
Streaming and property testing algorithms for
string processing

Tatiana Starikovskaya

Based on joint work with:
R. Clifford, P. Gawrychowski, A. Fontaine, E. Porat, B. Sach

1 / 31



▸ Pattern matching has been studied for 40+ years

▸ More than 85 algorithms

▸ KMP algorithm uses O(∣P∣) space and O(∣T∣) time, and
Aho-Corasick achieves similar bounds for dictionary
matching

▸ We can’t do better: we must store a description of the
pattern(s) and we must read the whole text

2 / 31



3 / 31



Intrusion Detection Systems

▸ Large number of patterns

▸ Search patterns represent
portions of known attack
patterns and have length 1−30

▸ If only cache memory is used,
the algorithm can benefit most
from a high performance cache

4 / 31



Outline of today’s talk

Streaming model

▸ Exact pattern matching

▸ Approximate pattern matching (Hamming distance)

▸ Approximate pattern matching (edit distance)

▸ Preprocessing

Property testing model

▸ Exact pattern matching

5 / 31



Streaming model

We want to process the stream on-the-fly & in small space

6 / 31



Part I: Exact pattern matching

7 / 31



Exact pattern matching

c

b c a a a c
pattern P

c

NO

text T
a a b c a

a a c a

▸ Query = “Is there an occurrence of P?”

▸ Space = total space used by the stream processor

▸ Time = time per position of T

8 / 31



Exact pattern matching

c

b c a a a c
pattern P

NO

text T
a a b c a a

a c a

▸ Query = “Is there an occurrence of P?”

▸ Space = total space used by the stream processor

▸ Time = time per position of T

8 / 31



Exact pattern matching

c

b c a a a c
pattern P

NO

text T
a a b c a a a

c a

▸ Query = “Is there an occurrence of P?”

▸ Space = total space used by the stream processor

▸ Time = time per position of T

8 / 31



Exact pattern matching

c

b c a a a c
pattern P

YES

text T
a a b c a a a c

a

▸ Query = “Is there an occurrence of P?”

▸ Space = total space used by the stream processor

▸ Time = time per position of T

8 / 31



Exact pattern matching

c

b c a a a c
pattern P

NO

text T
a a b c a a a c a

▸ Query = “Is there an occurrence of P?”

▸ Space = total space used by the stream processor

▸ Time = time per position of T

8 / 31



Karp-Rabin algorithm

Karp-Rabin fingerprint

ϕ(s1s2 . . . sm) =
m

∑
i=1

sirm−i mod p

where p is a prime and r is a random integer ∈ [0,p − 1]

It’s a good hash function
S1,S2 are two strings of length m, the prime p is large

1. S1 = S2 ⇒ ϕ(S1) = ϕ(S2)

2. S1 ≠ S2, lengths of S1,S2 are equal⇒ ϕ(S1) ≠ ϕ(S2) w.h.p.

9 / 31



Karp-Rabin algorithm

b c a a a c
pattern P

YES

text T
c a a b c a a a c a

When a new character ti = a arrives:

1. Compute the fingerprint ϕ(ti−m+1 . . . ti−1ti) in O(1) time

ϕ(caaacc) = ((ϕ(bcaaac) − brm−1) ⋅ r + a mod p

2. If ϕ(ti−m+1 . . . ti−1ti) = ϕ(P), output “YES”

We need ti−m to update the fingerprint⇒ we must store ti−m, . . . , ti−1

10 / 31



Karp-Rabin algorithm

b c a a a c
pattern P

YES

text T
c a a b c a a a c a

K.-R. algorithm is a streaming pattern matching algorithm
that uses Θ(m) space and O(1) time per character of T

It finds all occurrences of P in T correctly w.h.p.

