Efficient identification of k-closed strings

Hayam Alamro ${ }^{1} \quad$ Mai Alzamel ${ }^{1} \quad$ Costas S. Iliopoulos ${ }^{1} \quad$ Solon P. Pissis 1 Wing-Kin Sung ${ }^{2}$ Steven Watts ${ }^{1}$
EANN 2017
${ }^{1}$ Department of Informatics
King's College London
${ }^{2}$ Department of Computer Science
National University of Singapore

Outline

Background

New Problem

Algorithm

Summary

Background

Closed Strings Background

- Closed strings were introduced by Fici [1] as objects of combinatorial interest.
- Closed strings have a relationship with palindromic strings [2].
- Badkobeh et al. [3] factorised a string into a sequence of longest closed factors in time and space $\mathcal{O}(n)$
- Badkobeh et al. [3] computed the longest closed factor starting at every position in a string in $\mathcal{O}\left(n \frac{\log n}{\log \log n}\right)$ time and $\mathcal{O}(n)$ space.

Prefixes

Definition

A prefix of a string x is a substring p of length m, which occurs at the beginning of x, i.e. at index 0 .
$p=x[0 . . m-1]$

A prefix is called a proper prefix if it does not correspond to the full string x, i.e. $|p|<|x|$.

Suffixes

Definition

A suffix of a string x is a substring s of length m, which occurs at the end of x, i.e. at index $n-m$, where n is the length of x.
$s=x[n-m \ldots n-1]$

A suffix is called a proper suffix if it does not correspond to the full string x, i.e. $|s|<|x|$.

Bordered Strings

Definition

A bordered string is a string x for which there exists a proper prefix b, which is simultaneously a proper suffix. We call such a b, a border.
$x[0 \ldots b-1]=x[n-b \ldots n-1]$

Closed Strings

Definition

A closed string is a bordered string x such that some border b of x occurs exactly twice in x. We call such a b, the closed border.

Closed

a	b	a	g	s	t	a		b	t	,	t	a	b	a
	,												,	
	b b													

Non-Closed

New Problem

Goals

- Generalise closed strings to k-closed strings, where k is a measure of approximation.
- Choose a natural definition of k-closed such that: closed \Longrightarrow 1-closed \Longrightarrow 2-closed \Longrightarrow 3-closed ...
- Develop an efficient algorithm to identify whether or not a string is k-closed.

Approximation Method

Hamming Distance

We use Hamming distance (number of mismatched characters) as a measure of approximation between two strings or factors.
e.g. agtcta and agacga have Hamming distance 2.

Approximating Closed Strings

Closed String: 2 Conditions

There are 2 conditions that must be satisfied for a string x to be closed, both conditions can potentially be approximated individually or simultaneously by a parameter k :

1. Border Condition:
x has a border b.
2. No Internal occurrence Condition: x has no internal occurrences of border b.

Closed Definitions with Approximation

Closed (Already Defined)
Border Condition: Exact
No Internal occurrence Condition: Exact
k-Weakly-Closed
Border Condition: Approximate
No Internal occurrence Condition: Exact
k-Strongly-Closed
Border Condition: Exact
No Internal occurrence Condition: Approximate
k-Pseudo-Closed
Border Condition: Approximate
No Internal occurrence Condition: Approximate

k-Weakly-Closed Strings: Definition

Definition

A string x of length n is called k-weakly-closed if and only if $n \leq 1$ or the following properties are satisfied:

1. There exists some proper prefix u of x and some proper suffix v of x of length $|u|=|v|$, such that $\delta_{H}(u, v) \leq k$.
2. Both factors u and v occur only as a prefix and suffix respectively within x, i.e. no internal occurrences of u or v exist in x.

