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Set up

M a compact connected smooth manifold,
dimension n.

Xt ..., Xm™ A smooth vector fields on M.

L 4, Lie differentiation in the direction A.



Lie differentiation on differential forms

For ¢ a smooth g-form, ¢ € I' A?T* M,
L 4(¢) is the g-form given by:

d

= S0 (0)li=o,

La(9)

where {n}; is the flow of A.
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Set up

M a compact connected smooth manifold,
dimension n.

Xt ..., Xm™ A smooth vector fields on M.
L, Lie differentiation in the direction A.
A=353" LxiLxi+ L4 onfunctions,
AT =337 Lyilxj + La On g-forms,

Use A* for the operator on the complex of forms.



Euler characteristic, Lefschetz number

X M IS:
e Alfernating sum of Betti numbers of M, which equals:

e algebraic number of fixed points of a smooth map
n: M — M, homotopic to the identity, when fixed
points are non-degenerate:

XM = Z sgn{det(I —T,n)}.
{z:n(z)=x}



To discuss: Generalised McKean-Singer
formula

Let { P} }1>0 be the semi-group on forms generated
by A*.

xv = STr(P) any t > 0.



Supertraces

STr(Pf): = » (=1)Tr P}
0

— Z(—l)q/ trace ki(x,x)dx

0 M

/ Str ki (x, z)dx
M

for fundamental solution kf(z,y) : AYT; M — NITFM.



To discuss: Generalised McKean-Singer
formula

Let { P} }1>0 be the semi-group on forms generated
by A*.

xv = STr(P) any t > 0.

A ellipftic.



"History"”

McKean -Singer 1967 for A* = —3A = —5(d+d*), usudl
Hodge-Kodaira Laplacians. "Supersymmetric’ proofs
by Patodi, Getzler,....

Method uses y,; as the index of the elliptic
operator (d 4+ dx) from odd forms to even forms, with
eigenfunction counting.

Method does not work for general elliptic A* ?7?7

(Though A* = dé + éd , El-LeJan-Li LNM 1720.)
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To discuss: Rice type formula

Let & : QO x M — M be solution flow of SDE on M:

J

and T¢, : TM — T M the derivative flow.

Ef{z : &(x) =a}=[,, B{ldet (I-T:&)| |&(x) = 2}k (2, x)da
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Decomposed formulation

Bit{o: &(0) = a}=| B{(ldet (I = T:8)) |ei@) = 2}k (o, 2)do

_ / / det (I — T,&)| ¥ (x, x)dvf (€)dz
M JDiffaM

where v{ is the conditional law of &, on the space of
diffeomorphisms D: f f, of M which fix z.
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"History"”

Rice Formulae go back to Rice, 1944/45: for
Gaussian random © : R — R, stationary, variance 1,
Ef{x € I : ©(x) = u} = const. e"“’2/2]1]

More generally, (Azais & Wschebor) : if x — O(x) is
C' , non-degenerate, Gaussian or...,

Ef{z € I :0(z) =u} = [, E{|0/(2)||0(z) = u}p(z, u)dx

p(x,u)du law of ©(x), assumed cfts.
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reference

See "Level Sets and Extrema of Random Processes
and Fields" Azais& Wschebor, Wiley 2009.
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Link: Path integral version

Path integral for Py

Pl =E(&)"(¢) = E¢ o N(T'&).
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Kusuoka’s path integral formulation

Generalised M-S is:

XM = / /{ . x}det(I—Tmft) dv,(€) k) (x, x) dx

/ / D (CDMOATL8) dva(§)ki (2, z) de
{&t(x)= .CU}
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Rice & McKean Singer

Ber: &) =n)= | [ et (T o€ e o

YM = /M /D . det(I — T,&) dvg(€) kY (z,z) dx
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Comments and Questions on McKean-Singer

It was the main fool for heat equation proofs of
the Gauss-Bonnet-Chern theorem /Atiyah -Singer Index
Theorems. Take the limit of the supertrace as ¢t — 0.
Using Weitzenbock formula A? = trace V.V (¢) + L4 — RY
this limit gives a form in ferms of the curvature which
Is the Euler form. Can be done using probabilistfic
techniques eg as lkeda & Watanabe. This is when A*
Is The Hodge-Kodaira operator.

For general elliptic A the same should work. For
hypoelliptic A7
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Example: Gradient flow on S”. Picture.

Fig. 2:

A sample flow, shown with 10 distinct initial points, of the
equation de, = (cos et)dﬂt ! (sin et)dsﬁ. The solution from each
point is a Brownian motion on S, (with angle as coordinate, time
drawn radially outwards).

