Streaming and property testing algorithms for string processing

Tatiana Starikovskaya

Based on joint work with:
R. Clifford, P. Gawrychowski, A. Fontaine, E. Porat, B. Sach

- Pattern matching has been studied for 40+ years
- More than 85 algorithms
- KMP algorithm uses $O(|P|)$ space and $O(|T|)$ time, and Aho-Corasick achieves similar bounds for dictionary matching
- We can't do better: we must store a description of the pattern(s) and we must read the whole text

GRME IVER

Intrusion Detection Systems

- Large number of patterns
- Search patterns represent portions of known attack patterns and have length 1-30
- If only cache memory is used, the algorithm can benefit most from a high performance cache

Outline of today's talk

Streaming model

- Exact pattern matching
- Approximate pattern matching (Hamming distance)
- Approximate pattern matching (edit distance)
- Preprocessing

Property testing model

- Exact pattern matching

Streaming model

We want to process the stream on-the-fly \& in small space

Part I: Exact pattern matching

Exact pattern matching

b cacccc
pattern P

- Query = "Is there an occurrence of P ?"
- Space $=$ total space used by the stream processor
- Time $=$ time per position of T

Exact pattern matching

$|$| b | c | a | a | a |
| :--- | :--- | :--- | :--- | :--- |
| pattern P | | | | |

- Query = "Is there an occurrence of P ?"
- Space $=$ total space used by the stream processor
- Time $=$ time per position of T

Exact pattern matching

b caccc|
pattern P

- Query = "Is there an occurrence of P ?"
- Space $=$ total space used by the stream processor
- Time $=$ time per position of T

Exact pattern matching

- Query = "Is there an occurrence of P ?"
- Space $=$ total space used by the stream processor
- Time $=$ time per position of T

Exact pattern matching

- Query = "Is there an occurrence of P ?"
- Space $=$ total space used by the stream processor
- Time $=$ time per position of T

Karp-Rabin algorithm

Karp-Rabin fingerprint

$$
\varphi\left(s_{1} s_{2} \ldots s_{m}\right)=\sum_{i=1}^{m} s_{i} r^{m-i} \bmod p
$$

where p is a prime and r is a random integer $\in[0, p-1]$
It's a good hash function
S_{1}, S_{2} are two strings of length m, the prime p is large

1. $S_{1}=S_{2} \Rightarrow \varphi\left(S_{1}\right)=\varphi\left(S_{2}\right)$
2. $S_{1} \neq S_{2}$, lengths of S_{1}, S_{2} are equal $\Rightarrow \varphi\left(S_{1}\right) \neq \varphi\left(S_{2}\right)$ w.h.p.

Karp-Rabin algorithm

$$
\begin{aligned}
& \hline \mathrm{b} \text { c a a a c } \\
& \text { pattern } P
\end{aligned}
$$

When a new character $t_{i}=a$ arrives:

1. Compute the fingerprint $\varphi\left(t_{i-m+1} \ldots t_{i-1} t_{i}\right)$ in $O(1)$ time
$\varphi(\underline{\text { caaacc }})=\left(\left(\varphi(\right.\right.$ bcaaac $\left.)-b r^{m-1}\right) \cdot r+a \bmod p$
2. If $\varphi\left(t_{i-m+1} \ldots t_{i-1} t_{i}\right)=\varphi(P)$, output "YES"

We need t_{i-m} to update the fingerprint \Rightarrow we must store t_{i-m}, \ldots, t_{i-1}

Karp-Rabin algorithm

$$
\begin{aligned}
& \hline \mathrm{b} \text { c a a a c } \\
& \text { pattern } P
\end{aligned}
$$

K.-R. algorithm is a streaming pattern matching algorithm that uses $\Theta(m)$ space and $O(1)$ time per character of T

It finds all occurrences of P in T correctly w.h.p.