We call such a pair u and v a k-weakly-closed border of x. In the case where $n \leq 1$, we assign ε as the k-weakly-closed border.

k-Weakly-Closed Strings: Example ($k=1$)

Border Condition: Approximate
No Internal occurrence Condition: Exact
k-Weakly-Closed

Non-k-Weakly-Closed

a	b	t	g	t	a	0		t	a	g	t
u u $\left\llcorner\begin{array}{l}\text { I } \\ V\end{array}\right.$											

k-Strongly-Closed Strings: Definition

Definition

A string x of length n is called k-strongly-closed if and only if $n \leq 1$ or the following properties are satisfied:

1. There exists some border b of x.
2. There exists no factor w of x of length $|w|=|b|$ such that $\delta_{H}(b, w) \leq k$, except the prefix and suffix of x.

We call b the k-strongly-closed border of x. In the case where $n \leq 1$, we assign ε as the k-strongly-closed border.

k-Strongly-Closed Strings: Example ($k=1$)

Border Condition: Exact

No Internal occurrence Condition: Approximate

> k-Strongly-Closed

a	b	t	g	t	t	a	t		b	a	a	a	b	t
	,													
	b b													

Non-k-Strongly-Closed

k-Pseudo-Closed Strings: Definition

Definition

A string x of length n is called k-pseudo-closed if and only if $n \leq 1$ or the following properties are satisfied:

1. There exists some proper prefix u of x and some proper suffix v of x of length $|u|=|v|$, such that $\delta_{H}(u, v) \leq k$.
2. Except for u and v, there exists no factor w of x of length $|w|=|u|=|v|$ such that $\delta_{H}(u, w) \leq k$ or $\delta_{H}(v, w) \leq k$.

We call such a pair u and v the k-pseudo-closed border of x. In the case where $n \leq 1$, we assign ε as the k-pseudo-closed border.

k-Pseudo-Closed Strings: Example ($k=1$)

Border Condition: Approximate
No Internal occurrence Condition: Approximate
k-Pseudo-Closed

Non-k-Pseudo-Closed

k-Closed Strings: Definition

Finally, we define what we mean by a k-closed string:

Definition

A string x of length n is called k-closed if and only if $n \leq 1$ or x is k^{\prime}-pseudo-closed for some $0 \leq k^{\prime} \leq k$:

The smallest k^{\prime} satisfying these conditions, has an associated k^{\prime}-pseudo-closed border consisting of the pair u and v. We call this pair the k-closed border of x. In the case where $n \leq 1$, we assign ε as the k-pseudo-closed border.

Algorithm

Problem Statement

Problem

Input: A string x of length n and a natural number $k, 0<k<n$
Output: The k-closed border of x or -1 if x is not k-closed

Longest Prefix Match (LPM) and Longest Suffix Match (LSM)

$\operatorname{LPM}_{k}(x)[j]$ is defined as the length of the longest factor of x starting at index j, which matches the prefix of x of the same length within k errors.
$\operatorname{LSM}_{k}(x)[j]$ is defined as the length of the longest factor of x ending at index j, which matches the suffix of x of the same length within k errors.

$\begin{array}{lllllllllllllllll}j & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$																	
x[j]	a	b	b	a	b	a	a	b	a		b	a	a			a	b
$\mathrm{LPM}_{2}[j]$	-1	3	4	7	2	10	4	4	7		2	5	4			2	1
$\mathrm{LSM}_{2}[\mathrm{j}]$	1	2	3	4	5	2	7	6	2		10	2	5				

Example for $k=2$

Longest Common Extension (LCE)

The Longest Common Extension $\operatorname{LCE}(i, j)$ of a string X is defined as the length of the longest factor of X starting at both i and j, i.e. the longest L such that $X[i \ldots i+L-1]=X[j \ldots j+L-1]$.