{Computer simulation by P. Tounsend ard D. Williams}.
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Fig. 2: A sample flow, shown with 10 distinct 1m tial points, of the
equation do, = (cos 8 )dB1 + (s1n 8 )dB The solution from each

point is a Browman motion on S ’ (w'lth angle as coordinate, time

drawn radially outwards).
{Computer simulation by P. Townsend and D. Williams}.
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(See cover of Rogers, L. C. &.; Wiliams, David
Diffusions, Markov processes, and martingales. Vol. 2.
[t6 calculus. )
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Gradient flow on S”

Txogt — eﬁt_%nt//t

for 5. a BM(R) independent of £ (xg).
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Case n=1

T, & = e 3t

Ef{z: &(x) =}

B{|1 - "2}

— 2 aAas t—0
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Case n>1

Tazogt — eﬁt_%nt//t

Need to estimate holonomy E{A?//,} over a Brownian
bridge. By symmetry it has the form E{/;} = ¢/ A? (1d)
where ¢/ € R. From eigenvalue formulae ¢ — 0
exponentially , g # 0,1. Again:

Ef{x: &) =2} —2 ast—0

24



Degree for maps of manifolds

F:P—qQ

confinuous, proper, P.,Q both n-dimensional smooth,
connected, oriented.

Degree: Deg(F) € Z

= D (o:F(a)=2)) Sgn(det DF(x)) for F'a C* map and z o
regular value of F'.
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Sard’s Theorem

For F as above the set Reg(F') of regular values is
dense, and its complement Crit(F') has measure zero.

Note: properness not needed, properimplies Reg(F')
open.
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Leray-Schauder degree: £ a Banach space

F:U—F
F(zx) =2+ u(x)
u confinuous, compact, U C E,open , z € E — F|0U].

Degree Deg(F, U, z) ="algebraic number of pointsin
F=1(z)"
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Fredholm operators of index zero

A e L(G; E)isa ®p-operaforif A=85+«
where S € L(G;FE) is A linear isomorphism and « s
compact.

If H{ C Hy, C ... C E has each H, finite dimensional and
U,, Hy Is dense in £ we can choose a with range in H,
some n.
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Fredholm maps F : P — @; P,(Q Banach
manifolds

AC'map F: P — Qis &, if each derivative

T F TP — Tr)Q

IS Dy,
Smale-Sard: The regular values of a &,-map are dense

For proper &,-maps Smale defined a mod 2 degree.

29



NB: All manifolds asssumed separable metrisable,
usually connected.
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Fredholm & Layer structures

Given a &, maop F : P — FE there exists an atlas
{(Uj, ¢5) }52, modelled on E such that locally

Fog¢: ' (z) =z + ay(x)

for a(z) € H, some fixed n = n;, i.e. alayer map.

Consequently each change of co-ordinates ¢;0¢> " is @
layer map. A layer aflas. May be orientable.
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Oriented degree

For a proper &, map F : P — E can define Deg(F) € 7Z
given an orientation.

Deg(F') := Z sgn(det T, F)
{x:F(x)==z}

for z a regular value of F'. Also for suitable F : P — Q).

Elworthy, Tromba, Eells, Mukherjea, Borisovich, Ratiner,
/vyagin, Fitzpatrick, Pejsachowicz, Benevieri, Furi,
S.Wang .....
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Example from Kokarev-Kuksin

M and N finite dimensional, Riemannian,
F =F(M,N) aspace of maps from M to N;
EF a suitable Banach space of "non-autonomous’
vector fields on N,

P={(f,v) e Fx E:A(f) =v(x, f(x))}

Take the projection F : P — FE. In certain cases it is a
proper &,-map, giving an orientable sfructure.
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Diffeomorphism group example

M compact; Dif £ (M) the identity component of
Its diffeomorphism group.

P:={(z,0) e M x Dif fO(M): 6(z) = z}.

Take the projection F : P — Dif fO)(M). It is proper @
and Deg(F) = ) _r,.p()=sy sgndet(l —T,0). = fixed point
iIndex of § = Euler characteristic x(M).

USING STOCHASTIC  ANALYSIS WE CAN  FIND
INTEGRAL FORMULAE:
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General pull back measures

Forameasure pon Q and F : P — () a $o-map with
w (CritF) = 0:

define F*(u) on P by

1. F*(p)(critical points of F') =0

2. 1f U Cc P is open and F maps U diffeomorphically
onfo an open V in @, then F' is measure preserving
fromU to V.
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General degree formula

For a measure . on Q and F' : P — @Q a proper &,-
map with u (CritF') = 0 and an orientation:

/P A(F(2))sgN(TL F) d(F*(1)) () = Deg(F) /Q A dy

provided Ao F : P — R is infegrable
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Area Formula, Jacobi’s formula, Banach’s
formula

let I/ : P — @ be a &;-map and p a locdlly finite
Borel measure on P for which the critical values of F
have measure zero. Suppose f : P — R is measurable,
Then

/ () dF* (s /Q v) dp(y).

