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Set up

M a compact connected smooth manifold,
dimension n.

X1, ..., Xm, A smooth vector fields on M .

LA Lie differentiation in the direction A.
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Lie differentiation on differential forms

For φ a smooth q-form, φ ∈ Γ ∧q T ∗M ,

LA(φ) is the q-form given by:

LA(φ) =
d

dt
(ηAt )∗(φ)|t=0,

where {ηAt }t is the flow of A.
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Set up

M a compact connected smooth manifold,
dimension n.

X1, ..., Xm, A smooth vector fields on M .

LA Lie differentiation in the direction A.

A = 1
2

∑m
j=1LXjLXj + LA on functions.
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Set up

M a compact connected smooth manifold,
dimension n.

X1, ..., Xm, A smooth vector fields on M .

LA Lie differentiation in the direction A.

A = 1
2

∑m
j=1LXjLXj + LA on functions.

Aq = 1
2

∑m
j=1LXjLXj + LA on q-forms.

Use A∗ for the operator on the complex of forms.
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Euler characteristic, Lefschetz number

χM is:

• alternating sum of Betti numbers of M , which equals:

• algebraic number of fixed points of a smooth map
η : M → M , homotopic to the identity, when fixed
points are non-degenerate:

χM =
∑

{x:η(x)=x}

sgn{det(I − Txη)}.
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To discuss: Generalised McKean-Singer
formula

Let {P ∗t }t≥0 be the semi-group on forms generated
by A∗.

χM = STr(P ∗t ) any t > 0.
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Supertraces

STr(P ∗t ) : =
n∑
0

(−1)qTr P qt

=
n∑
0

(−1)q
∫
M

trace kqt (x, x)dx

=
∫
M

Str k∗t (x, x)dx

for fundamental solution kqt (x, y) : ∧qT ∗xM → ∧qT ∗yM .
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To discuss: Generalised McKean-Singer
formula

Let {P ∗t }t≥0 be the semi-group on forms generated
by A∗.

χM = STr(P ∗t ) any t > 0.

A elliptic.
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"History"

McKean -Singer 1967 forA∗ = −1
2∆ = −1

2(d+d∗), usual
Hodge-Kodaira Laplacians. "Supersymmetric" proofs
by Patodi, Getzler,....

Method uses χM as the index of the elliptic
operator (d + d∗) from odd forms to even forms, with
eigenfunction counting.

Method does not work for general elliptic A∗ ???

(Though A∗ = dδ̂ + δ̂d , El-LeJan-Li LNM 1720.)
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To discuss: Rice type formula

Let ξt : Ω×M →M be solution flow of SDE on M :

dxt =
∑
j

Xj(xt) ◦ dBjt +A(xt)dt

and Tξt : TM → TM the derivative flow.

E]{x : ξt(x)=x}=
∫
M

E
{
|det (I−Txξt)|

∣∣ξt(x) = x
}
k0
t (x, x)dx
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Decomposed formulation

E]{x : ξt(x) = x}=
∫
M

E
{

(|det (I − Txξt)|)
∣∣ξt(x) = x

}
k0
t (x, x)dx

=
∫
M

∫
DiffxM

|det (I − Txξ)| k0
t (x, x)dνxt (ξ)dx

where νxt is the conditional law of ξt on the space of
diffeomorphisms Diffx of M which fix x.
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"History"

Rice Formulae go back to Rice, 1944/45: for
Gaussian random Θ : R→ R, stationary, variance 1,
E]{x ∈ I : Θ(x) = u} = const. e−u

2/2|I|

More generally, (Azaïs & Wschebor) : if x → Θ(x) is
C1 , non-degenerate, Gaussian or...,

E]{x ∈ I : Θ(x) = u} =
∫
I
E
{
|Θ′(x)|

∣∣Θ(x) = u
}
p(x, u)dx

p(x, u)du law of Θ(x), assumed cts.
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reference

See "Level Sets and Extrema of Random Processes
and Fields" Azaïs& Wschebor, Wiley 2009.
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Link: Path integral version

Path integral for P ∗t

P qt φ = E(ξt)∗(φ) = Eφ ◦ ∧q(Tξt).
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Kusuoka’s path integral formulation

Generalised M-S is:

χM =
∫
M

∫
{ξt(x)=x}

det(I − Txξt) dνx(ξ.) k0
t (x, x) dx

=
∫
M

∫
{ξt(x)=x}

n∑
q=1

(−1)qtr(∧q(Txξt)) dνx(ξ.)k0
t (x, x)dx
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Rice & McKean Singer

E]{x : ξt(x) = x} =
∫
M

∫
DiffxM

|det (I−Txξ)| dνx(ξ) k0
t (x, x) dx

χM =
∫
M

∫
DiffxM

det(I − Txξt) dνx(ξ.) k0
t (x, x) dx
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Comments and Questions on McKean-Singer

It was the main tool for heat equation proofs of
the Gauss-Bonnet-Chern theorem /Atiyah -Singer Index
Theorems. Take the limit of the supertrace as t → 0.
Using Weitzenbock formulaAq = trace∇.∇(φ)+LA−Rq
this limit gives a form in terms of the curvature which
is the Euler form. Can be done using probabilistic
techniques eg as Ikeda & Watanabe. This is when A∗
is the Hodge-Kodaira operator.

