Large Independent Sets in LoS Networks

Joint work with Pavan Sangha, and Prudence Wong

Michele Zito Department of Computer Science University of Liverpool

Preliminaries

Preliminaries

Model

Preliminaries

Model

The Maximum Independent Set Problem

Preliminaries

Model

The Maximum Independent Set Problem

Known Results

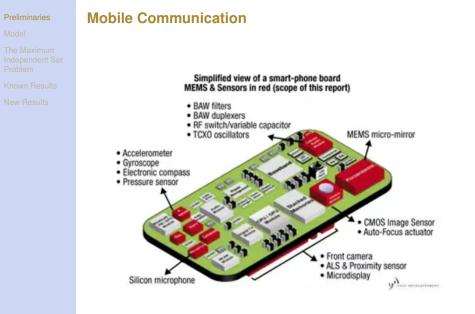
Preliminaries

Model

The Maximum Independent Set Problem

Known Results

New Results



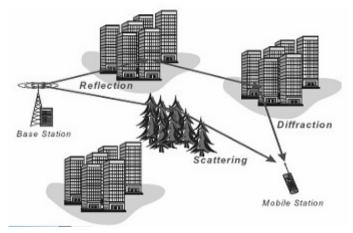
Model

The Maximum Independent Set Problem

Known Results

New Results

Mobile Communication (Issues)



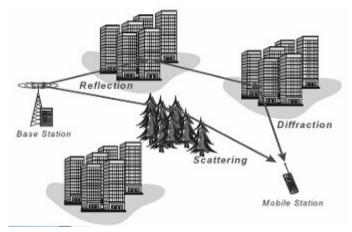
Model

The Maximum Independent Set Problem

Known Results

New Results

Mobile Communication (Issues)



Model

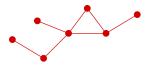
The Maximum Independent Set Problem

Known Results

New Results

Line of Sight Networks

(Frieze, Klienberg, Ravi, Debany, circa 2004)



Model

The Maximum Independent Set Problem

Known Results

New Results

Line of Sight Networks

(Frieze, Klienberg, Ravi, Debany, circa 2004)

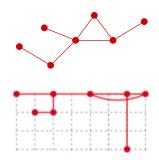
Model

The Maximum Independent Set Problem

Known Results

New Results

Line of Sight Networks (Frieze, Klienberg, Ravi, Debany, circa 2004)



A graph G = (V, E, w) is a *(narrow) Line of Sight (LoS)* network (with parameters n, k and ω) if there exists an embedding $f_G : V \to \mathbb{Z}_n^d$ (resp. with $f_G(V) \subseteq \mathbb{Z}_{n,k}^d$) such that $\{u, v\} \in E$ if and only if $f_G(u)$ and $f_G(v)$ share a line of sight and the (Manhattan) distance between them is less than ω .

 ω is the *range parameter* of the network.

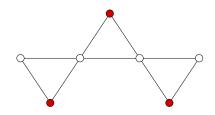
Model

The Maximum Independent Set Problem

Known Results

New Results

Independent Sets



Model

The Maximum Independent Set Problem

Known Results

New Results

Independent Sets Light Placement in Manhattan

Model

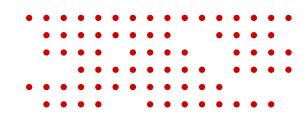
The Maximum Independent Set Problem

Known Results

New Results

Independent Sets Light Placement in Manhattan

New York has many more streets than avenues.



