Péter Burcsi Zsuzsanna Lipták W. F. Smyth

ELTE Budapest (Hungary), U of Verona (Italy), McMaster U (Canada) & Murdoch U (Australia)

LSD/LAW 2018 London, 8-9 Feb. 2018

Def. Given a string $s = s_1 \cdots s_n$ over a finite ordered alphabet Σ of size σ , the Parikh-vector $\mathbf{pv}(s)$ is the vector $(p_1, \ldots, p_{\sigma})$ whose *i*'th entry is the multiplicity of character a_i .

Ex. $s = aabaccba \text{ over } \Sigma = \{a, b, c\}, \text{ then } pv(s) = (4, 2, 2).$

Def. Given a string $s = s_1 \cdots s_n$ over a finite ordered alphabet Σ of size σ , the Parikh-vector $\mathbf{pv}(s)$ is the vector $(p_1, \ldots, p_{\sigma})$ whose *i*'th entry is the multiplicity of character a_i .

Ex. $s = aabaccba \text{ over } \Sigma = \{a, b, c\}, \text{ then } pv(s) = (4, 2, 2).$

Def. Two strings over the same alphabet are Parikh equivalent (a.k.a. abelian equivalent) if they have the same Parikh vector. (i.e. if they are permutations of one another)

Ex. aaaabbcc and aabcaabc are both Parikh equivalent to s.

Def. Given a string $s = s_1 \cdots s_n$ over a finite ordered alphabet Σ of size σ , the Parikh-vector $\mathbf{pv}(s)$ is the vector $(p_1, \ldots, p_{\sigma})$ whose *i*'th entry is the multiplicity of character a_i .

Ex. $s = aabaccba \text{ over } \Sigma = \{a, b, c\}, \text{ then } pv(s) = (4, 2, 2).$

Def. Two strings over the same alphabet are Parikh equivalent (a.k.a. abelian equivalent) if they have the same Parikh vector. (i.e. if they are permutations of one another)

Ex. aaaabbcc and aabcaabc are both Parikh equivalent to s.

In Abelian stringology, equality is replaced by Parikh equivalence.

In Abelian stringology, equality is replaced by Parikh equivalence.

- Jumbled Pattern Matching
- abelian borders
- abelian periods
- abelian squares, repetitions, runs
- abelian pattern avoidance
- abelian reconstruction
- abelian problems on run-length encoded strings

• . . .

In this talk, we introduce a new tool for attacking abelian problems.

In this talk, we introduce a new tool for attacking abelian problems.

But first: in what way are abelian problems different from their classical counterparts?

N.B.: Recall Σ is finite and ordered, and $\sigma = |\Sigma|$.

- Recall: A de Bruijn sequence of order k over alphabet Σ is a string over Σ which contains every u ∈ Σ^k exactly once as a substring.
- de Bruijn sequences exist for every Σ and k
- correspond to Hamiltonian paths in the de Bruijn graph of order k
- can be constructed efficiently via Euler-paths in the de Bruijn graph of order k-1

Source: Wikipedia

On the Parikh-de-Bruijn grid

Def.

- the order of a Parikh vector (Pv) is the sum of its entries (= length of a string with this Pv)
- a Parikh-de-Bruijn string of order k (a (k, σ)-PdB-string) is a string s over an alphabet of size σ s.t.

 $\forall p \text{ Parikh vector of order } k \exists !(i,j) \text{ s.t. } \mathbf{pv}(s_i \cdots s_j) = p$

(There is exactly one occurrence of a substring in s which has Pv p.)

Def.

- the order of a Parikh vector (Pv) is the sum of its entries (= length of a string with this Pv)
- a Parikh-de-Bruijn string of order k (a (k, σ)-PdB-string) is a string s over an alphabet of size σ s.t.

 $\forall p$ Parikh vector of order $k \exists !(i,j) \text{ s.t. } \mathbf{pv}(s_i \cdots s_j) = p$

(There is exactly one occurrence of a substring in s which has Pv p.) Ex.

• aabbcca is a $\begin{pmatrix} k & \sigma \\ 2, & 3 \end{pmatrix}$ -PdB-string

Def.

- the order of a Parikh vector (Pv) is the sum of its entries (= length of a string with this Pv)
- a Parikh-de-Bruijn string of order k (a (k, σ)-PdB-string) is a string s over an alphabet of size σ s.t.

 $\forall p \text{ Parikh vector of order } k \exists !(i,j) \text{ s.t. } \mathbf{pv}(s_i \cdots s_j) = p$

(There is exactly one occurrence of a substring in s which has Pv p.) **Ex.**

- aabbcca is a $\begin{pmatrix} k & \sigma \\ 2, & 3 \end{pmatrix}$ -PdB-string
- abbbcccaaabc is a (3,3)-PdB-string

Def.

Ex.

- the order of a Parikh vector (Pv) is the sum of its entries (= length of a string with this Pv)
- a Parikh-de-Bruijn string of order k (a (k, σ)-PdB-string) is a string s over an alphabet of size σ s.t.

 $\forall p$ Parikh vector of order $k \exists !(i,j) \text{ s.t. } \mathbf{pv}(s_i \cdots s_j) = p$

(There is exactly one occurrence of a substring in s which has Pv p.)

