Streaming and property testing algorithms for string processing

Tatiana Starikovskaya

Based on joint work with: R. Clifford, P. Gawrychowski, A. Fontaine, E. Porat, B. Sach

- Pattern matching has been studied for 40+ years
- More than 85 algorithms
- KMP algorithm uses O(|P|) space and O(|T|) time, and Aho-Corasick achieves similar bounds for dictionary matching
- We can't do better: we must store a description of the pattern(s) and we must read the whole text

Intrusion Detection Systems

- Large number of patterns
- Search patterns represent portions of known attack patterns and have length 1-30
- If only cache memory is used, the algorithm can benefit most from a high performance cache

Outline of today's talk

Streaming model

- Exact pattern matching
- Approximate pattern matching (Hamming distance)
- Approximate pattern matching (edit distance)
- Preprocessing

Property testing model

Streaming model

We want to process the stream on-the-fly & in small space

Part I: Exact pattern matching

- **Query** = "Is there an occurrence of *P*?"
- **Space** = total space used by the stream processor
- **Time** = time per position of T

- **Query** = "Is there an occurrence of *P*?"
- Space = total space used by the stream processor
- **Time** = time per position of T

- **Query** = "Is there an occurrence of *P*?"
- **Space** = total space used by the stream processor
- **Time** = time per position of T

- **Query** = "Is there an occurrence of *P*?"
- Space = total space used by the stream processor
- **Time** = time per position of *T*

- **Query** = "Is there an occurrence of *P*?"
- Space = total space used by the stream processor
- **Time** = time per position of *T*

Karp-Rabin algorithm

Karp-Rabin fingerprint

$$\varphi(s_1s_2\ldots s_m) = \sum_{i=1}^m s_i r^{m-i} \bmod p$$

where *p* is a prime and *r* is a random integer $\in [0, p-1]$

It's a good hash function

 S_1, S_2 are two strings of length *m*, the prime *p* is large

1. $S_1 = S_2 \Rightarrow \varphi(S_1) = \varphi(S_2)$

2. $S_1 \neq S_2$, lengths of S_1, S_2 are equal $\Rightarrow \varphi(S_1) \neq \varphi(S_2)$ w.h.p.

When a new character $t_i = a$ arrives:

1. Compute the fingerprint $\varphi(t_{i-m+1} \dots t_{i-1}t_i)$ in O(1) time

 $\varphi(\underline{caaacc}) = \left((\varphi(\underline{bcaaac}) - \underline{br}^{m-1}) \cdot r + a \mod p \right)$

2. If $\varphi(t_{i-m+1} \dots t_{i-1}t_i) = \varphi(P)$, output "YES"

We need t_{i-m} to update the fingerprint \Rightarrow we must store t_{i-m}, \ldots, t_{i-1}

K.-R. algorithm is a **streaming pattern matching algorithm** that uses $\Theta(m)$ space and O(1) time per character of *T*

It finds all occurrences of *P* in *T* correctly w.h.p.

Authors	Space ¹	Time
Single pattern		
Karp & Rabin, 1987	$\Theta(m)$	<i>O</i> (1)
Porat & Porat, 2009	$O(\log m)$	$O(\log m)$
Breslauer & Galil, 2011	$O(\log m)$	<i>O</i> (1)

Dictionary of <i>d</i> patterns		
Clifford, Fontaine, Porat Sach, S., 2015	$O(d\log m)$	$O(\log \log(m+d))$
Golan & Porat, 2017	$O(d\log m)$ $O(\Sigma ^{\varepsilon} d\log(m/{\varepsilon}))$	$O(\log \log \Sigma) \ O(1/arepsilon)$

Authors	Space ¹	Time	
Single pattern			
Karp & Rabin, 1987	$\Theta(m)$	<i>O</i> (1)	
Porat & Porat, 2009 ★	$O(\log m)$	$O(\log m)$	
Breslauer & Galil, 2011	$O(\log m)$	<i>O</i> (1)	