(here junctions represented without road connections)

Model

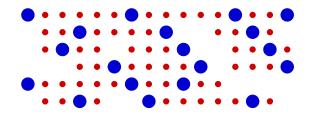
The Maximum Independent Set Problem

Known Results

New Results

Independent Sets Light Placement in Manhattan

New York has many more streets than avenues. On parade day the mayor may want to show-off



(assume a light appliance illuminates the streets up to two junctions away)

Model

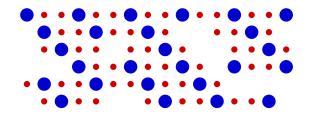
The Maximum Independent Set Problem

Known Results

New Results

Independent Sets Light Placement in Manhattan

New York has many more streets than avenues. On parade day the mayor may want to show-off



(assume a light appliance illuminates the streets up to two junctions away)

Model

The Maximum Independent Set Problem

Known Results

New Results

Literature In General

NP-hard

Model

The Maximum Independent Set Problem

Known Results

New Results

Literature In General

- NP-hard
- Solvable exactly (in polynomial time) on certain (eg. tree-like) graph classes

Model

The Maximum Independent Set Problem

Known Results

New Results

Literature In General

- NP-hard
- Solvable exactly (in polynomial time) on certain (eg. tree-like) graph classes
- Approximable on others (planar graphs, graphs of bounded degree)

An optimisation problem is *c*-approximable (c > 1) if there is an algorithm that on any input *x* returns (in poly-time) a solution of cost f(x) with

 $c^{-1} \cdot \operatorname{OPT}(x) \leq f(x) \leq c \cdot \operatorname{OPT}(x)$

Model

The Maximum Independent Set Problem

Known Results

New Results

Literature In General

- NP-hard
- Solvable exactly (in polynomial time) on certain (eg. tree-like) graph classes
- Approximable on others (planar graphs, graphs of bounded degree)

An optimisation problem is *c*-approximable (c > 1) if there is an algorithm that on any input *x* returns (in poly-time) a solution of cost f(x) with

 $c^{-1} \cdot \operatorname{OPT}(x) \leq f(x) \leq c \cdot \operatorname{OPT}(x)$

Hard to approximate in general

Model

The Maximum Independent Set Problem

Known Results

New Results

Literature In LoS Networks

 Maximum cardinality independent sets in 1-dimensional LoS networks are easy to find

Model

The Maximum Independent Set Problem

Known Results

New Results

Literature In LoS Networks

- Maximum cardinality independent sets in
 1-dimensional LoS networks are easy to find
- In two dimension (square grids) the problem is easy for *ω* < 3 and when *ω* ≥ *n* For fixed *ω* ≥ 3 the problem is NP-hard, there exists a natural 2-approximation algorithm, and there exists a PTAS.

Model

The Maximum Independent Set Problem

Known Results

New Results

Literature In LoS Networks

- Maximum cardinality independent sets in 1-dimensional LoS networks are easy to find
- In two dimension (square grids) the problem is easy for *ω* < 3 and when *ω* ≥ *n* For fixed *ω* ≥ 3 the problem is NP-hard, there exists a natural 2-approximation algorithm, and there exists a PTAS.
- In dimension *d* > 2 the problem is also APX-hard when *ω* ≥ *n* For fixed *ω* ≥ 3 same as above but *d*-approximation algorithm

Model

The Maximum Independent Set Problem

Known Results

New Results

New Results

 A maximum independent set of a (weighted) *k*-narrow *d*-dimensional LoS network with range parameter ω can be found in time O(n(k^{(d-1)/ω} ω)^{k^{d-1}}).

Model

The Maximum Independent Set Problem

Known Results

New Results

New Results

 A maximum independent set of a (weighted) *k*-narrow *d*-dimensional LoS network with range parameter ω can be found in time O(n(k^{(d-1)/ω} ω)^{k^{d-1}}).

There is a semi-online $(1 + \epsilon)$ -approximation algorithm for the same problem.

Model

The Maximum Independent Set Problem

Known Results

New Results

New Results

A maximum independent set of a (weighted) k-narrow d-dimensional LoS network with range parameter ω can be found in time O(n(k^{(d-1)/ω} ω)^{k^{d-1}}).

There is a semi-online $(1 + \epsilon)$ -approximation algorithm for the same problem.

► There is a 2-approximation algorithm for the MIS in (general) *d*-dimensional LoS networks that runs in time O(n² ω^{(ω+d-2)(ω-1)^{d-2}-d+1}).