10 / 31



Exact pattern matching

Authors Space 1 Time
Single pattern

Karp & Rabin, 1987 Θ(m) O(1)
Porat & Porat, 2009 O(log m) O(log m)
Breslauer & Galil, 2011 O(log m) O(1)

Dictionary of d patterns
Clifford, Fontaine, Porat

O(d log m) O(log log(m + d))
Sach, S., 2015

Golan & Porat, 2017
O(d log m) O(log log ∣Σ∣)

O(∣Σ∣εd log(m/ε)) O(1/ε)

1In words
11 / 31



Exact pattern matching

Authors Space 1 Time
Single pattern

Karp & Rabin, 1987 Θ(m) O(1)
Porat & Porat, 2009 H O(log m) O(log m)
Breslauer & Galil, 2011 O(log m) O(1)

Dictionary of d patterns
Clifford, Fontaine, Porat

O(d log m) O(log log(m + d))
Sach, S., 2015

Golan & Porat, 2017
O(d log m) O(log log ∣Σ∣)

O(∣Σ∣εd log(m/ε)) O(1/ε)

1In words
11 / 31



Porat & Porat, 2009 H

text T

occurrences of p1
6

occurrences of p1p2
6 6

occurrences of p1p2p3p4
666

⋮
occurrences of P = p1p2 . . .pm

for each character ti do
if ti = p1 then push i to level 0
for each j = 0, . . . , log m − 1

lp← leftmost position in level j
if i − lp + 1 = 2j+1 then

Pop lp from level j
if ϕ(tlp . . . ti) = ϕ(p1 . . .p2j+1) then push lp to level j + 1

12 / 31



Porat & Porat, 2009 H

text T

occurrences of p1
6

occurrences of p1p2
6 6

occurrences of p1p2p3p4
666

occurrences of P = p1p2 . . .pm

ti

⋮

for each character ti do
if ti = p1 then push i to level 0
for each j = 0, . . . , log m − 1

lp← leftmost position in level j
if i − lp + 1 = 2j+1 then

Pop lp from level j
if ϕ(tlp . . . ti) = ϕ(p1 . . .p2j+1) then push lp to level j + 1

12 / 31



Porat & Porat, 2009 H

text T

occurrences of p1
6

occurrences of p1p2
6 6

occurrences of p1p2p3p4
666

occurrences of P = p1p2 . . .pm

ti

⋮

If i is an occ. of p1,
push it to level 0

for each character ti do
if ti = p1 then push i to level 0
for each j = 0, . . . , log m − 1

lp← leftmost position in level j
if i − lp + 1 = 2j+1 then

Pop lp from level j
if ϕ(tlp . . . ti) = ϕ(p1 . . .p2j+1) then push lp to level j + 1

12 / 31



Porat & Porat, 2009 H

text T

occurrences of p1
6

occurrences of p1p2
6 6

occurrences of p1p2p3p4
666

occurrences of P = p1p2 . . .pm

ti

⋮

6

If i is an occ. of p1,
push it to level 0

for each character ti do
if ti = p1 then push i to level 0
for each j = 0, . . . , log m − 1

lp← leftmost position in level j
if i − lp + 1 = 2j+1 then

Pop lp from level j
if ϕ(tlp . . . ti) = ϕ(p1 . . .p2j+1) then push lp to level j + 1

12 / 31



Porat & Porat, 2009 H

text T

occurrences of p1
6

occurrences of p1p2
6 6

occurrences of p1p2p3p4
666

occurrences of P = p1p2 . . .pm

ti

⋮

6
If lp is an occ. of
p1p2, promote it

for each character ti do
if ti = p1 then push i to level 0
for each j = 0, . . . , log m − 1

lp← leftmost position in level j
if i − lp + 1 = 2j+1 then

Pop lp from level j
if ϕ(tlp . . . ti) = ϕ(p1 . . .p2j+1) then push lp to level j + 1

12 / 31



Porat & Porat, 2009 H

text T

occurrences of p1

occurrences of p1p2
6 6

occurrences of p1p2p3p4
666

occurrences of P = p1p2 . . .pm

ti

⋮

6
If lp is an occ. of
p1p2, promote it6

for each character ti do
if ti = p1 then push i to level 0
for each j = 0, . . . , log m − 1

lp← leftmost position in level j
if i − lp + 1 = 2j+1 then

Pop lp from level j
if ϕ(tlp . . . ti) = ϕ(p1 . . .p2j+1) then push lp to level j + 1

12 / 31



Porat & Porat, 2009 H

text T

occurrences of p1

occurrences of p1p2

occurrences of p1p2p3p4
666

occurrences of P = p1p2 . . .pm

ti

⋮

6

66 6

Lemma If there are ≥ 3 occurrences of a 2j-length string in a
2j+1-length string, the occurrences form a run

For each level we store:

