The expected number of fixed points of stochastic flows and Kusuoka's McKean-Singer formula.

K. D. Elworthy

Maths Institute, University of Warwick.

UK-Japan Mathematics Forum Keio University, July, 2012. Based on: K.D.E & AbdulRahman Al-Hussein " Infinite Dimensional Degree Theory & Stochastic Analysis" JFPTA (2010)

Following: S.Kusuoka "Degree Theory in certain Wiener Riemannian manifolds" LNM 1322 (1988)

Set up

M a compact connected smooth manifold, dimension n.

 $X^1, ..., X^m, A$ smooth vector fields on M.

 \mathcal{L}_A Lie differentiation in the direction A.

Lie differentiation on differential forms

For ϕ a smooth q-form, $\phi \in \Gamma \wedge^q T^*M$, $\mathcal{L}_A(\phi)$ is the q-form given by:

$$\mathcal{L}_A(\phi) = \frac{d}{dt} (\eta_t^A)^*(\phi)|_{t=0},$$

where $\{\eta_t^A\}_t$ is the flow of A.

Set up

M a compact connected smooth manifold, dimension n.

 $X^1, ..., X^m, A$ smooth vector fields on M.

 \mathcal{L}_A Lie differentiation in the direction A.

 $\mathcal{A} = \frac{1}{2} \sum_{j=1}^{m} \mathcal{L}_{X^j} \mathcal{L}_{X^j} + \mathcal{L}_A$ on functions.

Set up

M a compact connected smooth manifold, dimension n.

 $X^1, ..., X^m, A$ smooth vector fields on M.

 \mathcal{L}_A Lie differentiation in the direction A.

 $\mathcal{A} = \frac{1}{2} \sum_{j=1}^{m} \mathcal{L}_{X^j} \mathcal{L}_{X^j} + \mathcal{L}_A$ on functions.

 $\mathcal{A}^q = \frac{1}{2} \sum_{j=1}^m \mathcal{L}_{X^j} \mathcal{L}_{X^j} + \mathcal{L}_A$ on q-forms.

Use \mathcal{A}^* for the operator on the complex of forms.

Euler characteristic, Lefschetz number

χ_M is:

- alternating sum of Betti numbers of M, which equals:
- algebraic number of fixed points of a smooth map $\eta: M \to M$, homotopic to the identity, when fixed points are non-degenerate:

$$\chi_M = \sum_{\{x:\eta(x)=x\}} sgn\{\det(I - T_x\eta)\}.$$

To discuss: Generalised McKean-Singer formula

Let $\{P_t^*\}_{t\geq 0}$ be the semi-group on forms generated by \mathcal{A}^* .

 $\chi_M = STr(P_t^*) \quad any \ t > 0.$

Supertraces

$$STr(P_t^*): = \sum_{0}^{n} (-1)^q Tr P_t^q$$
$$= \sum_{0}^{n} (-1)^q \int_M trace \ k_t^q(x, x) dx$$
$$= \int_M Str \ k_t^*(x, x) dx$$

for fundamental solution $k_t^q(x,y) : \wedge^q T_x^* M \to \wedge^q T_y^* M$.

To discuss: Generalised McKean-Singer formula

Let $\{P_t^*\}_{t\geq 0}$ be the semi-group on forms generated by \mathcal{A}^* .

 $\chi_M = STr(P_t^*) \quad any \ t > 0.$

 \mathcal{A} elliptic.

"History"

McKean-Singer 1967 for $\mathcal{A}^* = -\frac{1}{2}\Delta = -\frac{1}{2}(d+d^*)$, usual Hodge-Kodaira Laplacians. "Supersymmetric" proofs by Patodi, Getzler,....

Method uses χ_M as the index of the elliptic operator (d + d*) from odd forms to even forms, with eigenfunction counting.

Method does not work for general elliptic \mathcal{A}^* ???

(Though $\mathcal{A}^* = d\hat{\delta} + \hat{\delta}d$, EI-LeJan-Li LNM 1720.)

To discuss: Rice type formula

Let $\xi_t : \Omega \times M \to M$ be solution flow of SDE on M:

$$dx_t = \sum_j X^j(x_t) \circ dB_t^j + A(x_t)dt$$

and $T\xi_t: TM \to TM$ the derivative flow.

