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Overview

This is a report on work in progress. We try to understand the following
problem. Consider a differentiable manifolds equipped with a sequence of
Riemannian metrics, that converges to a manifold of lower dimension in
the Gromov-Hausdorff distance. We discuss the dynamic picture of this
collapsing. In this talk we investigate in detail the example of the Hopf
vibration and Berger’s spheres, where the scaling of the round metric on
S3 induces a parametrized family of differential operators. We discuss such
operators and also construct singular perturbations to geodesic flows.



The Hopf Fibration

Let SU[2] =

{(
z −w̄
w z̄

) ∣∣∣ z ,w ∈ C, |z |2 + |w |2 = 1

}
.

• There is a right action by S1 ∼ U[1] on SU[2]:(
z
w

)
7→
(

e iθz
e iθw

)
.

The action is smooth, proper, effective. The orbits are the circles.
• There is a unique manifold structure on left cosets SU[2]/U[1] s.t. the
projection π : SU[2]→ SU[2]/U[1] is smooth, surjective, a submersion
(Tp is surjective), and a fibration with fibre S1.

π−1(Ui )
diffeo

Ui × S1

Ui ⊂ SU[2]/U[1] ∼ S2

π
Pr
oj



S3

S2

πHopf Fibration :

Identify U(1) with S1. Identify SU(2) with S3, the latter with
quaternion multiplication in not a commutative group and identify.

Let S3 be given the standard Riemannian structure, that of
sub-manifold of R4.
There is a unique Riemmanian structure on S2 such that π is a
Riemannian submersion. Let TuS3 = VTuπ ⊕ HTuS3, the orthogonal
decomposition, Tuπ : HTuπ → Tπ(u)S2 is an isometry. With this

metric, S2 has constant sectional curvature 1
4 .

Hopf constructed this example to compute the homotopy groups of S2,
H3(S2) = Z .



Hopf Fibration

S3 is a simply connected Lie group with structural constants
{−2,−2,−2}. Let X1,X2,X3 be an o.n.b. of its Lie algebra and by the
same left the left invariant vector fields.

su(2) =

{(
ia β
−β̄ −ia

)
, a ∈ R, β ∈ C

}
, 〈A,B〉 =

1

2
trace(AB∗)

X1 =

(
i 0
0 −i

)
, X2 =

(
0 −1
1 0

)
, X3 =

(
0 i
i 0

)
.

X1 ∼ d
dθ is the action field of S1. Left translations: X ∗i (u) = uXi .

[X2,X3] = −2X1, [X3,X1] = −2X2, [X1,X2] = −2X3.

The horizontal distributions are not integrable.

π : S3 → S2 is a harmonic map. Totally geodesic fibres.

The holonomy of fibers is S1.



Brownian Motions and SDEs

A Brownian motion on a Riemannian manifold is a sample continuous
strong Markov process with generator 1

2 ∆. They can be constructed as
solutions of SDE’s, dxt =

∑m
i=1 σi (xt) ◦ dbi

t + σ0(xt)dt,m ≥ d . It takes
m ≥ d vector fields to construct a Brownian motion. On S3, a Lie group,
can take m = 3.
On S2, we need three vector fields and hence a 3-dimensional Brownian
motion. [We’ll see later, we can construct a Brownian motion with 2
vector fields.]
Some interesting SDE’s:

Solution to the SDE below is Brownian motion on S3, projection of
solution is a Brownian motion on S2.

dxt = X1(xt) ◦ db2
t + X2(xt) ◦ db2

t + X3(xt) ◦ db3
t .

SDE’s satisfying Hörmander conditions. The first two equations has
an hypoelliptic Laplacian as a Markovian generator.
dxt = X2(xt) ◦ db2

t + X3(xt) ◦ db3
t ,

dxt = X1(xt) ◦ db1
t + X2(xt) ◦ db2

t . dxt = X1(xt) ◦ db1
t + X2(xt)dt.



J. Milnor [Mil76] for a discussion on classifications of three
dimensional Lie groups.

See Urbantke [Urb03] for Hopf fibration in physics.

See J.-M. Bismut [Bis11, Bis08] on hypoelliptic Laplacian and
Bott-Chern cohomologies, see [ABGR09] for hypoelliptic Laplacians
on unimodular Lie groups, [BB09] for discussion on hypoelliptic
operators on SU(2).



Berger’s Spheres

Define left invariant Riemannian metric mε on S3 by keeping
X1,X2,X3 orthogonal, but scaling the circle direction by ε: |X1|mε = ε.
The spaces (S3,mε) are Berger’s spheres.