▸ The leftmost and the second leftmost positions lp, lp′

▸ The fingerprints of t1t2 . . . tlp, tlp+1 . . . tlp′ , and t1 . . . ti

13 / 31



Porat & Porat, 2009 H

text T

occurrences of p1

occurrences of p1p2

occurrences of p1p2p3p4
666

occurrences of P = p1p2 . . .pm

ti

⋮

6

66 6

For each level we need:

▸ O(1) space

▸ O(1) time for updating and extracting ϕ(tlp . . . ti)

Theorem Porat & Porat algorithm is a streaming pattern
matching algorithm that uses O(log m) space and O(log m) time
per character

13 / 31



Part II: Approximate pattern matching

14 / 31



Approximate pattern matching

dist(P,T)

b c a a a c
pattern P

text T
c a a b c a a a c a

▸ Query = “Distance between P and T”

▸ Distance: Hamming, edit, . . .

15 / 31



Approximate pattern matching (Hamming distance)

Any streaming algorithm for computing exact Hamming
distances must use Ω(m) space

By Yao’s minimax principle it suffices to consider deterministic
algorithms on “hard” distribution of the inputs

0 0 0 0 0 0
pattern P

text T
1 0 1 1 0 0 0 0 0 0 0 0

T[1,m] is random

After reading T[m], the algorithm cannot go back and read one
of the letters T[1],T[2], . . . ,T[m], but can restore T[1,m]

Therefore, it stores a full description of T[1,m] ⇒ Ω(m) space by
information-theoretic ideas

16 / 31



Approximate pattern matching (Hamming distance)

Any streaming algorithm for computing exact Hamming
distances must use Ω(m) space

By Yao’s minimax principle it suffices to consider deterministic
algorithms on “hard” distribution of the inputs

0 0 0 0 0 0
pattern P

text T
1 0 1 1 0 0 0 0 0 0 0 0

dist(P,T) = 3

T[1,m] is random

After reading T[m], the algorithm cannot go back and read one
of the letters T[1],T[2], . . . ,T[m], but can restore T[1,m]

Therefore, it stores a full description of T[1,m] ⇒ Ω(m) space by
information-theoretic ideas

16 / 31



Approximate pattern matching (Hamming distance)

Any streaming algorithm for computing exact Hamming
distances must use Ω(m) space

By Yao’s minimax principle it suffices to consider deterministic
algorithms on “hard” distribution of the inputs

0 0 0 0 0 0
pattern P

text T
1 0 1 1 0 0 0 0 0 0 0 0

dist(P,T) = 2, T[1] = 3 − 2

T[1,m] is random

After reading T[m], the algorithm cannot go back and read one
of the letters T[1],T[2], . . . ,T[m], but can restore T[1,m]

Therefore, it stores a full description of T[1,m] ⇒ Ω(m) space by
information-theoretic ideas

16 / 31



Approximate pattern matching (Hamming distance)

Any streaming algorithm for computing exact Hamming
distances must use Ω(m) space

By Yao’s minimax principle it suffices to consider deterministic
algorithms on “hard” distribution of the inputs

0 0 0 0 0 0
pattern P

text T
1 0 1 1 0 0 0 0 0 0 0 0

dist(P,T) = 2, T[2] = 2 − 2

T[1,m] is random

After reading T[m], the algorithm cannot go back and read one
of the letters T[1],T[2], . . . ,T[m], but can restore T[1,m]

Therefore, it stores a full description of T[1,m] ⇒ Ω(m) space by
information-theoretic ideas

16 / 31



Approximate pattern matching (Hamming distance)

Authors Space 2 Time
Single pattern, only distances ≤ k

Porat & Porat, 2009 Õ(k3) Õ(k2)
Clifford, Fontaine, Porat,
Sach, S., 2016

Õ(k2) Õ(
√

k)
Clifford, Kociumaka,
Porat, 2018

O(k log m
k ) O(k log3 m log m

k )

Single pattern, (1 + ε)-approx.
Clifford, S., 2016 O(ε−5√m log4 m) O(ε−4 log3 m)

2In words
17 / 31



Approximate pattern matching (Hamming distance)

Authors Space 2 Time
Single pattern, only distances ≤ k

Porat & Porat, 2009 H Õ(k3) Õ(k2)
Clifford, Fontaine, Porat,
Sach, S., 2016

Õ(k2) Õ(
√

k)
Clifford, Kociumaka,
Porat, 2018

O(k log m
k ) O(k log3 m log m

k )

Single pattern, (1 + ε)-approx.
Clifford, S., 2016 O(ε−5√m log4 m) O(ε−4 log3 m)

2In words
17 / 31



Porat & Porat, 2009 H

dist(P,T)

b c a a a c
pattern P

text T
c a a b c a a a c a

▸ If HAM(P,T) > k, output “NO”

▸ Otherwise, output HAM(P,T)

18 / 31



From 1 mismatch to exact pattern matching

string1

string2

▸ Is HAM (string1, string2) = 1?