Dictionary of <i>d</i> patterns		
Clifford, Fontaine, Porat Sach, S., 2015	$O(d\log m)$	$O(\log \log(m+d))$
Golan & Porat, 2017	$O(d\log m)$ $O(\Sigma ^{\varepsilon} d\log(m/{\varepsilon}))$	$O(\log \log \Sigma) \ O(1/arepsilon)$

occurrences of $P = p_1 p_2 \dots p_m$

occurrences of $P = p_1 p_2 \dots p_m$

occurrences of $P = p_1 p_2 \dots p_m$

occurrences of $P = p_1 p_2 \dots p_m$

occurrences of $P = p_1 p_2 \dots p_m$

occurrences of $P = p_1 p_2 \dots p_m$

Lemma If there are ≥ 3 occurrences of a 2^{j} -length string in a 2^{j+1} -length string, the occurrences form a run

For each level we store:

- ▶ The leftmost and the second leftmost positions *lp*, *lp*′
- The fingerprints of $t_1 t_2 \dots t_{lp}, t_{lp+1} \dots t_{lp'}$, and $t_1 \dots t_i$

occurrences of $P = p_1 p_2 \dots p_m$

For each level we need:

- **O**(1) space
- O(1) time for updating and extracting $\varphi(t_{lp} \dots t_i)$

<u>Theorem</u> Porat & Porat algorithm is a streaming pattern matching algorithm that uses $O(\log m)$ space and $O(\log m)$ time per character

Part II: Approximate pattern matching

Approximate pattern matching

- **Query** = "Distance between *P* and *T*"
- Distance: Hamming, edit, ...

Any streaming algorithm for computing **exact** Hamming distances must use $\Omega(m)$ space

By **Yao's minimax principle** it suffices to consider deterministic algorithms on "hard" distribution of the inputs

After reading T[m], the algorithm cannot go back and read one of the letters $T[1], T[2], \ldots, T[m]$, but can restore T[1,m]

Any streaming algorithm for computing **exact** Hamming distances must use $\Omega(m)$ space

By **Yao's minimax principle** it suffices to consider deterministic algorithms on "hard" distribution of the inputs

$$dist(P,T) = 3$$
text T
$$T$$

$$T[1,m] is random
$$T[1,m] = T[1,m]$$$$

After reading T[m], the algorithm cannot go back and read one of the letters $T[1], T[2], \ldots, T[m]$, but can restore T[1, m]

Any streaming algorithm for computing **exact** Hamming distances must use $\Omega(m)$ space

By **Yao's minimax principle** it suffices to consider deterministic algorithms on "hard" distribution of the inputs

After reading T[m], the algorithm cannot go back and read one of the letters $T[1], T[2], \ldots, T[m]$, but can restore T[1, m]

Any streaming algorithm for computing **exact** Hamming distances must use $\Omega(m)$ space

By **Yao's minimax principle** it suffices to consider deterministic algorithms on "hard" distribution of the inputs

After reading T[m], the algorithm cannot go back and read one of the letters $T[1], T[2], \ldots, T[m]$, but can restore T[1, m]

Authors	Space ²	Time
Single pattern, only distances $\leq k$		
Porat & Porat, 2009	$\tilde{O}(k^3)$	$\tilde{O}(k^2)$
Clifford, Fontaine, Porat,	$\tilde{O}(k^2)$	$\tilde{O}(\sqrt{k})$
Sach, S., 2016	$O(\kappa)$	$O(\sqrt{\kappa})$
Clifford, Kociumaka,	$O(k \log m)$	$O(k \log^3 m \log \frac{m}{2})$
Porat, 2018	$O(k \log \frac{1}{k})$	$O(k \log m \log \frac{1}{k})$

Single pattern, $(1 + \varepsilon)$ -approx.		
Clifford, S., 2016	$O(\varepsilon^{-5}\sqrt{m}\log^4 m)$	$O(\varepsilon^{-4}\log^3 m)$