Brownian motion on (S3,mε) can be constructed as solution to:

dxεt =
1

ε
X1(xεt ) ◦ db1

t + X2(xεt ) ◦ db2
t + X3(xεt ) ◦ db3

t .

Hypoelliptic SDEs: dxt = X2(xt) ◦ db2
t + X3(xt) ◦ db3

t ,
dxt = 1√

ε
X1(xεt ) ◦ db1

t + X2(xεt ) ◦ db2
t ,

dxt =
1√
ε

X1(xεt ) ◦ dbt + X2(xεt )dt.



Collapsing of (S3,mε)

The diameter of the orbits of Berger’s spheres is ε, which shrinks to
zero. The injectivity radius of (S3,mε)→ 0 as ε→ 0. The volume of
S3 shrinks to zero.

Berger: (S3,mε) converges to S2 with constant sectional curvature 1
4 .

The limit space is a lower dimensional manifold.

Gromov-Cheeger, [CG86], would like to see collapsings of manifold
sequences while keeping sectional curvatures uniformly bounded.
For Berger’s spheres,

K ε(X1,X2) = ε2,K ε(X1,X3) = ε2,K ε(X2,X3) = 4− 3ε.



Notion of convergence of manifolds

Strong Convergence of Riemannian manifolds (Mn, gn)→ (M, g): there
are diffeomorphisms φn : Mn → M such that (φn)∗gn → g .

Let us look at an example for some intuition on the requirement ‘bounded
sectional curvature’: Consider Riemannian manifold (M, gt), where
gt ∈ (∧2TM)∗ satisfies:

ġt = −2Ricgt , g0 smooth.

R. S. Hamilton 82 proved short time existence and uniqueness. Let
gt , t ∈ (0,T ) be a maximal flow.

For t < T , the metrics are equivalent:

e−2Ctg(0) ≤ g(t) ≤ e2Ctg(0).

The metrics do not ‘collapse’ as in Berger’s spheres.

The norm of the Riemannian curvature blows up as t ↑ T unless
T =∞ (Hamilton).



Gromov-Hausdorff Convergence

Gromov Distance: Let A,B be sets in a metric space (X , d), denote
by dH the Hausdorff distance:

dH(A,B) = inf{ε > 0 : B ⊂ Aε,A ⊂ Bε}.

For any point x in A there is a point y in B such that d(x , y) ≤ ε.
Gromov-Hausdorff distance between metric spaces: (X1, d1), (X2, d2):

dGH((X1, d1), (X2, d2)) = inf
(φi :(Xi ,di )→(X ,d))

{dH(φ1(X1), φ2(X2))}.

Here φ are isometric embeddings.

Gromov-Hausdorff distance equals zero implies that the two spaces
are isometric.

The set of equivalent classes of compact metric spaces with diameter
bounded above is compact.



Measured G-H convergence

If (Mn, gn)→ (M, g) how about the spectral of the Laplacian?

K. Fukaya introduced Measured Gromov-Hausdorff convergence:
consider the metric spaces (Mn, gn, µn) where µn is a probability
measure. limn→∞(Mn, gn) = (M, g) if there is a family of measurable
maps: Mn → M and positive numbers εn → 0 such that
|d(ψn(p), ψn(q))− d(p, q)| < εn, (ψn(Mn))εn = M and
(ψn)∗(µn)→ µ weakly.

One a Riemannian manifold of finite volume, we take the measure to
be the volumee measure normalised to 1. Kukaya[Fuk87]: Let
DM(n,D) be the closure of the class of Riemannian manifolds whose
sectional curvature K is bounded between −1 and 1 in the measured
Gromov-Hausdorff distance. Let λk(M) be the kth-eigenvalue of a
manifold M ∈ DM(n,D). Then λk can be extended to a continuous
function on DM(n,D)− {(point, 1)}. For each element (M, µ), λk is
the kth eigenvalue of an unbounded selfadjoint operator on L2(X , µ).



G-H-Wasserstein convergence and the spectral-distance
Convergence of Kasue-Kumura

Villani’s formulation for Measured Gromov-Hausdorff convergence:
the Gromov-Hausdorff-Wasserstein distance

dGHW (X1,X2)

= inf
φiXi→X isometric

{dH(φ1(X1, φ2(X2)) + dWp((φ1)∗µ1, φ2)∗µ2)}.

Spectral-distance (Kasue-Kumura): compare heat kernels at time t
(weighted by e−(t+1/t)).Examples: Warped product spaces.