19 / 31



From 1 mismatch to exact pattern matching

a b a a c b a b a a b b

a b a c c b a b a a a b

string1

string2

6 6

▸ Is HAM(string1, string2) = 1?

▸ Partition the strings into substrings of q colors

▸ One mismatch⇒ one pair of substrings does not match

▸ Hope: If there are ≥ 2 mismatches, they will end up in
substrings of different colors⇒ at least 2 pairs of substrings
do not match

19 / 31



From 1 mismatch to exact pattern matching

a b a a c b a b a a b b

a b a c c b a b a a a b

string1

string2

6 6

For each prime q ∈ [log m, log2 m]:
Partition string1 into q equi-spaced substrings
Partition string2 into q equi-spaced substrings

In total: O(log m) primes, and for each prime there are
O(log2 m) pairs of substrings

19 / 31



From 1 mismatch to exact pattern matching

a b a a c b a b a a b b

a b a c c b a b a a a b

string1

string2

6 6

Lemma There are ≥ 2 mismatches 61,62 ⇒ there exists a prime
q such that at least two pairs of substrings do not match

▸ 61,62 in the same pair⇔ 61 −62 = 0 (mod q)

▸ m ≥ 61 −62 cannot be a multiple of log m distinct primes

19 / 31



From 1 mismatch to exact pattern matching

text T

pattern P

Is HAM(P, T) = 1?

for each position of the text T do
for each prime q in [log m, log2 m] do

h← number of (substream, subpattern) that mismatch
if h = 0 OR h > 1 return “NO”

return “YES”

20 / 31



From 1 mismatch to exact pattern matching

text T

pattern P

Compute number of mismatching pairs

for each prime q in [log m, log2 m] do
for each (substream, subpattern) do

run streaming exact pattern matching

20 / 31



From 1 mismatch to exact pattern matching

text T

pattern P

Complexity

Space = O( log m
²

# of primes

⋅ log2 m
´¹¹¹¹¹¸¹¹¹¹¹¹¶

# of substr.

⋅ log2 m
´¹¹¹¹¹¸¹¹¹¹¹¹¶

# of subpatterns

⋅ log m)

Time = O( log m
²

# of primes

⋅ log2 m
´¹¹¹¹¹¸¹¹¹¹¹¹¶

# of substr.

⋅ log2 m
´¹¹¹¹¹¸¹¹¹¹¹¹¶

# of subpatterns

)

20 / 31



Approximate pattern matching (Hamming distance)

Porat & Porat, 2009
Õ(k3) space, Õ(k2) time
Same as for k = 1 but take more primes

Clifford, Fontaine, Porat, Sach, S., 2016
Õ(k2) space, Õ(

√
k) time

We can take fewer primes if we choose them at random +
periodicity to improve time

Clifford, Kociumaka, Porat, 2018
O(k log m

k ) space, O(k log3 m log m
k ) time

New encoding for mismatch information + periodicity +
exponentially growing prefixes

21 / 31



Approximate pattern matching (edit distance)

ED(P,T)

b c a a a c
pattern P

text T
c a a b c a a a c a

ED(P,S) = minimum number of insertions, deletions, and
replacements that transform P into S

Example: P = aaac, S = abacb, edit distance = 2

▸ If ED(P,T) > k, output “NO”

▸ Otherwise, output ED(P,T)

22 / 31



Approximate pattern matching (edit distance)

ED(P,T)

b c a a a c
pattern P

text T
c a a b c a a a c a

ED(P,S) = minimum number of insertions, deletions, and
replacements that transform P into S

Example: P = aaac, S = abacb, edit distance = 2

▸ Hybrid dynamic programming: O(m) space, O(k) time

▸ S., 2017: O(
√

m ⋅ poly(k, log m)) space,
O(

√
m ⋅ poly(k, log m)) time

22 / 31



Embedding from edit to Hamming distance
Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions hj ∶ {0,1} → {0,1}

0
1

1
2

1
3

0
4

1
5

1
6

0
7

0
8

00 . . .