Authors	Space ²	Time
Single pattern, only distances $\leq k$		
Porat & Porat, 2009 ★	$\tilde{O}(k^3)$	$ ilde{O}(k^2)$
Clifford, Fontaine, Porat,	$\tilde{O}(k^2)$	$\tilde{O}(\sqrt{k})$
Sach, S., 2016	$O(\kappa)$	$O(\sqrt{k})$
Clifford, Kociumaka,	$O(k \log m)$	$O(k \log^3 m \log^m)$
Porat, 2018	$O(k \log \frac{1}{k})$	$O(k \log m \log \frac{1}{k})$

Single pattern, $(1 + \varepsilon)$ -approx.		
Clifford, S., 2016	$O(\varepsilon^{-5}\sqrt{m}\log^4 m)$	$O(\varepsilon^{-4}\log^3 m)$

- If HAM(*P*,*T*) > *k*, output "NO"
- Otherwise, output HAM(*P*,*T*)

• Is HAM (*string*₁, *string*₂) = 1?

- Is HAM(*string*₁, *string*₂) = 1?
- Partition the strings into substrings of *q* colors
- One mismatch \Rightarrow one pair of substrings does not match
- Hope: If there are ≥ 2 mismatches, they will end up in substrings of different colors ⇒ at least 2 pairs of substrings do not match

For each prime $q \in [\log m, \log^2 m]$: Partition *string*₁ into *q* equi-spaced substrings Partition *string*₂ into *q* equi-spaced substrings

In total: $O(\log m)$ primes, and for each prime there are $O(\log^2 m)$ pairs of substrings

<u>Lemma</u> There are ≥ 2 mismatches $\aleph_1, \aleph_2 \Rightarrow$ there exists a prime q such that at least two pairs of substrings do not match

- $\texttt{X}_1, \texttt{X}_2$ in the same pair $\Leftrightarrow \texttt{X}_1 \texttt{X}_2 = 0 \pmod{q}$
- $m \ge \aleph_1 \aleph_2$ cannot be a multiple of $\log m$ distinct primes

Is HAM(P, T) = 1?

for each position of the text *T* do for each prime *q* in $[\log m, \log^2 m]$ do $h \leftarrow$ number of (substream, subpattern) that mismatch if h = 0 OR h > 1 return "NO" return "YES"

Compute number of mismatching pairs

for each prime q in $[\log m, \log^2 m]$ do for each (substream, subpattern) do run streaming exact pattern matching

Complexity Space = $O(\underbrace{\log m}_{\#} \cdot \underbrace{\log^2 m}_{\#} \cdot \underbrace{\log^2 m}_{\#} \cdot \log m)$ # of primes # of substr. # of subpatterns Time = $O(\underbrace{\log m}_{\#} \cdot \underbrace{\log^2 m}_{\#} \cdot \underbrace{\log^2 m}_{\#})$ # of primes # of substr. # of subpatterns

Porat & Porat, 2009 $\tilde{O}(k^3)$ space, $\tilde{O}(k^2)$ time Same as for k = 1 but take more primes

Clifford, Fontaine, Porat, Sach, S., 2016

 $\tilde{O}(k^2)$ space, $\tilde{O}(\sqrt{k})$ time We can take fewer primes if we choose them at random + periodicity to improve time

Clifford, Kociumaka, Porat, 2018 $O(k \log \frac{m}{k})$ space, $O(k \log^3 m \log \frac{m}{k})$ time New encoding for mismatch information + periodicity + exponentially growing prefixes

ED(P,S) = minimum number of insertions, deletions, and replacements that transform *P* into *S*

Example: P = aaac, S = abacb, edit distance = 2

- If ED(P,T) > k, output "NO"
- Otherwise, output ED(P,T)

ED(P,S) = minimum number of insertions, deletions, and replacements that transform *P* into *S*