Exact pattern matching

Authors	Space 1	Time
Single pattern		
Karp \& Rabin, 1987	$\Theta(m)$	$O(1)$
Porat \& Porat, 2009	$O(\log m)$	$O(\log m)$
Breslauer \& Galil, 2011	$O(\log m)$	$O(1)$

Dictionary of d patterns

Clifford, Fontaine, Porat Sach, S., 2015	$O(d \log m)$	$O(\log \log (m+d))$
Golan \& Porat, 2017	$O(d \log m)$ $O\left(\|\Sigma\|^{\varepsilon} d \log (m / \varepsilon)\right)$	$O(\log \log \|\Sigma\|)$ $O(1 / \varepsilon)$

${ }^{1}$ In words

Exact pattern matching

Authors	Space 1	Time
Single pattern		
Karp \& Rabin, 1987	$\Theta(m)$	$O(1)$
Porat \& Porat, 2009 \star	$O(\log m)$	$O(\log m)$
Breslauer \& Galil, 2011	$O(\log m)$	$O(1)$

Dictionary of d patterns

Clifford, Fontaine, Porat Sach, S., 2015	$O(d \log m)$	$O(\log \log (m+d))$
Golan \& Porat, 2017	$O(d \log m)$ $O\left(\|\Sigma\|^{\varepsilon} d \log (m / \varepsilon)\right)$	$O(\log \log \|\Sigma\|)$ $O(1 / \varepsilon)$

${ }^{1}$ In words

Porat \& Porat, $2009 \star$

occurrences of $P=p_{1} p_{2} \ldots p_{m}$
for each character t_{i} do
if $t_{i}=p_{1}$ then push i to level 0
for each $j=0, \ldots, \log m-1$
$l p \leftarrow$ leftmost position in level j
if $i-l p+1=2^{j+1}$ then
Pop $l p$ from level j
if $\varphi\left(t_{l p} \ldots t_{i}\right)=\varphi\left(p_{1} \ldots p_{2^{j+1}}\right)$ then push $l p$ to level $j+1$

Porat \& Porat, $2009 \star$

occurrences of $P=p_{1} p_{2} \ldots p_{m}$
for each character t_{i} do
if $t_{i}=p_{1}$ then push i to level 0
for each $j=0, \ldots, \log m-1$
$l p \leftarrow$ leftmost position in level j
if $i-l p+1=2^{j+1}$ then
Pop $l p$ from level j
if $\varphi\left(t_{l p} \ldots t_{i}\right)=\varphi\left(p_{1} \ldots p_{2^{j+1}}\right)$ then push $l p$ to level $j+1$

Porat \& Porat, $2009 \star$

If i is an occ. of p_{1}, push it to level 0
occurrences of $P=p_{1} p_{2} \ldots p_{m}$
for each character t_{i} do
if $t_{i}=p_{1}$ then push i to level 0
for each $j=0, \ldots, \log m-1$
$l p \leftarrow$ leftmost position in level j
if $i-l p+1=2^{j+1}$ then
Pop $l p$ from level j
if $\varphi\left(t_{l p} \ldots t_{i}\right)=\varphi\left(p_{1} \ldots p_{2^{j+1}}\right)$ then push $l p$ to level $j+1$

Porat \& Porat, $2009 \star$

occurrences of $P=p_{1} p_{2} \ldots p_{m}$
for each character t_{i} do
if $t_{i}=p_{1}$ then push i to level 0
for each $j=0, \ldots, \log m-1$
$l p \leftarrow$ leftmost position in level j
if $i-l p+1=2^{j+1}$ then
Pop $l p$ from level j
if $\varphi\left(t_{l p} \ldots t_{i}\right)=\varphi\left(p_{1} \ldots p_{2^{j+1}}\right)$ then push $l p$ to level $j+1$

Porat \& Porat, $2009 \star$

occurrences of $P=p_{1} p_{2} \ldots p_{m}$
for each character t_{i} do
if $t_{i}=p_{1}$ then push i to level 0
for each $j=0, \ldots, \log m-1$
$l p \leftarrow$ leftmost position in level j
if $i-l p+1=2^{j+1}$ then
Pop $l p$ from level j
if $\varphi\left(t_{l p} \ldots t_{i}\right)=\varphi\left(p_{1} \ldots p_{2^{j+1}}\right)$ then push $l p$ to level $j+1$