For general elliptic A the same should work. For
hypoelliptic A?
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Example: Gradient flow on Sn. Picture.
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[See cover of Rogers, L. C. G.; Williams, David
Diffusions, Markov processes, and martingales. Vol. 2.
Itô calculus. ]
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Gradient flow on Sn

Tx0ξt = eβt−
1
2nt//t

for β. a BM(R) independent of ξ.(x0).

22



Case n=1

Tx0ξt = eβt−
1
2t//t

E]{x : ξt(x) = x} = E{|1− eβt−1
2t|}

→ 2 as t→ 0
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Case n>1

Tx0ξt = eβt−
1
2nt//t

Need to estimate holonomy E{∧q//t}over a Brownian
bridge. By symmetry it has the form E{//t} = cqt ∧q (Id)
where cqt ∈ R. From eigenvalue formulae cqt → 0
exponentially , q 6= 0, 1. Again:

E]{x : ξt(x) = x} → 2 as t→ 0
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Degree for maps of manifolds

F : P → Q

continuous, proper, P ,Q both n-dimensional smooth,
connected, oriented.

Degree: Deg(F ) ∈ Z

=
∑
{x:F (x)=z)} sgn(detDF (x)) for F a C1 map and z a

regular value of F .
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Sard’s Theorem

For F as above the set Reg(F ) of regular values is
dense, and its complement Crit(F ) has measure zero.

Note: properness not needed, proper impliesReg(F )
open.
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Leray-Schauder degree: E a Banach space

F : U → E

F (x) = x+ u(x)

u continuous, compact, U ⊂ E, open , z ∈ E − F [∂U ].

Degree Deg(F,U, z) ="algebraic number of points in
F−1(z)".

27



Fredholm operators of index zero

A ∈ L(G;E) is a Φ0-operator if A = S + α

where S ∈ L(G;E) is a linear isomorphism and α is
compact.

If H1 ⊂ H2 ⊂ ... ⊂ E has each Hn finite dimensional and⋃
nHn is dense in E we can choose α with range in Hn

some n.
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Fredholm maps F : P → Q; P ,Q Banach
manifolds

A C1 map F : P → Q is Φ0 if each derivative

TxF : TxP → TF (x)Q

is Φ0.

Smale-Sard: The regular values of a Φ0-map are dense

For proper Φ0-maps Smale defined a mod 2 degree.
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NB: All manifolds asssumed separable metrisable,
usually connected.
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Fredholm & Layer structures

Given a Φ0 map F : P → E there exists an atlas
{(Uj, φj)}∞j=1 modelled on E such that locally

F ◦ φ−1
j (x) = x+ αj(x)

for α(x) ∈ Hn some fixed n = nj, i.e. a layer map.

Consequently each change of co-ordinates φi◦φ−1
j is a

layer map. A layer atlas. May be orientable. Elworthy-
Tromba
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Oriented degree

For a proper Φ0 map F : P → E can define Deg(F ) ∈ Z
given an orientation.

Deg(F ) :=
∑

{x:F (x)=z}

sgn(detTxF )

for z a regular value of F . Also for suitable F : P → Q.

Elworthy, Tromba, Eells, Mukherjea, Borisovich, Ratiner,
Zvyagin, Fitzpatrick, Pejsachowicz, Benevieri, Furi,
S.Wang ,....
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Example from Kokarev-Kuksin

M and N finite dimensional, Riemannian,
F = F(M,N) a space of maps from M to N ;
E a suitable Banach space of "non-autonomous"
vector fields on N .

P := {(f, v) ∈ F × E : 4(f) = v(x, f(x))}

Take the projection F : P → E. In certain cases it is a
proper Φ0-map, giving an orientable structure.
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Diffeomorphism group example

M compact; Diff (0)(M) the identity component of
its diffeomorphism group.

P := {(x, θ) ∈M ×Diff (0)(M) : θ(x) = x}.

Take the projection F : P → Diff (0)(M). It is proper Φ0

and Deg(F ) =
∑
{x:θ(x)=x} sgndet(I − Txθ). = fixed point

index of θ = Euler characteristic χ(M).

USING STOCHASTIC ANALYSIS WE CAN FIND
INTEGRAL FORMULAE:
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General pull back measures

For a measure µ on Q and F : P → Q a Φ0-map with
µ (CritF ) = 0:

define F ∗(µ) on P by

1. F ∗(µ)(critical points of F ) = 0

2. If U ⊂ P is open and F maps U diffeomorphically
onto an open V in Q, then F is measure preserving
from U to V .
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General degree formula

For a measure µ on Q and F : P → Q a proper Φ0-
map with µ (CritF ) = 0 and an orientation:

∫
P

λ(F (x))sgn(TxF ) d(F ∗(µ))(x) = Deg(F )
∫
Q

λ dµ

provided λ ◦ F : P → R is integrable
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Area Formula, Jacobi’s formula, Banach’s
formula

Let F : P → Q be a Φ0-map and µ a locally finite
Borel measure on P for which the critical values of F
have measure zero. Suppose f : P → R is measurable.
Then ∫

P

f(x) dF ∗(µ)(x) =
∫
Q

∑
{x:F (x)=y}

f(x) dµ(y).
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Both formulae

∫
P

λ(F (x))sgn(TxF ) d(F ∗(µ))(x) = Deg(F )
∫
Q

λ dµ

∫
P

f(x) dF ∗(µ)(x) =
∫
Q

∑
{x:F (x)=y}

f(x) dµ(y).
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Wiener manifolds

Pull backs of non-degenerate Gaussian measures
are locally absolutely continuous with respect to
Gaussian measures when represented in the special
layer atlas induced by the Φ0-map.