3n

1 1 1 1 0 1 0 1 1. . .1

Copy letters of S to S′:

0
1

1
2

0
3

0
n

S ∶ . . .
S′ ∶

0
text position = 1, j = 1

1. Copy S[i]. If hj(S[i]) = 1, move to the right;
2. j = j + 1.

23 / 31



Embedding from edit to Hamming distance
Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions hj ∶ {0,1} → {0,1}

0
1

1
2

1
3

0
4

1
5

1
6

0
7

0
8

00 . . .

3n

1 1 1 1 0 1 0 1 1. . .1

Copy letters of S to S′:

0
1

1
2

0
3

0
n

S ∶ . . .
S′ ∶

0
0 text position = 1, j = 1

1. Copy S[i]. If hj(S[i]) = 1, move to the right;
2. j = j + 1.

23 / 31



Embedding from edit to Hamming distance
Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions hj ∶ {0,1} → {0,1}

0
1

1
2

1
3

0
4

1
5

1
6

0
7

0
8

00 . . .

3n

1 1 1 1 0 1 0 1 1. . .1

0

Copy letters of S to S′:

0
1

1
2

0
3

0
n

S ∶ . . .
S′ ∶

0
0 text position = 1, j = 1

1. Copy S[i]. If hj(S[i]) = 1, move to the right;
2. j = j + 1.

23 / 31



Embedding from edit to Hamming distance
Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions hj ∶ {0,1} → {0,1}

0
1

1
2

1
3

0
4

1
5

1
6

0
7

0
8

00 . . .

3n

1 1 1 1 0 1 0 1 1. . .1

Copy letters of S to S′:

0
1

1
2

0
3

0
n

S ∶ . . .
S′ ∶

0
0

text position = 1, j = 2

1. Copy S[i]. If hj(S[i]) = 1, move to the right;
2. j = j + 1.

23 / 31



Embedding from edit to Hamming distance
Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions hj ∶ {0,1} → {0,1}

0
1

1
2

1
3

0
4

1
5

1
6

0
7

0
8

00 . . .

3n

1 1 1 1 0 1 0 1 1. . .1

Copy letters of S to S′:

0
1

1
2

0
3

0
n

S ∶ . . .
S′ ∶

0
0 0

text position = 1, j = 2

1. Copy S[i]. If hj(S[i]) = 1, move to the right;
2. j = j + 1.

23 / 31



Embedding from edit to Hamming distance
Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions hj ∶ {0,1} → {0,1}

0
1

1
2

1
3

0
4

1
5

1
6

0
7

0
8

00 . . .

3n

1 1 1 1 0 1 0 1 1. . .1

1

Copy letters of S to S′:

0
1

1
2

0
3

0
n

S ∶ . . .
S′ ∶

0
0 0

text position = 1, j = 2

1. Copy S[i]. If hj(S[i]) = 1, move to the right;
2. j = j + 1.

23 / 31



Embedding from edit to Hamming distance
Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions hj ∶ {0,1} → {0,1}

0
1

1
2

1
3

0
4

1
5

1
6

0
7

0
8

00 . . .

3n

1 1 1 1 0 1 0 1 1. . .1

Copy letters of S to S′:

0
1

1
2

0
3

0
n

S ∶ . . .
S′ ∶ 0 0

1
text position = 2, j = 3

1. Copy S[i]. If hj(S[i]) = 1, move to the right;
2. j = j + 1.

23 / 31



Embedding from edit to Hamming distance
Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions hj ∶ {0,1} → {0,1}

0
1

1
2

1
3

0
4

1
5

1
6

0
7

0
8

00 . . .

3n

1 1 1 1 0 1 0 1 1. . .1

Copy letters of S to S′:

0
1

1
2

0
3

0
n

S ∶ . . .
S′ ∶ 0 0

1
1

text position = 2, j = 3

1. Copy S[i]. If hj(S[i]) = 1, move to the right;
2. j = j + 1.

23 / 31



Embedding from edit to Hamming distance
Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions hj ∶ {0,1} → {0,1}

0
1

1
2

1
3

0
4

1
5

1
6

0
7

0
8

00 . . .