Example: P = aaac, S = abacb, edit distance = 2

- Hybrid dynamic programming: $\mathcal{O}(m)$ space, $\mathcal{O}(k)$ time
- S., 2017: $\mathcal{O}(\sqrt{m} \cdot poly(k, \log m))$ space, $\mathcal{O}(\sqrt{m} \cdot poly(k, \log m))$ time

Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

Copy letters of *S* to *S*':

text position = 1, j = 1

Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

Copy letters of *S* to *S*':

text position = 1, j = 1

Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

Copy letters of *S* to *S*':

text position = 1, j = 1

Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

Copy letters of *S* to *S*':

Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

Copy letters of *S* to *S*':

text position = 1, j = 2

Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

Copy letters of *S* to *S*':

text position = 1, j = 2

Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

Copy letters of *S* to *S*':

text position = 2, j = 3

Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

Copy letters of *S* to *S*':

text position = 2, j = 3

Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

Copy letters of *S* to *S*':

text position = 2, j = 3

Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

Copy letters of *S* to *S*':

text position = 2, j = 3

If ED(S,T) = k, then $k/2 \le HD(S',T') \le \mathcal{O}(k^2)$ w/ prob. 0.99

Chakraborty, Goldenberg, Koucky, 2016

Pick 3n random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

Copy letters of *S* to *S*':

text position = 2, j = 3

Belazzougui, Zhang, 2016

- Embedding + streaming alg'm for k²-mismatch ⇒ a good estimate for edit distance
- If $ED(S,T) \le k$, $\tilde{O}(k^2)$ embeddings + streaming alg'm for k^2 -mismatch \Rightarrow exact value!

Starting from each block *i*, run Belazzougui & Zhang, 2016

$$ED[j] = \min_{i \in [r-k,r+k]} ED(P[1,B-i],\mathbf{T_1}) + ED(P[B-i+1,m],\mathbf{T_2})$$

We compute $ED(P[1, B - i], T_1)$ while reading T_1 using dynamic programming, then encode the distances to restore later

Part III: Preprocessing

Preprocessing for pattern matching

Can we preprocess the patterns in a streaming way? If yes, do we need to read them several times? How much space do we need?

Periodicity — Ergün, Jowhari, Saglam, 2010

- Periodic patterns: $O(\log m)$ space, $O(\log m)$ time
- Non-periodic patterns: $\Omega(m)$ space
- 2 passes (periodic and non-periodic patterns): O(log m) space, O(log m) time

Periodicity with mismatches — Ergün et al., 2017

- Periodic patterns: $O(k^4 \log^9 n)$ space
- > 2-pass algorithm for non-periodic patterns, lower bounds

Part IV: Property testing model

Pattern matching

Is *T* free from occurrences of *P*?

Same question when *T* and *P* are of dimension $d \ge 2$

Property testing model

If Sherlock wants to solve the problem fast, he can only query a few characters of T

Property testing model

Task: develop an ultra-efficient randomised algorithm to decide whether T is free from occurrences of P

We must

- accept, if *T* is ε_1 -close to being *P*-free
- reject, if *T* is ε_2 -far from being *P*-free
- accept or reject otherwise

 ε_1 -close = we can fix $\leq \varepsilon_1 n$ characters of *T* so that the property is satisfied

 ε_2 -far = we must fix $\geq \varepsilon_2 n$ characters of *T* so that the property is satisfied

Property testing model

Task: develop an ultra-efficient randomised algorithm to decide whether T is free from occurrences of P

We must

- accept, if *T* is ε_1 -close to being *P*-free
- reject, if *T* is ε_2 -far from being *P*-free
- accept or reject otherwise

Ben-Eliezer, Korman, Reichman, 2017

There is an algorithm which queries $O(\varepsilon^{-1})$ letters of *T* and distinguishes between $\varepsilon/2$ -close and ε -far (for almost all patterns)

Summary of today's talk

It's all about pattern matching

Randomisation and approximation \Rightarrow more efficient algorithms

Many open questions

Thank you!