 $\mathbf{E} \sharp \{ x : \xi_t(x) = x \} = \int_M \mathbf{E} \{ |\det(I - T_x \xi_t)| | \xi_t(x) = x \} k_t^0(x, x) dx$

Decomposed formulation

$$\mathbf{E} \sharp \{ x : \xi_t(x) = x \} = \int_M \mathbf{E} \{ (|\det (I - T_x \xi_t)|) | \xi_t(x) = x \} k_t^0(x, x) dx$$
$$= \int_M \int_{Diff_x M} |\det (I - T_x \xi)| k_t^0(x, x) d\nu_t^x(\xi) dx$$

where ν_t^x is the conditional law of ξ_t on the space of diffeomorphisms $Diff_x$ of M which fix x.

"History"

Rice Formulae go back to Rice, 1944/45: for Gaussian random $\Theta : \mathbf{R} \to \mathbf{R}$, stationary, variance 1, $\mathbf{E} \ddagger \{x \in I : \Theta(x) = u\} = const. \ e^{-u^2/2} |I|$

More generally, (Azaïs & Wschebor) : if $x \to \Theta(x)$ is C^1 , non-degenerate, Gaussian or...,

 $\mathbf{E} \sharp \{ x \in I : \Theta(x) = u \} = \int_{I} \mathbf{E} \{ |\Theta'(x)| \big| \Theta(x) = u \} p(x, u) dx$

p(x, u)du law of $\Theta(x)$, assumed cts.

reference

See "Level Sets and Extrema of Random Processes and Fields" Azaïs& Wschebor, Wiley 2009.

Link: Path integral version

Path integral for P_t^*

$$P_t^q \phi = \mathbf{E}(\xi_t)^*(\phi) = \mathbf{E}\phi \circ \wedge^q (T\xi_t).$$

Kusuoka's path integral formulation

Generalised M-S is:

$$\chi_M = \int_M \int_{\{\xi_t(x)=x\}} \det(I - T_x \xi_t) \, d\nu_x(\xi_\cdot) \, k_t^0(x, x) \, dx$$
$$= \int_M \int_{\{\xi_t(x)=x\}} \sum_{q=1}^n (-1)^q \operatorname{tr}(\wedge^q(T_x \xi_t)) \, d\nu_x(\xi_\cdot) k_t^0(x, x) \, dx$$

Rice & McKean Singer

$$\mathbf{E} \sharp \{ x : \xi_t(x) = x \} = \int_M \int_{Diff_x M} |\det (I - T_x \xi)| \, d\nu_x(\xi) \, k_t^0(x, x) \, dx$$

$$\chi_M = \int_M \int_{Diff_x M} \det(I - T_x \xi_t) \, d\nu_x(\xi_\cdot) \, k_t^0(x, x) \, dx$$

Comments and Questions on McKean-Singer

It was the main tool for heat equation proofs of the Gauss-Bonnet-Chern theorem /Atiyah-Singer Index Theorems. Take the limit of the supertrace as $t \to 0$. Using Weitzenbock formula $\mathcal{A}^q = trace \nabla \cdot \nabla(\phi) + \mathcal{L}_A - \mathcal{R}^q$ this limit gives a form in terms of the curvature which is the Euler form. Can be done using probabilistic techniques eg as Ikeda & Watanabe. This is when \mathcal{A}^* is the Hodge-Kodaira operator.

For general elliptic \mathcal{A} the same should work. For hypoelliptic \mathcal{A} ?

Example: Gradient flow on S^n . Picture.

{Computer simulation by P. Townsend and D. Williams }.

(See cover of Rogers, L. C. G.; Williams, David Diffusions, Markov processes, and martingales. Vol. 2. Itô calculus.)

Gradient flow on S^n

$$T_{x_0}\xi_t = e^{\beta_t - \frac{1}{2}nt} /\!\!/_t$$

for β_{\cdot} a BM(**R**) independent of $\xi_{\cdot}(x_0)$.