If no valid L exists, the LCE equals 0 .

$$
\begin{aligned}
& \longrightarrow \quad \longrightarrow \\
& \operatorname{LCE}(3,8)=3
\end{aligned}
$$

Recursively Generating LPM and LSM

We may compute the $\mathrm{LPM}_{k^{\prime}+1}$ and $\mathrm{LSM}_{k^{\prime}+1}$ arrays from the $\mathrm{LPM}_{k^{\prime}}$ and $\mathrm{LSM}_{k^{\prime}}$ arrays, such that the arrays are progressively constructed:

$$
\begin{aligned}
& \operatorname{LPM}_{k^{\prime}+1}(x)[j]=p+1+\operatorname{LCE}(p+1, j+p+1) \text { of } x \\
& \operatorname{LSM}_{k^{\prime}+1}(x)[j]=s+1+\operatorname{LCE}(s+1, n-j+s) \text { of } x^{R} \\
& \text { where } p=\operatorname{LPM}_{k^{\prime}}(x)[j] \text { and } s=\operatorname{LSM}_{k^{\prime}}(x)[n-1-j] .
\end{aligned}
$$

One iteration of the recursive formula requires $\mathcal{O}(1)$ time for a single index (via standard operations on suffix trees) and thus $\mathcal{O}(n)$ time for the whole array. Therefore, determining $\mathrm{LPM}_{k^{\prime}}$ and $\mathrm{LSM}_{k^{\prime}}$ for all $0 \leq k^{\prime} \leq k$ requires $\mathcal{O}(k n)$ time.

Identifying k-Closed Strings

Once the k LPM's and LSM's are known we can determine if x is k-closed. This is done by finding some j and k^{\prime} with $1 \leq j \leq n-1$ and $0 \leq k^{\prime} \leq k$ such that all the following 3 conditions are satisifed:

1. $j+\operatorname{LPM}_{k^{\prime}}(x)[j]=n$
2. $\forall i<j, \operatorname{LPM}_{k^{\prime}}(x)[i]<\operatorname{LPM}_{k^{\prime}}(x)[j]$
3. $\forall i>n-1-j, \operatorname{LSM}_{k^{\prime}}(x)[i]<\operatorname{LSM}_{k^{\prime}}(x)[n-1-j]$.

The length of the k-closed border is then $n-j$ for the smallest k^{\prime} for which there exists a j satisfying the conditions.

Complete Example ($k=2$)

		0		2			4	5	6	7	8	9	10	11	112	硣	13	
				b			b	a	a	b	a	b	a	a	- b		a	b
	$\mathrm{LPM}_{2}[j]$	-1	3	4			2	10	4	4	7	2	5	4	4		2	1
$\mathrm{LSM}_{2}[j]$		1	2	3			5	2	7	6	2	10	2	5	57		2	-1
Cond 1.		F	F	F			F	T	F	F	T	F	T	T	T		T	T
Cond 2.		T	T	T			F	T	F	F	F	F	F	F	F		F	F
Cond 3.		T	T	T			F	T	F	F	F	F	F	F	F		F	
2-Closed Border		F	F	F			F	T	F	F	F	F	F	F	F		F	F

Complete Example ($k=2$)

Complete Example ($k=2$)

$j \begin{array}{lllllllllllllllll} \\ j & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1314\end{array}$																			
	$x[j]$	a	b	b	a	b	a	a	a	b	a	b	a		a	b	a		b
	$\mathrm{LPM}_{2}[j]$	-1	3	4	7	(2)	2) 10	4	4	4	7	2	5	5	4	3	2		1
	$\mathrm{LSM}_{2}[\mathrm{j}]$	1	2	3	4	5	2	7	7	6	2	10	2		5	7	2		-1
	Cond 1.	F	F	F	F	F	T	F	F	F	T	F	T		T	T	T		T
	Cond 2.	T	T	T	T	(F)	T	F	F	F	F	F	F		F	F	F		F
	Cond 3.	T	T	T	F	F	T		F	F	F	F	F		F	F	F		F
2-Closed Border		F	F	F	F	F	T	F	F	F	F	F	F		F	F			F
							-												

Complete Example ($k=2$)

