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Abelian stringology

Def. Given a string s = s1 · · · sn over a finite ordered alphabet Σ of size σ,
the Parikh-vector pv(s) is the vector (p1, . . . , pσ) whose i ’th entry is the
multiplicity of character ai .

Ex. s = aabaccba over Σ = {a, b, c}, then pv(s) = (4, 2, 2).

Def. Two strings over the same alphabet are Parikh equivalent (a.k.a.
abelian equivalent) if they have the same Parikh vector. (i.e. if they are
permutations of one another)

Ex. aaaabbcc and aabcaabc are both Parikh equivalent to s.

In Abelian stringology, equality is replaced by Parikh equivalence.
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Abelian stringology

In Abelian stringology, equality is replaced by Parikh equivalence.

• Jumbled Pattern Matching

• abelian borders

• abelian periods

• abelian squares, repetitions, runs

• abelian pattern avoidance

• abelian reconstruction

• abelian problems on run-length encoded strings

• . . .
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Abelian stringology

In this talk, we introduce a new tool for attacking abelian problems.

But first: in what way are abelian problems different from their classical
counterparts?

N.B.: Recall Σ is finite and ordered, and σ = |Σ|.
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Example 1: Parikh-de-Bruijn strings

• Recall: A de Bruijn sequence of order k over alphabet Σ is a string over Σ
which contains every u ∈ Σk exactly once as a substring.

• de Bruijn sequences exist for every Σ and k
• correspond to Hamiltonian paths in the de Bruijn graph of order k
• can be constructed efficiently via Euler-paths in the de Bruijn graph of order

k − 1

Source: Wikipedia
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Example 1: Parikh-de-Bruijn strings

Def.

• the order of a Parikh vector (Pv) is the sum of its entries
(= length of a string with this Pv)

• a Parikh-de-Bruijn string of order k (a (k , σ)-PdB-string) is a string s
over an alphabet of size σ s.t.

∀ p Parikh vector of order k ∃!(i , j) s.t. pv(si · · · sj) = p

(There is exactly one occurrence of a substring in s which has Pv p.)

Ex.

• aabbcca is a (
k
2,

σ
3)-PdB-string

• abbbcccaaabc is a (3, 3)-PdB-string
• but no (4, 3)-PdB-string exists
• and no (2, 4)-PdB-string exists
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Example 2: Covering strings

Next best thing: covering strings.

Def.

• We call a string s (k, σ)-covering if

∀ p Parikh vector of order k ∃(i , j) s.t. pv(si · · · sj) = p

(There is at least one substring in s which has Pv p.)

• The excess of s is: |s| − (
σ+k−1

k

)
+ k − 1︸ ︷︷ ︸

length of a PdB-string

.

Ex.

• aaaabbbbccccaacabcb is a shortest (4, 3)-covering string, with
excess 1.

• aabbcadbccdd is a shortest (2, 4)-covering string, with excess 1.
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Example 2: Covering strings

Classical case: If s is a (classical) de Bruijn sequence of order k , then it
also contains all (k − 1)-length strings as substrings.

For PdB-strings, this is not always true, e.g.

aaaaabbbbbcaaaadbbbcccccdddddaaaccdbcbaccaccddbddbadacddbbbb

is a (5, 4)-PdB-string but is not (4, 4)-covering: no substring with Pv
(1, 1, 1, 1).
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The Parikh-de-Bruijn grid
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Recall: de Bruijn graphs Bk = (V ,E ), where V = Σk and (xu, uy) ∈ E
for all x, y ∈ Σ and u ∈ Σk−1

Note that E = Σk+1.

A straightforward generalization to Pv’s does not work, because edges do
not uniquely correspond to (k + 1)-order Pv’s:
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Let’s look at another example: Here, σ = 3, k = 2.

Again, in the abelian version, we have that several edges have the same label (i.e.
here: the same 3-order Pv).
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Turns out the right way to generalize de Bruijn graphs is the
Parikh-de-Bruijn grid:
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The Parikh-de-Bruijn grid

The (4, 3)-PdB-grid

' '
' '

' '

The (4, 4)-PdB-grid

green: k-order Pv’s (vertices), yellow: (k + 1)-order Pv’s (downward

triangles/tetrahedra), blue: (k − 1)-order Pv’s (upward triangles/tetrahedra).
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The Parikh-de-Bruijn grid

PdB-grid:
• V = k-order Pv’s

• pq ∈ E iff exist x, y ∈ Σ s.t.
p = q − x + y

• undirected edges (or:
bidirectional edges)

• (k − 1)- and (k + 1)-order
Pv’s correspond to
sub-simplices
(triangles for σ = 3,
tetrahedra for σ = 4 etc.)

• every string corresponds to a
walk in the PdB-grid, but
not every walk corresponds
to a string

' '
' '
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The Parikh-de-Bruijn grid

Every string corresponds to a walk in the PdB-grid, but not every walk
corresponds to a string:

But with loops it’s
possible!
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The Parikh-de-Bruijn grid

Lemma
A set of k-order Parikh vectors is realizable if and only if the induced
subgraph in the k-PdB-grid is connected.

realizable = exists string with exactly these k-order sub-Pv’s.

Proof sketch
Use loops until undesired character x exits, replace by new character y.

Actually, better name: loops → bows (see next slide); one for each character.
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The Parikh-de-Bruijn grid

k = 4, σ = 3

8 Péter Burcsi, Zsuzsanna Lipták, and W. F. Smyth

and for every i = 1, . . . , m, pv(wi . . . wi+k�1) = pi. In particular, if W spells w,
then, for every i = 1, . . . , m� 1, there is an edge (pi, pi+1) with label (wi, wi+k).
A walk is called realizable if it spells some string.

