An Analysis of Call Admission Problems on Grids LSD & LAW

Hans-Joachim Böckenhauer, Dennis Komm, Raphael Wegner

Department of Computer Science ETH Zürich

February 9, 2018

CAPG

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Lower Bounds

Upper Bounds

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Results

Conclusion

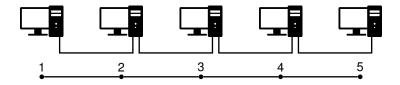
Online Problems

Definition (Online Maximization Problem Π)

- Sequence of requests
- Satisfy one request before the next one arrives
- Maximize the gain

Conclusion

The Disjoint Path Allocation Problem (DPA)

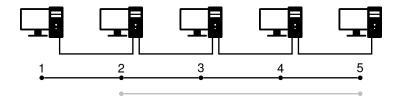


< < >> < <</>

▲ 문 ▶ ▲ 문 ▶ 로 ⊨ ♥ ٩ 0

Conclusion

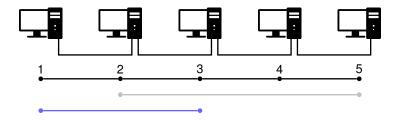
The Disjoint Path Allocation Problem (DPA)



▲ 문 ▶ ▲ 문 ▶ 로 ⊨ ♥ ٩ 0

Conclusior

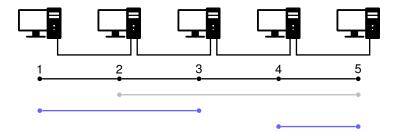
The Disjoint Path Allocation Problem (DPA)



▲ 문 ▶ ▲ 문 ▶ 로 ⊨ ♥ ♥ ♥

Conclusion

The Disjoint Path Allocation Problem (DPA)



▲ 문 ▶ ▲ 문 ▶ 로 ⊨ ♥ ♥ ♥

Conclusior

The Disjoint Path Allocation Problem (DPA)

CAPG

< < >> < <</>

▲ 문 ▶ ▲ 문 ▶ 로 ⊨ ♥ ٩ 0

Online Setting with Advice

How much information are we missing

- ... to be optimal?
- ... to achieve some competitive ratio?
- \implies New measure for complexity of online problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Online Setting with Advice

Definition (Online Algorithm ALG with Advice for Π)

- Adversary chooses online input instance
- Oracle with unlimited power knows instance and chooses infinite advice string
- ALG can read an arbitrary long, but finite prefix
- q(·) is the advice complexity of ALG ⇐⇒ ALG reads at most first q(·) bits of advice from start
- Advice complexity s(n) of Π: maximum over a all inputs of length n, for best pair of oracle and algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Online Setting with Advice

Definition (Competitive ratio with advice)

- Π is online maximization problem
- ALG is online algorithm with advice for Π
- OPT(I) is an optimal (offline) solution for instance I of Π

ALG is c-competitive for Π if there exists a constant $\alpha \geq \mathbf{0}$ such that

$$gain(OPT(I)) \le c \cdot gain(ALG(I)) + \alpha$$

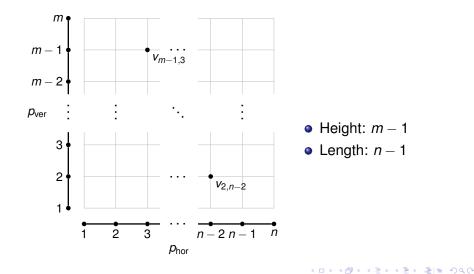
for all instances I of Π .

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Results

Conclusion

Extended to Grids



The Call Admission Problem on Grids (CAPG)

Definition (CAPG)

- Online maximization problem Π_{CAPG}
- Request is a pair of servers asking for a connection
- Every connection is fixed (no termination or modification)
- Only one connection per wire
- Goal: maximize the number of granted connections

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Lower Bounds Upper Bounds

Outline

- Lower Bounds
- Upper Bounds

3 Conclusion

Results

Conclusion

Lower Bounds Upper Bounds

|E| - 1 Advice Bits for DPA

Theorem ([BBF+14])

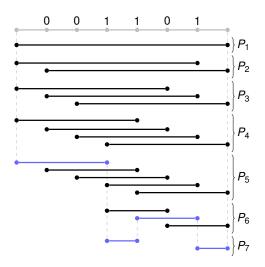
To solve DPA optimally, |E| - 1 advice bits are necessary and sufficient.

Results

Conclusion

Lower Bounds Upper Bounds

|E| - 1 Advice Bits for DPA



- Optimal solution OPT(I) indicated by bit string:
 1 ⇔ end one request, start another one
- P_i contains all requests of length |E| - i + 1which do not contradict requests in OPT(*I*) of earlier phase

1= 990

Results

Conclusion

Lower Bounds Upper Bounds

|E| - 1 Advice Bits for DPA

- Optimal solution is unique
- 2^{|E|-1} different instances
- Optimal solutions S₁, S₂ have to differ before instances I₁, I₂ are distinct on their asked prefixes of requests
 ⇒ > log₂(2^{|E|-1}) = |E| 1 advice bits required for

optimality

Lower Bounds Upper Bounds

Almost |*E*| Advice Bits for CAPG

Can we just ask these instances on each column and row for CAPG?

