münzner polynomial of degree 4. If $l-m-1>0$, $\left.F\right|_{S^{2 l-1}}$ defines isoparametric hypersurfaces in $S^{2 l-1}$ with $g=$ 4 and $m_{1}=m, m_{2}=l-m-1$.

Goal: We express $F(x)$ via the moment map of a spin action.
P_{0}, \ldots, P_{m} : Clifford system $\Rightarrow P_{i} P_{j}, 0 \leq i<j \leq m$, are skew, and generate a Lie subalgebra of $\mathfrak{o}(2 l)$ isomorphic to $\mathfrak{o}(m+1)$.
 $F(x)$, namely, $F(x)$ is constant on each $\operatorname{Spin}(m+1)$ orbit.

Remark. $\operatorname{Spin}(m+1)$ action is small, and in general, never transitive on the hypersurface.

Review of symplectic geometry

Definition.

(1) $\left(P^{2 n}, \omega\right)$ is a symplectic manifold
$\Leftrightarrow \omega$ is a non-degenerate closed 2 -form on P.
(2) The Hamiltonian vector field H_{f} of $f \in \mathbb{C}^{\infty}(P)$
$\Leftrightarrow d f=\omega\left(H_{f},\right)$.
Put $\operatorname{Ham}(P)=\left\{H_{f} \mid f \in \mathbb{C}^{\infty}(P)\right\}$.
K : a compact Lie group acting on P.

Definition.

(1) a fundamental vector field on P

$$
\Leftrightarrow X_{\zeta}=\left.\frac{d}{d t}\right|_{t=0}(\exp t \zeta) x, \quad \zeta \in \mathfrak{k}
$$

(2) $K \curvearrowright P$ is a symplectic action

$$
\Leftrightarrow k^{*} \omega=\omega, \forall k \in K .
$$

(3) $K \curvearrowright P$ is a Hamiltonian action

$$
\Leftrightarrow X_{\zeta} \in \operatorname{Ham}(P), \forall \zeta \in \mathfrak{k} .
$$

$$
\text { i.e., } \exists \mu_{\zeta} \in \mathbb{C}^{\infty}(P) \text { s.t. } d \mu_{\zeta}=\omega\left(X_{\zeta},\right) \text {. }
$$

(4) With respect to the coadjoint action of K on \mathfrak{k}^{*}, $\mu: P \rightarrow \mathfrak{k}^{*}$ is a moment map

$$
\begin{aligned}
& \text { (i) } \mu \text { is } K \text { equivariant } \\
& \text { (ii) } d \mu(\zeta)=\omega\left(X_{\zeta},\right)
\end{aligned}
$$

- $K \curvearrowright P$ is Hamiltonian

$$
\Leftrightarrow \exists \mu: P \rightarrow \mathfrak{k}^{*}, \text { the moment map }
$$

\Rightarrow for $\zeta \in \mathfrak{k}, \mu_{\zeta}(p)=\mu(p)(\zeta) \in C^{\infty}(P)$ and $H_{\mu_{\zeta}}=X_{\zeta}$.

Example. (1) $\left(\mathbb{C}^{n}, J, \omega\right)$ with $\omega(X)=,-\langle J X$,
$K \curvearrowright \mathbb{C}^{n}$: Hamiltonian $\Rightarrow d \mu_{\zeta}(Y)=\omega\left(X_{\zeta}, Y\right)=-\left\langle J X_{\zeta}, Y\right\rangle$
$\Rightarrow X_{\zeta}=J \nabla \mu_{\zeta}$.
(2) G / K : a Hermitian symmetric space, $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$: the Cartan decomposition,
\exists a center \mathfrak{c} of $\mathfrak{k} \Rightarrow \exists$ a Kähler structure J on \mathfrak{p} given by

$$
J x=\operatorname{ad} \mathfrak{z}(x)=-\operatorname{ad} x(\mathfrak{z}), \quad \mathfrak{z} \in \mathfrak{c}, x \in \mathfrak{p} .
$$

\Rightarrow the isotropy action $K \curvearrowright \mathfrak{p}$ is a Hamiltonian action with the moment map: $\mu^{H}(x)=\frac{1}{2}(\operatorname{ad} x)^{2} \mathfrak{z} \quad$ (Ohnita).
Remark. In general, there does not exist symplectic (nor Kähler) structure on \mathfrak{p} of symmetric spaces.

Symplectic structure on $T \mathbb{R}^{n}$

A complex structure \tilde{J} on $T \mathbb{R}^{n}$ is given by

$$
\tilde{J}(U, V)=(-V, U), \quad(U, V) \in T_{(x, Y)}\left(T \mathbb{R}^{n}\right) \cong \mathbb{R}^{n} \oplus \mathbb{R}^{n}
$$

$\Rightarrow T \mathbb{R}^{n}$: a symplectic manifold with a symplectic form

$$
\omega(\tilde{Z}, \tilde{W})=-\langle\tilde{J} \tilde{Z}, \tilde{W}\rangle, \quad \tilde{Z}, \tilde{W} \in T_{(x, Y)}\left(T \mathbb{R}^{n}\right)
$$

\tilde{J} : parallel $\Rightarrow \omega$ is a non-degenerate closed 2-form. $\underline{T \mathbb{R}^{n}}$ has a standard symplectic structure.