Complete Example ($k=2$)

		0		2	3	4		5	6	7	8	9	10	1			13	
				b	a	b			a	b	a	b		a		b	a	b
	$\mathrm{LPM}_{2}[j]$	-1	3	4	7	2		0 (4)	4)	4	7	2	5	4	4	3	2	1
$\mathrm{LSM}_{2}[j]$		1	2	3	4	5	2	2	7	6	2	10	2	5		7	2	-1
Cond 1.		F	F	F	F	F			F	F	T	F	T	T	T	T	T	T
Cond 2.		T	T	T	T	F			F	F	F	F	F	F	F	F	F	F
Cond 3		T	T	T	F	F			F	F	F	F		F		F	F	
2-Closed Border		F	F	F	F	F		T	F	F	F	F	F	F	F	F	F	

Complete Example ($k=2$)

j 0																		
		a		b	a	b			a	b	a	b		a		b	a	b
	$\mathrm{LPM}_{2}[j]$	-1	3	4	7	2	1	0	4	(4)	7	2	5	4	4	3	2	1
	$\mathrm{LSM}_{2}[j]$	1	2	3	4	5	2	2	7	6	2	10	2	5	5	7	2	-1
	Cond 1.	F	F	F	F	F		T	F	F	T	F	T	T	T	T	T	T
	Cond 2.	T	T	T	T	F			F	(F)	F	F	F	F		F	F	F
	Cond 3.	T	T	T	F	F	T		F	F	F	F	F	F		F	F	
2-Closed	Border	F	F	F	F	F		T	F	F	F	F	F	F	F	F	F	F

Complete Example ($k=2$)

Complete Example ($k=2$)

j $\begin{array}{llllllllllllllll} & 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1314\end{array}$																		
	$x[j]$	a	b	b	a	b	a	a	b	b	a	b	a		a	b	a	b
	$\mathrm{LPM}_{2}[j]$	-1	3	4	7	2	10	4	4	4	7	(2)	5	4	4	3	2	1
	$\mathrm{LSM}_{2}[\mathrm{j}]$	1	2	3	4	5	2	7	6	6	2	10	2		5	7	2	-1
	Cond 1.	F	F	F	F	F	T	F	F	F	T	F	T		T	T	T	T
	Cond 2.	T	T	T	T	F	T	F	F	F	F	(F)	F		F	F	F	F
	Cond 3.	T	T	T	F	F	T	F	F	F	F	F	F		F	F	F	F
2-Closed Border		F	F	F	F	F	T	F	F	F	F	F	F		F	F	F	F
							-											

Complete Example ($k=2$)

$j \begin{array}{lllllllllllllllll} \\ j & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1314\end{array}$																		
	$x[j]$	a	b	b	a	b	a	a	b		a	b	a	a	b		a	b
	$\mathrm{LPM}_{2}[j]$	-1	3	4	7	2	10	4	,		7	2	(5)	4	3		2	1
	$\mathrm{LSM}_{2}[\mathrm{j}]$	1	2	3	4	5	2	7	6		2	10	2	5	7		2	-1
	Cond 1.	F	F	F	F	F	T	F	F		T	F	T	T	T		T	T
	Cond 2.	T	T	T	T	F	T	F	F		F	F	(F)		F		F	F
	Cond 3.	T	T	T	F	F	T	F	F		F	F	F	F	F		F	F
2-Closed Border		F	F	F	F	F	T	F	F		F	F	F	F	F		F	F
							-											

Complete Example ($k=2$)

				b			b	a	a	b	a	b		a		b	a		b
	$\mathrm{LPM}_{2}[j]$	-1	3	4			2	10	4	4	7	2	5	(4)		3	2		1
	$\mathrm{LSM}_{2}[j]$	1	2	3			5	2	7	6	2	10	2	5		7	2		-1
	Cond 1.	F	F	F			F	T	F	F	T	F	T	T		T	T		T
	Cond 2.	T	T	T			F	T	F	F	F	F	F	F		F	F		F
	Cond 3.	T	T	T			F	T	F	F	F	F		F		F	F		
2-Closed	Border	F	F	F			F	T	F	F	F	F	F	F		F	F		