3n

1 1 1 1 0 1 0 1 1. . .1 1

Copy letters of S to S′:

0
1

1
2

0
3

0
n

S ∶ . . .
S′ ∶ 0 0

1
1

text position = 2, j = 3

1. Copy S[i]. If hj(S[i]) = 1, move to the right;
2. j = j + 1.

23 / 31



Embedding from edit to Hamming distance
Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions hj ∶ {0,1} → {0,1}

0
1

1
2

1
3

0
4

1
5

1
6

0
7

0
8

00 . . .

3n

1 1 1 1 0 1 0 1 1. . .1

Copy letters of S to S′:

0
1

1
2

0
3

0
n

S ∶ . . .
S′ ∶ 0 0 1 . . .

text position = 2, j = 3

If ED(S,T) = k, then k/2 ≤ HD(S′,T′) ≤ O(k2) w/ prob. 0.99

23 / 31



Embedding from edit to Hamming distance
Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions hj ∶ {0,1} → {0,1}

0
1

1
2

1
3

0
4

1
5

1
6

0
7

0
8

00 . . .

3n

1 1 1 1 0 1 0 1 1. . .1

Copy letters of S to S′:

0
1

1
2

0
3

0
n

S ∶ . . .
S′ ∶ 0 0 1 . . .

text position = 2, j = 3

Belazzougui, Zhang, 2016
▸ Embedding + streaming alg’m for k2-mismatch⇒ a good

estimate for edit distance

▸ If ED(S,T) ≤ k, Õ(k2) embeddings + streaming alg’m for
k2-mismatch⇒ exact value! 23 / 31



Approximate pattern matching (edit distance)

P[1,B − r] P[B − r + 1,m]

B ≃
√

m B ≃
√

m B ≃
√

m B ≃
√

m B ≃
√

m

Belazzougui & Zhang, 2016

Starting from each block i, run Belazzougui & Zhang, 2016

ED[j] = min
i∈[r−k,r+k]

ED(P[1,B − i],T1) + ED(P[B − i + 1,m],T2)

We compute ED(P[1,B − i],T1) while reading T1 using dynamic
programming, then encode the distances to restore later

24 / 31



Part III: Preprocessing

25 / 31



Preprocessing for pattern matching

Can we preprocess the patterns in a streaming way?
If yes, do we need to read them several times?
How much space do we need?

Periodicity — Ergün, Jowhari, Saglam, 2010
▸ Periodic patterns: O(log m) space, O(log m) time

▸ Non-periodic patterns: Ω(m) space

▸ 2 passes (periodic and non-periodic patterns): O(log m)
space, O(log m) time

Periodicity with mismatches — Ergün et al., 2017
▸ Periodic patterns: O(k4 log9 n) space

▸ 2-pass algorithm for non-periodic patterns, lower bounds

26 / 31



Part IV: Property testing model

27 / 31



Pattern matching

pattern P

text T

Is T free from occurrences of P?

Same question when T and P are of dimension d ≥ 2

28 / 31



Property testing model

If Sherlock wants to solve the problem fast, he can only query a
few characters of T

29 / 31



Property testing model

Task: develop an ultra-efficient randomised algorithm to decide
whether T is free from occurrences of P

We must

▸ accept, if T is ε1-close to being P-free

▸ reject, if T is ε2-far from being P-free

▸ accept or reject otherwise

ε1-close = we can fix ≤ ε1n characters of T so that the property is
satisfied

ε2-far = we must fix ≥ ε2n characters of T so that the property is
satisfied

30 / 31



Property testing model

Task: develop an ultra-efficient randomised algorithm to decide
whether T is free from occurrences of P

We must

▸ accept, if T is ε1-close to being P-free

▸ reject, if T is ε2-far from being P-free

▸ accept or reject otherwise

Ben-Eliezer, Korman, Reichman, 2017

There is an algorithm which queries O(ε−1) letters of T and
distinguishes between ε/2-close and ε-far (for almost all patterns)

30 / 31



Summary of today’s talk

It’s all about pattern matching

Randomisation and approximation⇒ more efficient algorithms

Many open questions

Thank you!

31 / 31