Hamiltonian action on $T \mathbb{R}^{n}$

$K \subset O(n)$: acting on \mathbb{R}^{n}
Extend $K \curvearrowright \mathbb{R}^{n}$ naturally to $T \mathbb{R}^{n}$, then for $\zeta \in \mathfrak{o}(n)$,

$$
X_{\zeta}=\zeta x .
$$

Proposition. $K \curvearrowright T \mathbb{R}^{n}$ is a Hamiltonian action with the moment map $\mu: T \mathbb{R}^{n} \rightarrow \mathfrak{k}^{*}$ given by

$$
\mu(x, Y)(\zeta)=-\langle\zeta x, Y\rangle
$$

e.g. $n=3, \zeta_{1}, \zeta_{2}, \zeta_{3} \in \mathfrak{o}(3)$ is an o.n.basis, then for $(x, Y) \in$ $T \mathbb{R}^{3}$,

$$
\mu(x, Y)\left(\zeta_{i}\right)=-\left\langle\zeta_{i} x, Y\right\rangle
$$

is the angular momentum.
In particular, we have

$$
\mu(x, Y)=-\sum_{i=1}^{3}\left\langle\zeta_{i} x, Y\right\rangle \zeta_{i}
$$

$\underline{\operatorname{Spin}(m+1) \text { action on } T \mathbb{R}^{2 l}}$

Let P_{0}, \ldots, P_{m} be a Clifford system on $\mathbb{R}^{2 l}$:
$\Rightarrow \zeta_{i j}=P_{i} P_{j} \in \mathfrak{o}(2 l), 0 \leq i<j \leq m$, generate $\mathfrak{o}(m+1)$, acting on $\mathbb{R}^{2 l}$.

Apply the previous argument to the $\operatorname{Spin}(m+1)$ action on $\mathbb{R}^{2 l}$ given by $\left(\exp t P_{i} P_{j}\right) x$ for $x \in \mathbb{R}^{2 l}$.

We may regard $\zeta_{i j}=P_{i} P_{j}$ as an orthonormal frame of $\mathfrak{o}(m+$ $1)$, and hence obtain:

Proposition 1. The moment map of the $\operatorname{Spin}(m+1)$ action on $T \mathbb{R}^{2 l}$ is given by

$$
\mu(x, Y)=-\sum_{0 \leq i<j \leq m}\left\langle\zeta_{i j} x, Y\right\rangle \zeta_{i j} \in \mathfrak{o}(m+1) \cong \mathfrak{o}^{*}(m+1) .
$$

And thus it follows $\|\mu(x, Y)\|^{2}=\sum_{0 \leq i<j \leq m}\left\langle P_{i} P_{j} x, Y\right\rangle^{2}$.
Since the $U(1) \curvearrowright T \mathbb{R}^{2 l}$ associated with J is commutes with ω, this action is synplectic, and moreover, Hamiltonian.

Theorem 2. (M, to appear in Math. Ann.)
P_{0}, \ldots, P_{m} on $\mathbb{R}^{2 l}$: a Clifford system,
$Y: \mathbb{R}^{2 l} \rightarrow T \mathbb{R}^{2 l}:($ not necessarily continuous) vector field;
$Y_{x}= \begin{cases}P_{0} x, & \text { if }\left\langle P_{0} x, x\right\rangle=0 \\ \frac{\left\langle P_{1} x, x\right\rangle P_{0} x-\left\langle P_{0} x, x\right\rangle P_{1} x}{\sqrt{\left\langle P_{1} x, x\right\rangle^{2}+\left\langle P_{0} x, x\right\rangle^{2}}}, & \text { if }\left\langle P_{0} x, x\right\rangle \neq 0 .\end{cases}$
Then the Cartan Münzner polynomial is given by

$$
F(x)=\left\|\mu_{0}\left(x, Y_{x}\right)\right\|^{2}-2\left\|\mu\left(x, Y_{x}\right)\right\|^{2}
$$

where $\mu_{0}+\mu$ is the moment map of $U(1) \times \operatorname{Spin}(m+1) \curvearrowright T \mathbb{R}^{2 l}$.

Remark. (1) The RHS is determined by $x \in \mathbb{R}^{2 l}$.
(2) P_{0}, P_{1} can be replaced by any two orthogonal unit elements of V. This corresponds to that there is no standard choice of a principal vector for λ_{1} if $m_{1}>1$.
(3) $C=\left\{\left(x, Y_{x}\right) \in T \mathbb{R}^{2 l}\right\}$ is a $2 l$ dimensional cone (outside x such that $\left\langle P_{0} x, x\right\rangle=0$). However, C is not a Lagrangian cone of $T \mathbb{R}^{2 l}$.
(4) For isotropy orbits of the Hermitian symmetric spaces, an expression of $F(x)$ via moment map was first given by S . Fujii (2011), and Fujii and H. Tamaru.