This uses the Gross-Kuo-[Ramer-Kusuoka] Theorem.
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Measure Theoretic Sard’s Theorem for
Φ0-maps

For F : P → E a Φ0-map the critical values of F have
(non-degenerate) Gaussian measure 0.

This uses the Gross-Kuo-[Ramer-Kusuoka] Theorem.
Noted by Eells-Elworthy (1971).
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Paths on Diff (M), (after Kusuoka)

M compact, connected.
As before F is the projection:

P := {(x, ξ) ∈M×CidDiff(M) : ξT (x) = x} → CidDiff(M).

It is proper Φ0, and Deg(F ) = χ(M)
Kusouka obtained an integral formula, in a similar
situation, related to the McKean-Singer formula.
PROBLEM: what can we get from above?

First define µ on CidDiff(M) :
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Paths on Diff(M)

Take SDE dxt = X(xt) ◦ dBt +A(xt)dt on M

for B. canonical BM on Rm.

Flow SDE on Diff(M):

dξt = X(ξt(−)) ◦ dBt +A(ξt(−))dt

giving Itô map I : C0(Rm)→ CidDiff(M).

Set µ = I∗(P).
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A problem

For F : P → CidDiff(M) is µ(Crit(F )) = 0 ?

µ is degenerate in general
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Sard’s Theorem holds for I transversal to F

P ×Q E

P Q

E

F ∗(I) I
F

I∗(F )

• The inverse image under I of the critical values of F
is the set of critical values of I∗(F ).

• If F is Φ0 then so is I∗(F ).
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Approximate

On Rm take OU position process {bβt : 0 ≤ t ≤ T} with
ḃβt = vβt and

dvβt = −βvβt + 2βdBt
with bβ0 = vβ0 = 0 and β > 0. It has C1 paths and for
it I is well defined and smooth. As β → ∞ so I(bβ)
tends to ξ. on Diff(M), i.e. to our stochastic flow on
M . {R.Dowell,1980, see also Bismut & Lebeau 2008
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The degree of F is defined independently of any
measure.

Deg F =
∫

(C1
id
Diff(M)×M)∩P

sgn det(TF ) d(F ∗(µβ))
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Decomposition lemma

For i : H → E an AWS measure γ, M an n-
dimensional Riemannian manifold. If φ : U → M is a
C1 submersion from an open U of E, then φ∗(γ) has a
continuous density with respect to the volume measure
λM ofM . The fibre measures γφx are given by continuous
Wiener densities for the strong layer structures given on
the submanifolds Uφx := φ−1(x) of E.

Let ψ : E → M be another C1 submersion
with a normalised decomposition, fibre measures γψx ,
base measure given by ρψ(x)dλM(x). Choose the
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decomposition of γ with respect to φ to have base
measure ρψλM and let γφ,ρx denote the corresponding
fibre measures. Suppose x0 ∈ M has ψ−1(x0) ∩ U =
φ−1(x0). Then on Uφx0

we have

P1φ,ρ
x0

= (detMφ(w0))−
1
2(detMψ(w0))

1
2 P1ψ,ρ

x0
,

whereMφ : U → R andMψ : E → R are the Malliavin
covariance matrices of φ and ψ defined by

Mφ(w) = (THw φ)(THw φ)∗,

where THw φ : H → Tx0M is the restriction of the
derivative of φ at w to H.
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Gaussian result

Let pβt (x, y)dy be law of ξt(x) on M under µβ. Then,
using Berezin’s formula

Deg F =
∫
M

∫
{ξβt (x)=x}

det(I − Txξβt ) dνxt (ξ.) p
β
t (x, x) dx

=
∫
M

∫
{ξβt (x)=x}

n∑
q=1

(−1)qtr(∧q(Txξβt )) dνxt (ξ.)p
β
t (x, x)dx

= StrP β,∗t for all t > 0 and β > 0,

agreeing with McKean & Singer in the limit as β →∞.
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Conclusions, Questions

• There are interesting classes of examples of proper
Fredholm maps; how about K&K’s examples?

• Gaussian integration theory may be applied, to give
integral formulae; Sometimes it really does not matter
what Gaussian measures you use

• Why analytically does the generalised Singer -
McKean formula hold?
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• The geometric analysis of measures such as µ needs
further development.

• How about the hypoelliptic case?

• Do such Rice formulae give interesting information
about the long time behaviour of the flow?

• Nielsen numbers?
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