Y. Ogura [Ogu01], Y. Ogura-S. Taniguchi [OT96]: Assume
convergence of (Mn, gn) in spectral distance, Let X n(t) be the
Brownian motions and Φn : Mn → M are suitable isometric maps. Let
{tn} ⊂ [0, 1] , with ∆tn → 0 Let X̃ n the piecewise interpolations.
Then Φn(X̃ n(tn)) is tight.



The Spectrum on (S3,mε)

S3 : λk = k(k + 2) = 0, 3, 8, . . .

S2 : λk = k(k + 1) = 0, 2, 6, 12, . . .

S1 : λk = k2 = 0, 12, 4, 9, . . . .

∆ε = 1
εLX∗

1
LX∗

1
+ LX∗

2
LX∗

2
+ LX∗

3
LX∗

3
= ∆ε

S1 + ∆h. Facts:

∆S3 , ∆h, ∆ε
S1 commute.

The fibre is totally geodesic implies that ∆S1 commutes with any
basic vector fields (horizontal lifts of vector fields below) if and only if
the fibre is totally geodesic. (L. Bérard-Bergery and J.-P.
Bourguignon[BBB82], O’Neill [O’N67].

∆(f ◦ π) = ∆S2f ◦ π. c.f. [ELJL99] for intertwined Laplacians.

λ1(∆ε)→ λ1(S2( 1
2 )),

λ1(∆ε) = min{8 + 0, 2 +
1

ε
12} = 8, when ε2 <

1

6
.

S. Tanno [Tan80][BBB82].



Convergence related to the Brownian Motions

What can we say about the Brownian motion uεt on (S3,mε), from u0, as
ε→ 0? They solve the SDE

duεt =
1√
ε

X ∗1 (uεt ) ◦ db1
t + X ∗2 (uεt ) ◦ db2

t + X ∗3 (uεt ) ◦ db3
t .

This provides a naturally occurring singularly perturbed SDE. We first
analyse the convergence a the level of the processes.



Introduce Tools and Notation

The orthogonal splitting of the tangent space TuS3 = HuTS3 ⊕ ker(Tuπ)
induces a S1-invariant connection on S3. If σ is a semi-martingale on S3

(in general not C 1 in t), denote by σ̃ its horizontal lift, c.f. [ELJL10].

This is well known for the horizontal lifts to the orthonormal frames of
semi-martingales: related to the stochastic parallel transport (K. Itô) and
to the stochastic development map (J. Eells-D. Elworthy) ).

Let xt = π(uεt ) and x̃εt its horizontal lift.

Proposition ([Li12a])

1) xεt is BM on S2, 2) x̃εt is a diffusion with generator the hypoelliptic
Laplacian 1

2 ∆H :

d x̃εt = x̃εtAd(aεt)X2 ◦ db2
t + x̃εtAd(aεt)X3 ◦ db3

t

aεt ∈ S1 satisfies daεt = 1√
ε
aεtX1 ◦ db1

t .

Note that span{X2,X3} is Ad(S1) invariant and the metric is Ad-invariant.



Generating hypoelliptic diffusion with one vector field

In the proposition,

dx̃εt = x̃εtAd(aεt)X2 ◦ db2
t + x̃εtAd(aεt)X3 ◦ db3

t , daεt =
1√
ε

aεtX1 ◦ db1
t

the Ad-invariant property of the horizontal distribution together with an
Ad-invariant metric meant that for all ε, xεt has the same distribution.
An interesting singularly perturbed SDE:

duεt = uεtY0g εt dt +
1√
ε

uεtX1 ◦ dbt , dg εt =
1√
ε

g εt X1 ◦ dbt .

If g ∈ S1, Y0 ∈ span{X2,X3}. Then Y0g ∈ span{X2,X3} .



Formulation of the Theorem

Recall Y0 ∈ span{X2,X3}.

Theorem ([Li12b])

Take u0 ∈ SU(2). Let (uεt , g
ε
t ) be the solution to the following SDE on

SU(2)× U(1), with uε0 = u0 and g ε0 = 1,

duεt = (Y0g εt )∗(uεt )dt +
1√
ε

X ∗1 (uεt ) ◦ dbt , dg εt =
1√
ε

X L
1 (g εt ) ◦ dbt .

Let xεt = π(uεt ) and x̃εt its horizontal lift. Then x̃εt converges in probability

to the hypoelliptic diffusion with generator L̄F = 1
2 |Y0|2∆H . If Y0 is a

unit vector, xεt converges in law to the Brownian motion on S2.