Example 2. Let � = 3, k = 4. Consider the string w = aabacabb. The walk
it induces in the (4, 3)-PdB-grid is shown in Fig. ??. Notice that each shift by
one in the string corresponds to a step along an edge. If this edge connects two
distinct vertices, then the (k + 1)- and (k � 1)-order Pv’s are given by the two
triangles incident to the edge. This is the case in the first and last step in our
example (marked in blue, resp. brown). If the edge connects a vertex p with
itself, then the induced (k + 1)- and (k � 1)-order Pv’s are given by triangles at
the opposite direction with respect to p. This is the case in our example in the
second (red) and third (green) steps.

211 202

301310

220

121 112

bc

a
b c

a 201210

111

311

221 212

(k + 1) a 3 3 2 2
b 1 1 2 2
c 1 1 1 1

a a b a c a b b

k a 3 2 2 2 1
b 1 1 1 1 2
c 0 1 1 1 1

(k � 1) a 2 1 2 1
b 1 1 0 1
c 0 1 1 1

Fig. 3. Left: The part of the (4, 3)-PdB-grid being visited by the string aabacabb. We
marked each step of the walk in a di↵erent colour (blue-red-green-brown). Right: We
list vertically the corresponding (k + 1)-order Pv’s (top), k-order Pv’s (center), and
(k � 1)-order Pv’s, each at its beginning position.

Notice in particular that the sequence of edges used by the walk in the PdB-
grid of order k determines not only the vertices touched (the k-order Pv’s), but
also which (k+1)- and (k�1)-order Pv’s are visited: those are the ones which are
incident to the edges of the walk. For higher �, even lower and higher order Pv’s
have corresponding substructures. For example, for � = 4, the octahedra which
are enclosed by 6 k-order Pv’s correspond to their common ”grandchildren”.

Proposition 1. Let w be a string over ⌃ and k � 1. Then there is a walk in
G(k, �) which spells w. On the other hand, not every walk spells a string.

Proof. If w is a string, then the definition of neighbor means that there is a
walk in G(k, �). To see that the other direction does not hold, consider the walk
(3, 0, 0), (2, 1, 0), (3, 0, 0), which does not spell any string. ut

Walk corresponding to aabacabb. (k + 1)- and (k − 1)-order Pv’s: triangles

incident to the edges traversed by the walk. The (k + 1) and (k − 1)-order Pv’s

for loops (same k-order Pv twice) lie in opposite direction, hence the name bow.
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Back to Parikh-de-Bruijn and covering strings

Theorem 1
No (k, 3)-PdB strings exist for k ≥ 4.

Theorem 2
A (2, σ)-PdB string exists if and only if σ is odd.

Theorem 3
For every σ ≥ 3 and k ≥ 4, there exist (k , σ)-covering strings which are
not (k − 1, σ)-covering.
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Theorem 1 No (k , 3)-PdB strings exists for k ≥ 4.
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Parikh-de-Bruijn and covering strings

Theorem
A (2, σ)-PdB string exists if and only if σ is odd.

Proof
Pv’s of order 2 have either the form (0...0, 2, 0..0) or (0...0, 1, 0...0, 1, 0..0). So s
has to have exactly one substring of the form aa for all a ∈ Σ, and either ab or
ba for all a, b ∈ Σ. Consider the undirected complete graph G = (V ,E ) with
loops where V = Σ (N.B.: not the PdB-grid!): an Euler path exists iff σ is odd.

a

b

c d

e

20000

02000

00200 00020

00002

11000

01100

00110

00011

10001
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Parikh-de-Bruijn and covering strings

Theorem 3
For every σ ≥ 3 and k ≥ 4, there exist (k , σ)-covering strings which are
not (k − 1, σ)-covering.

Proof
w = aaaaabbbbbcabbaaacacbbcbccacaccccbccccc

General construction:

• remove (k − 1)-order Pv
p = (k − 3, 1, 1, 0, . . . , 0) with
incident edges and vertices

• the rest is connected, hence a
string exists (Lemma)

• add vertices of p without
traversing edges incident to p

• can be done by detours from
corners of PdB-grid
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Experimental results

k σ string length

(excess)

2 3 aabbcca 7 (0)

3 3 abbbcccaaabc 12 (0)

4 3 aaaabbbbccccaacabcb 19 (1)

5 3 aaaaabbbacccccbbbbbaacaaccb 27 (2)

6 3 aaaabccccccaaaaaabbbbbbcccbbcabbaca 35 (2)

7 3 aabbbccbbcccabacaaabcbbbbbbbaaaaaaacccccccba 44 (2)

2 4 aabbcadbccdd 12 (1)

3 4 aaabbbcaadbdbccadddccc 22 (0)

4 4 aabbbbcaacadbddbccacddddaaaabdbbccccdd 38 (0)

5 4 aaaaabbbbbcaaaadbbbcccccdddddaaaccdbcbaccaccddbddbadacddbbbb 60 (0)

2 5 aabbcadbeccddeea 16 (0)

3 5 aaabbbcaadbbeaccbdddcccebededadceeeaa 37 (0)

4 5 aaaabbbbcaaadbbbeaaccbbddaaeaebcccadbeeeadddcccceeeedddd... 73 (0)
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Conclusion and open problems

• new tool for modeling and solving abelian problems

• find good characterization for walks which correspond to strings

• several open problems on PdB- and covering strings (see paper on
Arxiv)

• apply PdB-grid to other abelian problems
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