- Consider long request in solution indicated by bit string
- If not satisfied we have much space for detours

 \implies bit string solution is not optimal anymore

Mitigation:

 Ask only sufficiently small requests, i.e., only last four phases

 \implies bit string solution is optimal again

• Still no unique optimal solution in general

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Results

Conclusion

Lower Bounds Upper Bounds

Almost |E| Advice Bits for CAPG

Lemma

There are t_{n+2} bit strings of length $n \in \mathbb{N}$ which contain at most three consecutive 0s, where t_n denotes the nth tetranacci number ^{*a*}.

 $^{a}t_{n} = t_{n-1} + t_{n-2} + t_{n-3} + t_{n-4}, t_{0} = t_{1} = t_{2} = 0, t_{3} = 1$

Lower Bounds Upper Bounds

Almost |E| Advice Bits for CAPG

Proof sketch:

- Optimal solutions differ only in requests satisfied with paths of length 4 and have specific forms
- Every optimal solution has to grant a detour before rejecting a request intended by bit string

 \implies optimal solutions are distinct before the prefixes of respective instances are different

t^m_n · *t*ⁿ_m instances with different optimal solutions
 ⇒ ≥ *m* · log₂(*t*_n) + *n* · log₂(*t*_m) advice bits required for optimality

Results

Conclusion

Lower Bounds Upper Bounds

Almost |*E*| Advice Bits for CAPG

Theorem

Every optimal online algorithm with advice for CAPG on an $(m \times n)$ -grid G has to read at least $m \cdot \log_2(t_n) + n \cdot \log_2(t_m)$ advice bits.

Results

Conclusion

Lower Bounds

Almost |E| Advice Bits for CAPG

Corollary

Every optimal online algorithm with advice for CAPG on an $(m \times n)$ -grid G has to read at least $0.94677 \cdot |E(G)| - m - n$ advice bits.

Results

Conclusion

Lower Bounds Upper Bounds

Bit Guessing for CAPG

Theorem

Every online algorithm with advice for CAPG which achieves a competitive ratio of $c \leq \frac{12}{11}$ on a grid G has to read at least

$$\left(1 + \left(6 - \frac{6}{c}\right)\log_2\left(6 - \frac{6}{c}\right) + \left(\frac{6}{c} - 5\right)\log_2\left(\frac{6}{c} - 5\right)\right)\frac{|E(G)|}{2}$$

bits of advice.

CAPG

Upper Bounds

3 Conclusion

Conclusion

Lower Bounds Upper Bounds

Trivial Bound

Theorem

There is an optimal online algorithm with advice for CAPG which reads at most $2|E| \cdot \lceil \log_2(|V|) \rceil \le 2|E| \cdot \log_2(|E| + m + n)$ bits of advice for every $(m \times n)$ -grid G = (V, E).

- Oracle chooses some optimal solution
- $\leq |E|$ requests
- Encode both endpoints of every granted request
 ⇒ 2 · [log₂(|V|)] bits per satisfied request
- Overall: $\leq 2|E| \cdot \lceil \log_2(|V|) \rceil$

- Knowing which edges are used in an optimal solution sometimes not helpful (e.g., in case all edges are used, but some requests are contradicting)
- Need to transmit the "membership" to a request
- "Neighbouring" paths need to be distinguishable
- \implies Coloring problem in some auxiliary graph

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ○ ○ ○

Results

Conclusion

Upper Bounds

The Auxiliary Graph G

Definition $(\widehat{G}(S) = (\widehat{V}, \widehat{E}))$

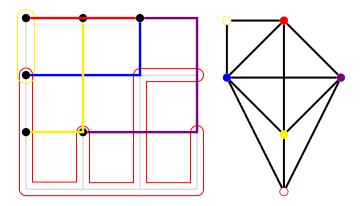
- Path p in S satisfying a request $\implies v_p \in \widehat{V}$
- $\{v_g, v_h\} \in \widehat{E} \iff g \text{ and } h \text{ share some vertex in } G$
- Edges of *G* unused by *S* are split up into connected components, s.t. component *q* corresponds to *v_q* ∈ *V* and the chromatic number χ(*G*(*S*)) is minimized

Results

Conclusion

Lower Bounds Upper Bounds

The Auxiliary Graph \widehat{G}



Results

Conclusion

Lower Bounds Upper Bounds

Theorem

Let \mathcal{I} denote all possible instances of CAPG on a grid G = (V, E), and let $S_{opt}(I)$ be the set of optimal solutions for an instance $I \in \mathcal{I}$. Then, there is an optimal online algorithm with advice for CAPG using at most

$$\max_{l \in \mathcal{I}} \min_{S \in \mathcal{S}_{\mathsf{opt}}(l)} \lceil |\mathcal{E}| \cdot \log_2(\chi(\widehat{G})) \rceil + 2\lceil \log_2(\chi(\widehat{G}(S))) \rceil$$

advice bits.