Remaining case

$F(x)$ for the OT-FKM type has been expressed by μ :

OT-FKM type	non-homogeneous	$\begin{gathered} \left.n_{1}, m_{2}\right)=(3,4 k),(7,8 k) \\ \\ \text { etc. } \end{gathered}$
	homogeneous: isotropy orbits of G / K	G / K : non-Hermitian $(4,4 k-1)$
		$\begin{gathered} * \text { Hermitian } \\ (1, k),(2,2 k-1),(9,6) \end{gathered}$
non OT-FKM		*Hermitian (4, 5)
		non-Hermitian (2, 2)

The last two homogeneous cases are not of OT-FKM type.

Review of homogeneous case

Fact. (Hsiang-Lawson, ‘69) Every homogeneous hypersurface in S^{n} is given by an isotropy orbit of a rank two symmetric space.
$G / K:$ a rank two symmetric space
$\mathfrak{g}=\mathfrak{k}+\mathfrak{p}:$ the Cartan decomposition
Extend the isotropy action $K \curvearrowright \mathfrak{p}$ to $T \mathfrak{p}$ in a natural way: $k \cdot(x, Y)=(\operatorname{Ad} k(x), \operatorname{Ad} k(Y)), \quad(x, Y) \in T \mathfrak{p}, k \in K$.

- Since $\mathfrak{p} \cong \mathbb{R}^{n}$, we can apply the previous argument to this case.

Proposition 2. G / K : a rank two symmetric space,
$\Rightarrow U(1) \times K \curvearrowright T \mathfrak{p}$ is a Hamiltonian action with the moment map $\mu_{0}+\mu: T \mathfrak{p} \rightarrow \mathfrak{u}(1)^{*} \oplus \mathfrak{k}^{*}$;

$$
\begin{aligned}
\mu_{0}(x, Y) & =\frac{1}{2}\left(\|x\|^{2}+\|Y\|^{2}\right) \eta \\
\mu(x, Y) & =-\operatorname{ad} x(Y), \quad(x, Y) \in T \mathfrak{p} .
\end{aligned}
$$

Corollary. If G / K is a Hermitian symmetric space, for $\mathfrak{z} \in$ $\mathfrak{c} \subset \mathfrak{k}$ s.t. $J=\operatorname{adz}$

$$
\Rightarrow \mu\left(x, \frac{1}{2} J x\right)=\mu^{H}(x)=\frac{1}{2}(\operatorname{ad} x)^{2} \mathfrak{z}
$$

Remark. The proposition holds not only for $g=4$, but also for all the homogeneous hypersurfaces.

In our case, $G / K=S O(5) \times S O(5) / S O(5)\left(\left(m_{1}, m_{2}\right)=(2,2)\right)$, or $S O(10) / U(5)\left(\left(m_{1}, m_{2}\right)=(4,5)\right)$.

Put $G_{i j}=E_{i j}-E_{j i} \in \mathfrak{o}(5) \subset \mathfrak{u}(5), 1 \leq i<j \leq 5$, where, $E_{i j}$ is the matrix with (i, j) component equal to one and all other components equal to 0 .

Theorem 3. (M.)

When $\left(m_{1}, m_{2}\right)=(2,2),(4,5)$ which are not of OT-FKM, using $\tau=G_{25}+G_{45} \in \mathfrak{k}$, put $Y_{H}=[H, \tau] \in \mathfrak{p}$ for $H \in \mathfrak{a}$, and extend it to a vector field Y_{x} on \mathfrak{p} by the action of K. Restricting the moment map $\mu_{0}+\mu$ of the action of $U(1) \times K$ to the cone $C=\left\{\left(x, Y_{x}\right)=\operatorname{Ad} k\left(H, Y_{H}\right)\right\} \subset T \mathfrak{p}$, we can express

$$
F(x)=p\left\|\mu_{0}\left(x, Y_{x}\right)\right\|^{2}-q\left\|\mu\left(x, Y_{x}\right)\right\|^{2}
$$

where $(p, q)=(3,4)$ for $\left(m_{1}, m_{2}\right)=(2,2)$, and $(p, q)=\left(\frac{3}{4}, 1\right)$ for $\left(m_{1}, m_{2}\right)=(4,5)$.

Summary

Finally, the Cartan-Münzner polynomials with $g=4$ are expressed by the square norm of the moment map on $T \mathbb{R}^{2 l}$ of a certain group action restricted to the $2 l$ dimensional cone, in both homogeneous and non-homogeneous cases.

Problem. The extension to $T \mathbb{R}^{n} \cong \mathbb{C}^{n}$ is in other words the complexification of the object.
If we "complexify" the Cartan-Münzner polynomial suitably to a homogeneous polynomial on $T \mathbb{R}^{n} \cong \mathbb{C}^{n}$, then what follows about hypersurfaces in \mathbb{C}^{n} or in $\mathbb{C} P^{n-1}$ given by the level set of F ?

THANK YOU FOR YOUR ATTENTION!