Porat \& Porat, $2009 \star$

occurrences of $P=p_{1} p_{2} \ldots p_{m}$
for each character t_{i} do
if $t_{i}=p_{1}$ then push i to level 0
for each $j=0, \ldots, \log m-1$
$l p \leftarrow$ leftmost position in level j
if $i-l p+1=2^{j+1}$ then
Pop $l p$ from level j
if $\varphi\left(t_{l p} \ldots t_{i}\right)=\varphi\left(p_{1} \ldots p_{2^{j+1}}\right)$ then push $l p$ to level $j+1$

Porat \& Porat, $2009 \star$

occurrences of $P=p_{1} p_{2} \ldots p_{m}$

Lemma If there are ≥ 3 occurrences of a 2^{j}-length string in a 2^{j+1}-length string, the occurrences form a run

For each level we store:

- The leftmost and the second leftmost positions $l p, l p^{\prime}$
- The fingerprints of $t_{1} t_{2} \ldots t_{l p}, t_{l p+1} \ldots t_{l p^{\prime}}$, and $t_{1} \ldots t_{i}$

Porat \& Porat, $2009 \star$

occurrences of $P=p_{1} p_{2} \ldots p_{m}$

For each level we need:

- $O(1)$ space
- $O(1)$ time for updating and extracting $\varphi\left(t_{l p} \ldots t_{i}\right)$

Theorem Porat \& Porat algorithm is a streaming pattern matching algorithm that uses $O(\log m)$ space and $O(\log m)$ time per character

Part II: Approximate pattern matching

Approximate pattern matching

$$
\begin{aligned}
& \hline \text { b c a a a c } \\
& \text { pattern } P
\end{aligned}
$$

- Query = "Distance between P and $T "$
- Distance: Hamming, edit, ...

Approximate pattern matching (Hamming distance)

Any streaming algorithm for computing exact Hamming distances must use $\Omega(m)$ space

By Yao's minimax principle it suffices to consider deterministic algorithms on "hard" distribution of the inputs
$\left.\begin{array}{lllll}\text { text } & & & \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ $T[1, m]$ is random

$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$

pattern P
After reading $T[m]$, the algorithm cannot go back and read one of the letters $T[1], T[2], \ldots, T[m]$, but can restore $T[1, m]$
Therefore, it stores a full description of $T[1, m] \Rightarrow \Omega(m)$ space by information-theoretic ideas

Approximate pattern matching (Hamming distance)

Any streaming algorithm for computing exact Hamming distances must use $\Omega(m)$ space

By Yao's minimax principle it suffices to consider deterministic algorithms on "hard" distribution of the inputs

	$\operatorname{dist}(P, T)=3$
text T	\downarrow
1	0
	1
	0

$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$

pattern P
After reading $T[m]$, the algorithm cannot go back and read one of the letters $T[1], T[2], \ldots, T[m]$, but can restore $T[1, m]$
Therefore, it stores a full description of $T[1, m] \Rightarrow \Omega(m)$ space by information-theoretic ideas

Approximate pattern matching (Hamming distance)

Any streaming algorithm for computing exact Hamming distances must use $\Omega(m)$ space

By Yao's minimax principle it suffices to consider deterministic algorithms on "hard" distribution of the inputs

$$
\operatorname{dist}(P, T)=2, T[1]=3-2
$$

text T
$\left[\begin{array}{lllllll}1 & 0 & 1 & 1 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 \\ \hline\end{array}\right.$
$T[1, m]$ is random

0	0	0	0	0	0

pattern P
After reading $T[m]$, the algorithm cannot go back and read one of the letters $T[1], T[2], \ldots, T[m]$, but can restore $T[1, m]$

Therefore, it stores a full description of $T[1, m] \Rightarrow \Omega(m)$ space by information-theoretic ideas

Approximate pattern matching (Hamming distance)

Any streaming algorithm for computing exact Hamming distances must use $\Omega(m)$ space