Results

Conclusion

Lower Bounds Upper Bounds

- Oracle:
 - Can compute all optimal solutions
 - Selects optimal solution *S*, s.t.
 - $[|E| \cdot \log_2(\chi(\widehat{G}))] + 2[\log_2(\chi(\widehat{G}(S)))]$ is minimal
 - Uses 2 ⌈log₂(χ(Ĝ(S)))⌉ bits to transmit χ(Ĝ(S)) in a self-delimiting encoding
 - Colors corresponding connected components of G according to χ(Ĝ) ⇒ χ(Ĝ)^{|E|} possibilities
 - $\lceil |E| \cdot \log_2(\chi(\widehat{G})) \rceil$ bits for transmitting the coloring

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Algorithm (receiver):
 - Recomputes the length of the encoding
 - Reads off the coloring
 - Decides accordingly

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Corollary

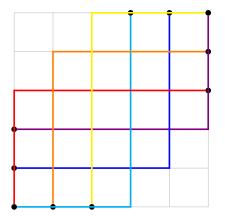
There is an optimal online algorithm with advice for CAPG that reads at most $\lceil |E| \cdot \log_2(\frac{1}{3}(2|E|+7)) \rceil$ bits of advice.

Results

Conclusion

Lower Bounds Upper Bounds

G Bound – Limitations



- All paths are "neighboring"
 - $\implies \widehat{G}$ contains *n* clique

- Since $\chi(\widehat{G}) \ge \omega(\widehat{G})$ this upper bound can not be stronger than
 - $[|E| \cdot \log_2(n)]$ = [|E| \cdot log_2(\sqrt{|V|})] \equiv \mathcal{O}(|E| \cdot log(|E|))

It suffices to be able to

- Distinguish the end vertices of different satisfied requests
- Follow the path that is used to satisfy the request
 - Only three possible direction at every inner vertex

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ○ ○ ○

Results

Conclusion

Lower Bounds Upper Bounds

Our Best Upper Bound 3|E|

Theorem

There is an online algorithm with advice for CAPG that computes an optimal solution using at most 3|E| advice bits.

Corollary

Let \mathcal{I} denote all possible instances of CAPG on a grid G = (V, E), and let $S_{opt}(I)$ be the set of optimal solutions for an instance $I \in \mathcal{I}$. Then, there is an optimal online algorithm with advice for CAPG that uses at most

 $\lceil \log_2(5) \cdot k + \log_2(3) \cdot |V| \rceil + \lceil 2 \log_2(k) \rceil$

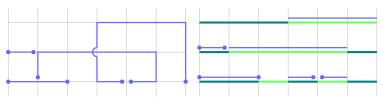
advice bits, where k is the number of requests in I.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Lower Bounds Upper Bounds

Proof Sketch

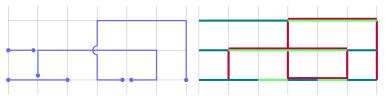
- Choose some optimal solution
- Treat each row and each column separately
- Out off requests
- Color edges as before using the auxiliary graph
 - \implies Can distinguish aligned paths in solution



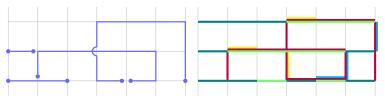
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

 Color edges of unaligned paths in optimal solution additionally red

 \implies Can distinguish aligned and non-aligned paths in solution

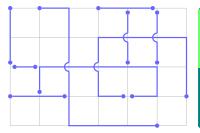


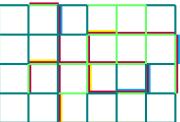
- Yellow: next edge in clockwise direction belongs to same path, pivot around lower, left vertex of edge
- Cyan: next edge in clockwise direction belongs to same path, pivot around lower, left vertex of edge
 - \implies Can follow non-aligned paths in solution



\implies Eight color combinations

 \implies log₂(8) = 3 bits per edge





Outline

2 Results

- Lower Bounds
- Upper Bounds

- Lower and upper bound already close
- Upper bounds applicable for other graphs

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

- Kfir Barhum, Hans-Joachim Böckenhauer, Michal Forisek, Heidi Gebauer, Juraj Hromkovič, Sacha Krug, Jasmin Smula, and Björn Steffen.
 - On the power of advice and randomization for the disjoint path allocation problem.

In SOFSEM 2014: Theory and Practice of Computer Science - 40th International Conference on Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia, January 26–29, 2014, Proceedings, pages 89–101, 2014.

Hans-Joachim Böckenhauer, Juraj Hromkovič, Dennis Komm, Sacha Krug, Jasmin Smula, and Andreas Sprock. The string guessing problem as a method to prove lower bounds on the advice complexity.

Theor. Comput. Sci., 554:95–108, 2014.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