Case n=1

$$T_{x_0}\xi_t = e^{\beta_t - \frac{1}{2}t} /\!\!/_t$$

$$\mathbf{E} \sharp \{ x : \xi_t(x) = x \} = \mathbf{E} \{ |1 - e^{\beta_t - \frac{1}{2}t}| \}$$

$$\rightarrow 2 \quad \text{as} \ t \rightarrow 0$$

Case n>1

$$T_{x_0}\xi_t = e^{\beta_t - \frac{1}{2}nt} /\!\!/_t$$

Need to estimate holonomy $\mathbf{E}\{\wedge^q/\!\!/_t\}$ over a Brownian bridge. By symmetry it has the form $\mathbf{E}\{/\!\!/_t\} = c_t^q \wedge^q (Id)$ where $c_t^q \in \mathbf{R}$. From eigenvalue formulae $c_t^q \to 0$ exponentially, $q \neq 0, 1$. Again:

$$\mathbf{E} \sharp \{ x : \xi_t(x) = x \} \to 2 \quad \text{ as } t \to 0$$

Degree for maps of manifolds

 $F: P \to Q$

continuous, proper, P,Q both n-dimensional smooth, connected, oriented.

Degree: $Deg(F) \in \mathbb{Z}$

 $= \sum_{\{x:F(x)=z\}} sgn(\det DF(x)) \text{ for } F \text{ a } C^1 \text{ map and } z \text{ a } regular \text{ value of } F.$

Sard's Theorem

For F as above the set $\mathcal{R}eg(F)$ of regular values is dense, and its complement $\mathcal{C}rit(F)$ has measure zero.

Note: properness not needed, proper implies $\mathcal{R}eg(F)$ open.

Leray-Schauder degree: E a Banach space

$$F:\overline{U}\to E$$
$$F(x)=x+u(x)$$

u continuous, compact, $U \subset E$, open, $z \in E - F[\partial U]$.

Degree Deg(F, U, z) ="algebraic number of points in $F^{-1}(z)$ ".

Fredholm operators of index zero

 $A \in \mathbf{L}(G; E)$ is a Φ_0 -operator if $A = S + \alpha$ where $S \in \mathbf{L}(G; E)$ is a linear isomorphism and α is compact.

If $H_1 \subset H_2 \subset ... \subset E$ has each H_n finite dimensional and $\bigcup_n H_n$ is dense in E we can choose α with range in H_n some n.

Fredholm maps $F: P \rightarrow Q$; P,Q Banach manifolds

A C^1 map $F: P \to Q$ is Φ_0 if each derivative

 $T_xF:T_xP\to T_{F(x)}Q$

is Φ_0 .

Smale-Sard: The regular values of a Φ_0 -map are dense

For proper Φ_0 -maps Smale defined a mod 2 degree.

NB: All manifolds asssumed separable metrisable, usually connected.

Fredholm & Layer structures

Given a Φ_0 map $F : P \to E$ there exists an atlas $\{(U_j, \phi_j)\}_{j=1}^{\infty}$ modelled on E such that locally

$$F \circ \phi_j^{-1}(x) = x + \alpha_j(x)$$

for $\alpha(x) \in H_n$ some fixed $n = n_j$, i.e. a layer map.

Consequently each change of co-ordinates $\phi_i \circ \phi_j^{-1}$ is a layer map. A layer atlas. May be orientable. Elworthy-Tromba

Oriented degree

For a proper Φ_0 map $F: P \to E$ can define $Deg(F) \in \mathbb{Z}$ given an orientation.

$$Deg(F) := \sum_{\{x:F(x)=z\}} sgn(\det T_x F)$$

for z a regular value of F. Also for suitable $F: P \rightarrow Q$.

Elworthy, Tromba, Eells, Mukherjea, Borisovich, Ratiner, Zvyagin, Fitzpatrick, Pejsachowicz, Benevieri, Furi, S.Wang ,....

References

See:

- Kokarev, Gerasim; Kuksin, Sergei: Quasi-linear elliptic differential equations for mappings of manifolds. II. Ann. Global Anal. Geom. 31 (2007), no. 1, 59–113.
- Weitsman, Jonathan: Measures on Banach manifolds and supersymmetric quantum field theory. Comm. Math. Phys. 277 (2008), no. 1, 101–125.

Example from Kokarev-Kuksin

M and N finite dimensional, Riemannian, $\mathcal{F} = \mathcal{F}(M, N)$ a space of maps from M to N; E a suitable Banach space of "non-autonomous" vector fields on N.

$$P := \{ (f, v) \in \mathcal{F} \times E : \triangle(f) = v(x, f(x)) \}$$

Take the projection $F: P \rightarrow E$. In certain cases it is a proper Φ_0 -map, giving an orientable structure.