By Yao's minimax principle it suffices to consider deterministic algorithms on "hard" distribution of the inputs

$$
\operatorname{dist}(P, T)=2, T[2]=2-2
$$

 $T[1, m]$ is random

0	0	0	0	0	0

pattern P
After reading $T[m]$, the algorithm cannot go back and read one of the letters $T[1], T[2], \ldots, T[m]$, but can restore $T[1, m]$

Therefore, it stores a full description of $T[1, m] \Rightarrow \Omega(m)$ space by information-theoretic ideas

Approximate pattern matching (Hamming distance)

Authors	Space 2	Time
Single pattern, only distances $\leq k$		
Porat \& Porat, 2009	$\tilde{O}\left(k^{3}\right)$	$\tilde{O}\left(k^{2}\right)$
Clifford, Fontaine, Porat, Sach, S., 2016	$\tilde{O}\left(k^{2}\right)$	$\tilde{O}(\sqrt{k})$
Clifford, Kociumaka, Porat, 2018	$O\left(k \log \frac{m}{k}\right)$	$O\left(k \log ^{3} m \log \frac{m}{k}\right)$

Single pattern, $(1+\varepsilon)$-approx.
Clifford, S., 2016

$$
O\left(\varepsilon^{-5} \sqrt{m} \log ^{4} m\right) \quad O\left(\varepsilon^{-4} \log ^{3} m\right)
$$

Approximate pattern matching (Hamming distance)

Authors	Space 2	Time
Single pattern, only distances $\leq k$		
Porat \& Porat, 2009 \star	$\tilde{O}\left(k^{3}\right)$	$\tilde{O}\left(k^{2}\right)$
Clifford, Fontaine, Porat, Sach, S., 2016	$\tilde{O}\left(k^{2}\right)$	$\tilde{O}(\sqrt{k})$
Clifford, Kociumaka, Porat, 2018	$O\left(k \log \frac{m}{k}\right)$	$O\left(k \log ^{3} m \log \frac{m}{k}\right)$

Single pattern, $(1+\varepsilon)$-approx.

Clifford, S., 2016	$O\left(\varepsilon^{-5} \sqrt{m} \log ^{4} m\right)$	$O\left(\varepsilon^{-4} \log ^{3} m\right)$

[^0]
Porat \& Porat, $2009 \star$

$$
\begin{aligned}
& \begin{array}{l}
\hline \text { b c a a a c } \\
\hline \text { pattern } P
\end{array}
\end{aligned}
$$

- If $\operatorname{HAM}(P, T)>k$, output "NO"
- Otherwise, output $\operatorname{HAM}(P, T)$

From 1 mismatch to exact pattern matching

- Is HAM $\left(\right.$ string $_{1}$, string $\left._{2}\right)=1$?

From 1 mismatch to exact pattern matching

- Is $^{\operatorname{HAM}}\left(\right.$ string $_{1}$, string $\left._{2}\right)=1$?
- Partition the strings into substrings of q colors
- One mismatch \Rightarrow one pair of substrings does not match
- Hope: If there are ≥ 2 mismatches, they will end up in substrings of different colors \Rightarrow at least 2 pairs of substrings do not match

From 1 mismatch to exact pattern matching

For each prime $q \in\left[\log m, \log ^{2} m\right]$:
Partition string ${ }_{1}$ into q equi-spaced substrings Partition string 2 into q equi-spaced substrings

In total: $O(\log m)$ primes, and for each prime there are $O\left(\log ^{2} m\right)$ pairs of substrings

From 1 mismatch to exact pattern matching

Lemma There are ≥ 2 mismatches $\boldsymbol{\aleph}_{1}, \boldsymbol{N}_{2} \Rightarrow$ there exists a prime q such that at least two pairs of substrings do not match

- $\boldsymbol{\aleph}_{1}, \boldsymbol{\alpha}_{2}$ in the same pair $\Leftrightarrow \boldsymbol{\aleph}_{1}-\boldsymbol{\aleph}_{2}=0(\bmod q)$
- $m \geq \boldsymbol{N}_{1}-\boldsymbol{N}_{2}$ cannot be a multiple of $\log m$ distinct primes