Complete Example ($k=2$)

j $\begin{array}{lllllllllllllllll} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 121314\end{array}$																		
	$x[j]$	a	b	b	a	b	a	a	b	b	a	b	a	a	a	b	a	b
	$\mathrm{LPM}_{2}[j]$	-1	3	4	7	2	10	4	4	4	7	2	5		4	(3)	2	1
	$\mathrm{LSM}_{2}[\mathrm{j}]$	1	2	3	4	5	2	7	6	6	2	10	2	5	5	7	2	-1
	Cond 1.	F	F	F	F	F	T	F	F	F	T	F	T	T	T	T	T	T
	Cond 2.	T	T	T	T	F	T	F	F	F	F	F	F	F	F	(1)	F	F
	Cond 3.	T	T	T	F	F	T	F	F	F	F	F	F	F	F	F	F	F
2-Closed	Border	F	F	F	F	F	T	F	F	F	F	F	F	F	F	F	F	F
							-											

Complete Example ($k=2$)

j 0																		
		a	b	b	a	b			a	b	a	b		a	b		a	b
	$\mathrm{LPM}_{2}[j]$	-1	3	4	7	2	1	0	4	4	7	2	5	4	3		2)	1
	$\mathrm{LSM}_{2}[j]$	1	2	3	4	5	2	2	7	6	2	10	2	5	7		2	-1
	Cond 1.	F	F	F	F	F		T	F	F	T	F	T	T	T		T	T
	Cond 2.	T	T	T	T	F		T	F	F	F	F	F	F	F		F	F
	Cond 3.	T	T	T	F	F	T	T	F	F	F	F	F	F	F		F	
2-Closed	Border	F	F	F	F	F		T	F	F	F	F	F	F	F		F	F

Complete Example ($k=2$)

Complexity Analysis

1. Preprocess x (via a suffix tree) to allow for constant time LCE queries.
$\mathcal{O}(n)$ time and $\mathcal{O}(n)$ space.
2. Recursively generate $\mathrm{LPM}_{k^{\prime}}$ and $\mathrm{LSM}_{k^{\prime}}$ for $0 \leq k^{\prime} \leq k$. k steps each requiring $\mathcal{O}(n)$ time. Total of $\mathcal{O}(n)$ space.
3. During each of the k steps, determine the "peaks" of the LPM and LSM arrays, then verify if the 3 conditions are satisfied for some j where $1 \leq j \leq n-1$.
Requires additional $\mathcal{O}(n)$ time for each of the k steps.

Summary

Summary

- We have generalised closed strings to k-closed strings.
- We have an algorithm that identifies whether a string x is k-closed, and determines the k-closed border, in $\mathcal{O}(k n)$ time and $\mathcal{O}(n)$ space.
- Further Work: Improvement in the construction of the LPM and LSM arrays, currently requiring $\mathcal{O}(k n)$ time. Decreasing this time complexity appears to be a reasonable, however non-trivial, goal for any future work on this problem.

Appendix

References

囯 Gabriele Fici
A Classification of Trapezoidal Words
Words 2011，63：129－137， 2011.
围 Golnaz Badkobeh and Gabriele Fici and Zsuzsanna Lipták A Note on Words With the Smallest Number of Closed Factors
CoRR，1305．6395， 2013.
嗇 Golnaz Badkobeh and Hideo Bannai and Keisuke Goto and Tomohiro I and Costas S．Iliopoulos and Shunsuke Inenaga and Simon J．Puglisi and Shiho Sugimoto
Closed factorization
Discrete Applied Mathematics，212：23－29， 2016.

Thank you for listening ©