Diffeomorphism group example

M compact; $Diff^{(0)}(M)$ the identity component of its diffeomorphism group.

 $P := \{ (x, \theta) \in M \times Diff^{(0)}(M) : \theta(x) = x \}.$

Take the projection $F: P \to Diff^{(0)}(M)$. It is proper Φ_0 and $Deg(F) = \sum_{\{x:\theta(x)=x\}} sgn \det(I - T_x\theta)$. = fixed point index of θ = Euler characteristic $\chi(M)$.

USING STOCHASTIC ANALYSIS WE CAN FIND INTEGRAL FORMULAE:

General pull back measures

For a measure μ on Q and $F : P \rightarrow Q$ a Φ_0 -map with $\mu(CritF) = 0$:

define $F^*(\mu)$ on P by

- 1. $F^*(\mu)$ (critical points of F) = 0
- 2. If $U \subset P$ is open and F maps U diffeomorphically onto an open V in Q, then F is measure preserving from U to V.

General degree formula

For a measure μ on Q and $F : P \to Q$ a proper Φ_0 map with $\mu(CritF) = 0$ and an orientation:

$$\int_P \lambda(F(x)) \mathrm{sgn}(T_x F) \ d(F^*(\mu))(x) = \mathrm{Deg}(F) \int_Q \lambda \ d\mu$$

provided $\lambda \circ F : P \to \mathbf{R}$ is integrable

Area Formula, Jacobi's formula, Banach's formula

Let $F : P \to Q$ be a Φ_0 -map and μ a locally finite Borel measure on P for which the critical values of F have measure zero. Suppose $f : P \to \mathbf{R}$ is measurable. Then

$$\int_{P} f(x) \, dF^*(\mu)(x) = \int_{Q} \sum_{\{x:F(x)=y\}} f(x) \, d\mu(y).$$

Both formulae

$$\int_{P} \lambda(F(x)) \operatorname{sgn}(T_x F) \ d(F^*(\mu))(x) = \operatorname{Deg}(F) \int_Q \lambda \ d\mu$$

$$\int_{P} f(x) \, dF^*(\mu)(x) = \int_{Q} \sum_{\{x:F(x)=y\}} f(x) \, d\mu(y).$$

Wiener manifolds

Pull backs of non-degenerate Gaussian measures are locally absolutely continuous with respect to Gaussian measures when represented in the special layer atlas induced by the Φ_0 -map.

This uses the Gross-Kuo-(Ramer-Kusuoka) Theorem.

Measure Theoretic Sard's Theorem for Φ_0 -maps

For $F: P \to E$ a Φ_0 -map the critical values of F have (non-degenerate) Gaussian measure 0.

This uses the Gross-Kuo-(Ramer-Kusuoka) Theorem. Noted by Eells-Elworthy (1971).

Paths on Diff (M), (after Kusuoka)

M compact, connected. As before F is the projection:

 $P := \{(x,\xi) \in M \times C_{id} Diff(M) : \xi_T(x) = x\} \to C_{id} Diff(M).$

It is proper Φ_0 , and $Deg(F) = \chi(M)$ Kusouka obtained an integral formula, in a similar situation, related to the McKean-Singer formula. PROBLEM: what can we get from above?

First define μ on $C_{id}Diff(M)$:

Paths on Diff(M)

Take SDE $dx_t = X(x_t) \circ dB_t + A(x_t)dt$ on M for B_1 canonical BM on \mathbb{R}^m .

Flow SDE on Diff(M):

 $d\xi_t = X(\xi_t(-)) \circ dB_t + A(\xi_t(-))dt$

giving Itô map $\mathcal{I}: C_0(\mathbf{R}^m) \to C_{id}Diff(M)$.

Set $\mu = \mathcal{I}_*(\mathbf{P})$.

A problem

For $F: P \to C_{id} Diff(M)$ is $\mu(Crit(F)) = 0$?

 μ is degenerate in general

Sard's Theorem holds for $\mathcal I$ transversal to F

- The inverse image under \mathcal{I} of the critical values of F is the set of critical values of $\mathcal{I}^*(F)$.
- If F is Φ_0 then so is $\mathcal{I}^*(F)$.