From 1 mismatch to exact pattern matching

text T

Is $\operatorname{HAM}(P, T)=1$?
for each position of the text T do for each prime q in $\left[\log m, \log ^{2} m\right.$] do
$h \leftarrow$ number of (substream, subpattern) that mismatch if $h=0$ OR $h>1$ return "NO"
return "YES"

From 1 mismatch to exact pattern matching

text T

Compute number of mismatching pairs
for each prime q in $\left[\log m, \log ^{2} m\right]$ do for each (substream, subpattern) do run streaming exact pattern matching

From 1 mismatch to exact pattern matching

 text T

Complexity
Space $=O(\underbrace{\log m}_{\text {of primes }} \cdot \underbrace{\log ^{2} m}_{\text {of substr. }} \cdot \underbrace{\log ^{2} m}_{\text {of subpatterns }} \cdot \log m)$
Time $=O(\underbrace{\log m}_{\text {\# primes }} \cdot \underbrace{\log ^{2} m}_{\text {of substr. } \# \text { of subpatterns }} \cdot \underbrace{\log ^{2} m})$

Approximate pattern matching (Hamming distance)

Porat \& Porat, 2009
$\tilde{O}\left(k^{3}\right)$ space, $\tilde{O}\left(k^{2}\right)$ time
Same as for $k=1$ but take more primes
Clifford, Fontaine, Porat, Sach, S., 2016
$\tilde{O}\left(k^{2}\right)$ space, $\tilde{O}(\sqrt{k})$ time
We can take fewer primes if we choose them at random + periodicity to improve time

Clifford, Kociumaka, Porat, 2018
$O\left(k \log \frac{m}{k}\right)$ space, $O\left(k \log ^{3} m \log \frac{m}{k}\right)$ time
New encoding for mismatch information + periodicity + exponentially growing prefixes

Approximate pattern matching (edit distance)

$$
\begin{aligned}
& \hline \mathrm{b} \text { c a a a c c } \\
& \hline \text { pattern } P
\end{aligned}
$$

$E D(P, S)=$ minimum number of insertions, deletions, and replacements that transform P into S

Example: $P=$ aaac, $S=$ abacb, edit distance $=2$

- If $E D(P, T)>k$, output "NO"
- Otherwise, output $E D(P, T)$

Approximate pattern matching (edit distance)

$$
\begin{aligned}
& \hline \mathrm{b} \text { c a a a c c } \\
& \hline \text { pattern } P
\end{aligned}
$$

$E D(P, S)=$ minimum number of insertions, deletions, and replacements that transform P into S

Example: $P=$ aaac, $S=$ abacb, edit distance $=2$

- Hybrid dynamic programming: $\mathcal{O}(m)$ space, $\mathcal{O}(k)$ time
- S., 2017: $\mathcal{O}(\sqrt{m} \cdot \operatorname{poly}(k, \log m))$ space, $\mathcal{O}(\sqrt{m} \cdot \operatorname{poly}(k, \log m))$ time

Embedding from edit to Hamming distance

Chakraborty, Goldenberg, Koucky, 2016
Pick $3 n$ random functions $h_{j}:\{0,1\} \rightarrow\{0,1\}$

	1	2	3	4	5	6	7	8			$3 n$
0	0	1	1	0	1	1	0	0			0
1	1	1	1	1	0	1	0	1			1

Copy letters of S to S^{\prime} :

| | 1 2 3 n
 $S:$ 0 1 0 \ldots | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $S^{\prime}:$ | | | | |

text position = $1, j=1$

1. Copy $S[i]$. If $h_{j}(S[i])=1$, move to the right;
2. $j=j+1$.

Embedding from edit to Hamming distance

Chakraborty, Goldenberg, Koucky, 2016
Pick $3 n$ random functions $h_{j}:\{0,1\} \rightarrow\{0,1\}$