Model

The Maximum Independent Set Problem

Known Results

New Results

New Results

A maximum independent set of a (weighted) k-narrow d-dimensional LoS network with range parameter ω can be found in time O(n(k^{(d-1)/ω} ω)^{k^{d-1}}).

There is a semi-online $(1 + \epsilon)$ -approximation algorithm for the same problem.

- ► There is a 2-approximation algorithm for the MIS in (general) *d*-dimensional LoS networks that runs in time O(n² ω^{(ω+d-2)(ω-1)^{d-2}-d+1}).
- There is a PTAS for the MIS problem in 2-dimensional LoS networks running in time O(n²ω^{ω+1}/_ε).

Model

The Maximum Independent Set Problem

Known Results

New Results

New Results

A maximum independent set of a (weighted) k-narrow d-dimensional LoS network with range parameter ω can be found in time O(n(k^{(d-1)/ω} ω)^{k^{d-1}}).

There is a semi-online $(1 + \epsilon)$ -approximation algorithm for the same problem.

- ► There is a 2-approximation algorithm for the MIS in (general) *d*-dimensional LoS networks that runs in time O(n² ω^{(ω+d-2)(ω-1)^{d-2}-d+1}).
- There is a PTAS for the MIS problem in 2-dimensional LoS networks running in time O(n²ω^{ω+1}/_ε).

(improves existing $O(n^2(\omega/\epsilon)^{2\frac{\omega+1}{\epsilon}})$ algorithm ... which also works for d > 2).

Model

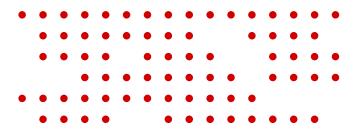
The Maximum Independent Set Problem

Known Results

New Results

Dynamic Programming Basic Idea Key Observation

A narrow LoS network is uniquely described by a $k \times n$ array of zeroes and ones, encoding the vertex positions in the grid



Model

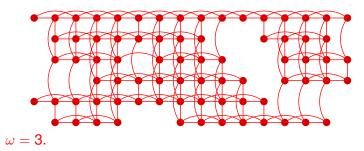
The Maximum Independent Set Problem

Known Results

New Results

Dynamic Programming Key Observation

A narrow LoS network is uniquely described by a $k \times n$ array of zeroes and ones, encoding the vertex positions in the grid



Model

The Maximum Independent Set Problem

Known Results

New Results

Dynamic Programming

- We use a table MIS with *n* rows and one column for each *k* × ω array *W* describing a LoS network with no edge.
- MIS(j, W) contains the size of the largest independent set I in the first j columns of G, such that the ω right-most columns of I coincide with W (MIS(j, W) = 0 if W is not a subgraph of the ω rightmost columns of G).

Claim

MIS(j, W) can be computed using only elements of the form MIS(j - 1, W') such that $W \sim W'$.

Model

The Maximum Independent Set Problem

Known Results

New Results

Semi-online Algorithms

- Let G_r denote the first $r\omega$ columns of G.
- Compute a max size independent set I_r in G_r .
- ► Let r^* be the smallest integer such that $|I_{r^*+1}| < (1 + \epsilon) |I_{r^*}|.$
- To obtain a (1 + ε)-approximation, once we reach r*, we remove G_{r*+1} from the graph G and apply the procedure iteratively.

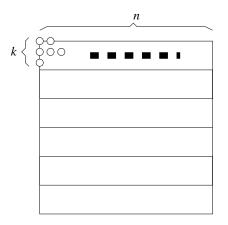
Model

The Maximum Independent Set Problem

Known Results

New Results

Approximation Algorithm



Use $k = \omega - 1$. Pick the largest between the even and the odd strips.

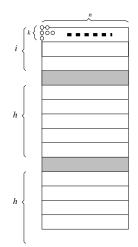
Model

The Maximum Independent Set Problem

Known Results

New Results

New Approximation Scheme



Miss one strip every *h*.

One choice guarantees we get at least h/(1 + h) of the nodes in an optimal independent set.