Approximate

On ${\bf R}^m$ take OU position process $\{b^\beta_t: 0\leq t\leq T\}$ with $\dot{b}^\beta_t=v^\beta_t$ and

$$dv_t^\beta = -\beta v_t^\beta + 2\beta dB_t$$

with $b_0^{\beta} = v_0^{\beta} = 0$ and $\beta > 0$. It has C^1 paths and for it \mathcal{I} is well defined and smooth. As $\beta \to \infty$ so $\mathcal{I}(b^{\beta})$ tends to ξ . on Diff(M), i.e. to our stochastic flow on M. {R.Dowell,1980, see also Bismut & Lebeau 2008 The degree of F is defined independently of any measure.

$$Deg \ F = \int_{(C^1_{id} Diff(M) \times M) \cap P} \operatorname{sgn} \det(TF) \ d(F^*(\mu^\beta))$$

Decomposition lemma

For $i : H \to E$ an AWS measure γ , M an ndimensional Riemannian manifold. If $\phi : U \to M$ is a C^1 submersion from an open U of E, then $\phi_*(\gamma)$ has a continuous density with respect to the volume measure λ^M of M. The fibre measures γ_x^{ϕ} are given by continuous Wiener densities for the strong layer structures given on the submanifolds $U_x^{\phi} := \phi^{-1}(x)$ of E.

Let $\psi : E \to M$ be another C^1 submersion with a normalised decomposition, fibre measures γ_x^{ψ} , base measure given by $\rho^{\psi}(x)d\lambda^M(x)$. Choose the decomposition of γ with respect to ϕ to have base measure $\rho^{\psi}\lambda^{M}$ and let $\gamma_{x}^{\phi,\rho}$ denote the corresponding fibre measures. Suppose $x_{0} \in M$ has $\psi^{-1}(x_{0}) \cap U = \phi^{-1}(x_{0})$. Then on $U_{x_{0}}^{\phi}$ we have

$$\mathbf{P}^{1\phi,\rho}_{x_0} = (\det \mathcal{M}^{\phi}(w_0))^{-\frac{1}{2}} (\det \mathcal{M}^{\psi}(w_0))^{\frac{1}{2}} \mathbf{P}^{1\psi,\rho}_{x_0},$$

where $\mathcal{M}^{\phi}: U \to \mathbf{R}$ and $\mathcal{M}^{\psi}: E \to \mathbf{R}$ are the Malliavin covariance matrices of ϕ and ψ defined by

$$\mathcal{M}^{\phi}(w) = (T_w^H \phi) (T_w^H \phi)^*,$$

where $T_w^H \phi : H \to T_{x_0} M$ is the restriction of the derivative of ϕ at w to H.

Gaussian result

Let $p_t^{\beta}(x,y)dy$ be law of $\xi_t(x)$ on M under μ^{β} . Then, using Berezin's formula

$$Deg F = \int_{M} \int_{\{\xi_{t}^{\beta}(x)=x\}} \det(I - T_{x}\xi_{t}^{\beta}) d\nu_{t}^{x}(\xi_{\cdot}) p_{t}^{\beta}(x,x) dx$$
$$= \int_{M} \int_{\{\xi_{t}^{\beta}(x)=x\}} \sum_{q=1}^{n} (-1)^{q} \operatorname{tr}(\wedge^{q}(T_{x}\xi_{t}^{\beta})) d\nu_{t}^{x}(\xi_{\cdot}) p_{t}^{\beta}(x,x) dx$$
$$= Str P_{t}^{\beta,*} \quad \text{for all } t > 0 \text{ and } \beta > 0,$$

agreeing with McKean & Singer in the limit as $\beta \to \infty$.

Conclusions, **Questions**

- There are interesting classes of examples of proper Fredholm maps; how about K&K's examples?
- Gaussian integration theory may be applied, to give integral formulae; Sometimes it really does not matter what Gaussian measures you use
- Why analytically does the generalised Singer McKean formula hold?

- The geometric analysis of measures such as μ needs further development.
- How about the hypoelliptic case?
- Do such Rice formulae give interesting information about the long time behaviour of the flow?
- Nielsen numbers?