Multi-scale analysis

We compute the generator Lε of (uεt , g
ε
t ). Let F : SU(2)× U(1)→ R be

C∞, constant in the second variable. Let Z = (Y0g)∗, Z g
1 = 1

2 (Y0gX1)∗,
L0 = 1

2LX∗
1
LX∗

1
.

Lε(g)F (u) = 1
εL0F (u) + 1√

ε
LZg

1
F (u) + LZF .

The middle term comes from interaction between u and g . Let F be
solution to ∂F

∂t = Lε(g)F . Expand F in ε,

F = F0 +
√
εF1 + εF2 + o(ε).



Multi scale analysis

∂F
∂t = Lε(g)F , F = F0 +

√
εF1 + εF2 + o(ε)

Expand the equation in
√
ε,

Ḟ0 +
√
εḞ1 + εḞ2 + o(ε) = ( 1

εL0 + 1√
ε
LZg

1
+LZ )(F0 +

√
εF1 + εF2 + o(ε)).

L0F0 = 0 =⇒ F0 does not depend on the θ-variable

LZ1F0 = −L0F1 =⇒ F1 = L−1
0 (LZ1F0).

Ḟ0 = LZF0 + LZ1F1 + L0F2.

∫
L0F2dθ = 0

.

L0 = 1
2LX∗

1
LX∗

1
, Integrate lat equation with respect to dθ,∫

Ḟ0 =
∫
LZF0 +

∫
LZ1F1 +

∫
L0F2. Define F̄0 =

∫
F0.

d

dt
F̄0 = LZ F̄0 + LZ1 F̄1 = LZ F̄0 + LZ1L

−1
0 (LZ1 F̄0),

We have a second order differential operator.



Idea of Proof

The multi scale analysis given earlier confirms the scaling is correct.
However it does not seem to help us to prove the theorem.

Since x̃εt and uεt live in the same fibre, there is an element aεt ∈ S1

such that uεt = x̃εt aεt . We compute aεt and prove that

dx̃εt = (g εt Y0)∗(x̃εt )dt.

We prove the tightness of relevant measures for the weak
convergence.
Let F : S3 → R be any smooth function. Since Y0 ∈ span{X2,X3},

F (x̃εt ) = F (u0) +
3∑

j=2

∫ t

0
dF (x̃εs Xj)〈Xj , g

ε
s Y0〉ds.

Note the right hand side is bounded variation term. However we seek
an approximate ‘semi-martingale’ decomposition, of the form,
‘martingale +drift+ o(ε)-terms. To the drift term we may apply the
ergodic theorem.
Use Stroock-Varadhan’s martingale method to identify the limits.

Bensoussan-Lions-Papanicolaou [BLP76]



Collapsing with bounded Ricci curvature? Convergence
with bounded derivative flows?

Question: How do we deal with the concept of sectional curvature not
blowing up?
Let Pε

t f (u0) = Ef (uεt ). Then d(Pε
t )f (v) = Edf (v εt ) where v εt is the

derivative flow with initial value v0.

Observation: |∇Pt f |2 ≤ e2Kt |∇f |2 if and only if Ric ≥ K .
The if part is simple: d(Pt f )(v) = Edf (Wt) where Wt solves
DWt
dt = −1

2 Ric#(Wt) and W0 = v .
We propose to replace the‘ boundedness in sectional curvature’ by (1)
|∇Pε

t f |2ε ≤ e2Kt |∇f |2ε or (2) the derivative flows |E{v εt |F εt }|ε ≤ C |v0|ε.



Some Estimates

Using the Levi-Civita connection we may compute explicitly: ∇Xi
Xj , e.g.

∇X2X1 = εX3, ∇X3X1 = −εX2,... Hence

DVt =
1√
ε
∇vt X1 ◦ db1

t +
3∑

i=2

∇vt Xi ◦ dbi
t .

Since //t is an isometry, we see that |V ε
t | is nicely bounded. This can also

follow from the following computation:

Ricε(X2) = 4− 2ε,Ricε(X1,X1) = 2ε2.

Proposition

With respect to the round metric, |v εt |1 is a constant in t. The eigenvalues
of (uεt )−1v εt is constant in t.



Remark: Suppose that v0 6= 0. The derivative flow of the equation for x̃εt
satisfies that (x̃εt )−1v εt is hypoelliptic on the unit sphere
{h ∈ su(2) : |h| = |v0|}.
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