Copy letters of S to S^{\prime} :

| | 1 2 3 n
 $S:$ 0 1 0 \ldots | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $S^{\prime}: 0$ | | | | |

text position $=1, j=1$

1. Copy $S[i]$. If $h_{j}(S[i])=1$, move to the right;
2. $j=j+1$.

Embedding from edit to Hamming distance

Chakraborty, Goldenberg, Koucky, 2016
Pick $3 n$ random functions $h_{j}:\{0,1\} \rightarrow\{0,1\}$

	1	2	3	4	5	6	7	8		$3 n$
0	0	1	1	0	1	1	0	0		0
1	1	1	1	1	0	1	0	1		1

Copy letters of S to S^{\prime} :

| | 1 2 3 n
 $S:$ 0 1 0 \ldots | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $S^{\prime}: 0$ | | | | |

text position $=1, j=1$

1. Copy $S[i]$. If $h_{j}(S[i])=1$, move to the right;
2. $j=j+1$.

Embedding from edit to Hamming distance

Chakraborty, Goldenberg, Koucky, 2016
Pick $3 n$ random functions $h_{j}:\{0,1\} \rightarrow\{0,1\}$

\ldots	0	
\cdots	1	

Copy letters of S to S^{\prime} :

	1	2	3		${ }^{n}$
$S:$	0	1	0	\ldots	0
$S^{\prime}: 0$					

text position $=1, j=2$

1. Copy $S[i]$. If $h_{j}(S[i])=1$, move to the right;
2. $j=j+1$.

Embedding from edit to Hamming distance

Chakraborty, Goldenberg, Koucky, 2016
Pick $3 n$ random functions $h_{j}:\{0,1\} \rightarrow\{0,1\}$

\ldots	0	
\cdots	1	

Copy letters of S to S^{\prime} :

	1	2	3		${ }^{n}$
$S:$	0	1	0	\ldots	0
$S^{\prime}:$	0	0			

text position $=1, j=2$

1. Copy $S[i]$. If $h_{j}(S[i])=1$, move to the right;
2. $j=j+1$.

Embedding from edit to Hamming distance

Chakraborty, Goldenberg, Koucky, 2016
Pick $3 n$ random functions $h_{j}:\{0,1\} \rightarrow\{0,1\}$

\ldots	0	
\cdots	1	

Copy letters of S to S^{\prime} :

	1	2	3		${ }^{n}$
$S:$	0	1	0	\ldots	0
$S^{\prime}: 0$	0				

text position $=1, j=2$

1. Copy $S[i]$. If $h_{j}(S[i])=1$, move to the right;
2. $j=j+1$.

Embedding from edit to Hamming distance

Chakraborty, Goldenberg, Koucky, 2016
Pick $3 n$ random functions $h_{j}:\{0,1\} \rightarrow\{0,1\}$

Copy letters of S to S^{\prime} :

	${ }^{1}$	2	3		${ }^{n}$
$S:$	0	1	0	\ldots	0
$S^{\prime}: 0$	0				

text position $=2, j=3$

1. Copy $S[i]$. If $h_{j}(S[i])=1$, move to the right;
2. $j=j+1$.

Embedding from edit to Hamming distance

Chakraborty, Goldenberg, Koucky, 2016
Pick $3 n$ random functions $h_{j}:\{0,1\} \rightarrow\{0,1\}$

Copy letters of S to S^{\prime} :

	1	2	3		n
$S:$	0	1	0	\ldots	0
$S^{\prime}:$	0	0	1		

text position $=2, j=3$

1. Copy $S[i]$. If $h_{j}(S[i])=1$, move to the right;
2. $j=j+1$.

Embedding from edit to Hamming distance

Chakraborty, Goldenberg, Koucky, 2016
Pick $3 n$ random functions $h_{j}:\{0,1\} \rightarrow\{0,1\}$

Copy letters of S to S^{\prime} :

	1	2	3		n
$S:$	0	1	0	\ldots	0
$S^{\prime}:$	0	0	1		

text position $=2, j=3$

1. Copy $S[i]$. If $h_{j}(S[i])=1$, move to the right;
2. $j=j+1$.

Embedding from edit to Hamming distance

Chakraborty, Goldenberg, Koucky, 2016
Pick $3 n$ random functions $h_{j}:\{0,1\} \rightarrow\{0,1\}$