{z:F(z)= y}
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J

Both formulae

A(F (2))sgn(T, F) d(F*(11))(x) = Deg(F) / A dp

| $@ aF (@) - /Q

2

(o F(z)=y}

Q

f(z) du(y).
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Wiener manifolds

Pull backs of non-degenerate Gaussian measures
are locally absolutely continuous with respect 1o
Gaussian measures when represented in the special
layer atlas induced by the ®&,-map.

This uses the Gross-Kuo-(Ramer-Kusuoka) Theorem.
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Measure Theoretic Sard’s Theorem for
o -maps

For F: P — E a ®;-map the critical values of F have
(non-degenerate) Gaussian measure 0.

This uses the Gross-Kuo-(Ramer-Kusuoka) Theorem.
Noted by Eells-Elworthy (1971).
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Paths on Diff (M), (after Kusuoka)

M compact, connected.
As before F' Is the projection:

It is proper &y, and Deg(F') = x(M)

Kusouka obtained an infegral formula, in a similar
situation, related to the McKean-Singer formula.
PROBLEM: what can we get from above?

First define yon CiyDif f(M) :
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Paths on Dif f(M)

Take SDE dﬂ?t — X(.CIJt) O dBt + A(th)dt on M
for B canonical BM on R™,

Flow SDE on Dif f(M):
dé, = X (&(—)) 0 dBy + A(&(—))dt

giving fO map 7 : Cy(R™) — CiyDif f(M).

Set i = Z.(P).
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A problem

For i : P — CiygDif f(M)is u(Crif(F)) =07

1 IS degeneratfe in generadl
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Sard’s Theorem holds for 7 fransversal to F

I*(F)
PXQg » £

F*(T) z

P - Q)

e The inverse image under 7 of the crifical values of F
s the set of crifical values of Z*(F).

o If F'is &y then sois Z*(F).
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Approximate

On R™ take OU position process {b; : 0 < t < T} with
b? = v’ and
dvf = —ﬂvtﬁ + 23dB;
with b = v = 0 and g > 0. It has C' paths and for
it 7 is well defined and smooth. As 3 — oo so Z(b°)
tends to & on Diff(M), i.e. to our stochastic flow on
M. {R.Dowell,1980, see also Bismut & Lebbeau 2008
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The degree of F' is defined independently of any
measure.

Deg F = / sgndet(TF) d(F*(u”))
(CLDiff(M)xM)NP
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Decomposition lemma

For « : H — E an AWS measure v, M an n-
dimensional Riemannian manifold. If ¢ : U — M is O
C! submersion from an open U of E, then ¢.(v) has @
continuous density with respect to the volume measure
MM of M. The fibre measures v¢ are given by continuous
Wiener densities for the strong layer structures given on
the submanifolds U¢ := ¢~ 1(z) of E.

let v+ : E — M be another C! submersion
with a normalised decomposition, fiore measures ¥

x /7

base measure given by p¥(x)d\M(x). Choose the
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decomposition of v with respect fo ¢ to have base
measure p¥\M and let v¢» denote the corresponding
filbore measures. Suppose o € M has ¢y~ (zg) NU =
¢~ (o). Then on U2 we have

P27 — (det M?(wp)) " 2(det M¥ (wp))2 P12

xog

where M? : U — R and MY : E — R are the Malliavin
covariance matrices of ¢ and i defined by

MO (w) = (T, o) (T )%,

where TH¢ . H — T, M is the restriction of the
derivative of ¢ at w to H.
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Gaussian result

Let p} (z,y)dy be law of &(z) on M under 4°. Then,
using Berezin’s formula

Deg ' = / / ] det(I — T,E7) dvP(€) pi (z, z) dz
{& (w)—w}

/ / —1 Y (N(T,, ft ) duf(g.)pf(x, ) dx
{5t ()= ac}

— StrpP’* forallt > 0and 8 > 0,

agreeing with McKean & Singer in the limit as 6 — oo.
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Conclusions, Questions

e [There are infteresting classes of examples of proper
Fredholm maps; how about K&K’'s examples?

e Gaussian integration theory may be applied, to give
integral formulae; Sometimes it really does not matter
what Gaussian measures you use

e Why analytically does the generadlised Singer -
McKean formula hold?
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e The geometric analysis of measures such as i needs
further development.

e How about the hypoelliptic case?

e DO such Rice formulae give interesting information
about the long time behaviour of the flow?

e Nielsen numbers?
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