	1	2	3	4	5	6	7	8		$3 n$
0	0	1	1	0	1	1	0	0		0
1	1	1	1	1	0	1	0	1		1

Copy letters of S to S^{\prime} :

	1	2	3		n
$S: 0$	1	0	\ldots	0	
$S^{\prime}: 0$	0	1	\ldots		

text position $=2, j=3$

If $E D(S, T)=k$, then $k / 2 \leq H D\left(S^{\prime}, T^{\prime}\right) \leq \mathcal{O}\left(k^{2}\right)$ w/ prob. 0.99

Embedding from edit to Hamming distance

Chakraborty, Goldenberg, Koucky, 2016
Pick $3 n$ random functions $h_{j}:\{0,1\} \rightarrow\{0,1\}$

Copy letters of S to S^{\prime} :

	1	2	3	
		n		
$S^{\prime}:$	0	1	0	
0	0	1	\ldots	0

text position $=2, j=3$

Belazzougui, Zhang, 2016

- Embedding + streaming alg'm for k^{2}-mismatch \Rightarrow a good estimate for edit distance
- If $E D(S, T) \leq k, \tilde{O}\left(k^{2}\right)$ embeddings + streaming alg'm for k^{2}-mismatch \Rightarrow exact value!

Approximate pattern matching (edit distance)

Belazzougui \& Zhang, 2016

Starting from each block i, run Belazzougui \& Zhang, 2016

$$
E D[j]=\min _{i \in[r-k, r+k]} E D\left(P[1, B-i], \mathbf{T}_{1}\right)+E D\left(P[B-i+1, m], \mathrm{T}_{2}\right)
$$

We compute $E D\left(P[1, B-i], \mathbf{T}_{1}\right)$ while reading T_{1} using dynamic programming, then encode the distances to restore later

Part III: Preprocessing

Preprocessing for pattern matching

Can we preprocess the patterns in a streaming way?
If yes, do we need to read them several times?
How much space do we need?

Periodicity - Ergün, Jowhari, Saglam, 2010

- Periodic patterns: $O(\log m)$ space, $O(\log m)$ time
- Non-periodic patterns: $\Omega(m)$ space
- 2 passes (periodic and non-periodic patterns): $O(\log m)$ space, $O(\log m)$ time

Periodicity with mismatches - Ergün et al., 2017

- Periodic patterns: $O\left(k^{4} \log ^{9} n\right)$ space
- 2-pass algorithm for non-periodic patterns, lower bounds

Part IV: Property testing model

Pattern matching

Is T free from occurrences of P ?
Same question when T and P are of dimension $d \geq 2$

Property testing model

text T
pattern P

If Sherlock wants to solve the problem fast, he can only query a few characters of T

Property testing model

Task: develop an ultra-efficient randomised algorithm to decide whether T is free from occurrences of P

We must

- accept, if T is ε_{1}-close to being P-free
- reject, if T is ε_{2}-far from being P-free
- accept or reject otherwise
ε_{1}-close $=$ we can fix $\leq \varepsilon_{1} n$ characters of T so that the property is satisfied
ε_{2}-far $=$ we must fix $\geq \varepsilon_{2} n$ characters of T so that the property is satisfied

Property testing model

Task: develop an ultra-efficient randomised algorithm to decide whether T is free from occurrences of P

We must

- accept, if T is ε_{1}-close to being P-free
- reject, if T is ε_{2}-far from being P-free
- accept or reject otherwise

Ben-Eliezer, Korman, Reichman, 2017
There is an algorithm which queries $O\left(\varepsilon^{-1}\right)$ letters of T and distinguishes between $\varepsilon / 2$-close and ε-far (for almost all patterns)

Summary of today's talk

It's all about pattern matching

Randomisation and approximation \Rightarrow more efficient algorithms

Many open questions

Thank you!

[^0]: ${ }^{2}$ In words