- aabbcca is a $\begin{pmatrix} k & \sigma \\ 2, & 3 \end{pmatrix}$ -PdB-string
- abbbcccaaabc is a (3,3)-PdB-string
- but no (4,3)-PdB-string exists

Def.

- the order of a Parikh vector (Pv) is the sum of its entries (= length of a string with this Pv)
- a Parikh-de-Bruijn string of order k (a (k, σ)-PdB-string) is a string s over an alphabet of size σ s.t.

 $\forall p$ Parikh vector of order $k \exists !(i,j) \text{ s.t. } \mathbf{pv}(s_i \cdots s_j) = p$

(There is exactly one occurrence of a substring in s which has Pv p.) **Ex.**

- aabbcca is a $\begin{pmatrix} k & \sigma \\ 2, & 3 \end{pmatrix}$ -PdB-string
- abbbcccaaabc is a (3,3)-PdB-string
- but no (4,3)-PdB-string exists
- and no (2, 4)-PdB-string exists

Example 2: Covering strings

Next best thing: covering strings.

Def.

• We call a string $s(k, \sigma)$ -covering if

 $\forall p \text{ Parikh vector of order } k \exists (i,j) \text{ s.t. } \mathbf{pv}(s_i \cdots s_j) = p$

(There is at least one substring in s which has Pv p.)

• The excess of s is:
$$|s| - \underbrace{\binom{\sigma+k-1}{k} + k - 1}_{\text{length of a PdB-string}}$$
.

Ex.

- aaaabbbbccccaacabcb is a shortest (4, 3)-covering string, with excess 1.
- aabbcadbccdd is a shortest (2, 4)-covering string, with excess 1.

On the Parikh-de-Bruijn grid

Example 2: Covering strings

Classical case: If s is a (classical) de Bruijn sequence of order k, then it also contains all (k - 1)-length strings as substrings.

Example 2: Covering strings

Classical case: If s is a (classical) de Bruijn sequence of order k, then it also contains all (k - 1)-length strings as substrings.

For PdB-strings, this is not always true, e.g.

aaaaabbbbbbcaaaadbbbcccccdddddaaaccdbcbaccaccddbddbadacddbbbb

is a (5,4)-PdB-string but is not (4,4)-covering: no substring with Pv (1,1,1,1).

Zs. Lipták, P. Burcsi, W.F. Smyth

On the Parikh-de-Bruijn grid

LSD/LAW 2018 9 / 24

Recall: de Bruijn graphs $B_k = (V, E)$, where $V = \Sigma^k$ and $(xu, uy) \in E$ for all $x, y \in \Sigma$ and $u \in \Sigma^{k-1}$

Note that $E = \Sigma^{k+1}$

Recall: de Bruijn graphs $B_k = (V, E)$, where $V = \Sigma^k$ and $(xu, uy) \in E$ for all $x, y \in \Sigma$ and $u \in \Sigma^{k-1}$

A straightforward generalization to Pv's does not work, because edges do not uniquely correspond to (k + 1)-order Pv's:

Zs. Lipták, P. Burcsi, W.F. Smyth

On the Parikh-de-Bruijn grid

Let's look at another example: Here, $\sigma = 3, k = 2$.

Again, in the abelian version, we have that several edges have the same label (i.e. here: the same 3-order Pv).

Zs. Lipták, P. Burcsi, W.F. Smyth

On the Parikh-de-Bruijn grid

Turns out the right way to generalize de Bruijn graphs is the Parikh-de-Bruijn grid:

Turns out the right way to generalize de Bruijn graphs is the Parikh-de-Bruijn grid:

Zs. Lipták, P. Burcsi, W.F. Smyth

On the Parikh-de-Bruijn grid

LSD/LAW 2018 12 / 24

green: k-order Pv's (vertices), yellow: (k + 1)-order Pv's (downward triangles/tetrahedra), blue: (k - 1)-order Pv's (upward triangles/tetrahedra).

Zs. Lipták, P. Burcsi, W.F. Smyth

On the Parikh-de-Bruijn grid

LSD/LAW 2018 13 / 24

PdB-grid:

- *V* = *k*-order Pv's
- $pq \in E$ iff exist $x, y \in \Sigma$ s.t. p = q - x + y
- undirected edges (or: bidirectional edges)
- (k-1)- and (k+1)-order Pv's correspond to sub-simplices (triangles for $\sigma = 3$, tetrahedra for $\sigma = 4$ etc.)
- every string corresponds to a walk in the PdB-grid, but not every walk corresponds to a string

Zs. Lipták, P. Burcsi, W.F. Smyth

LSD/LAW 2018 14 / 24

Every string corresponds to a walk in the PdB-grid, but not every walk corresponds to a string:

Every string corresponds to a walk in the PdB-grid, but not every walk corresponds to a string:

Lemma

A set of k-order Parikh vectors is realizable if and only if the induced subgraph in the k-PdB-grid is connected.

realizable = exists string with exactly these k-order sub-Pv's.

Proof sketch

Use loops until undesired character x exits, replace by new character y.

Lemma

A set of k-order Parikh vectors is realizable if and only if the induced subgraph in the k-PdB-grid is connected.

realizable = exists string with exactly these k-order sub-Pv's.

Proof sketch

Use loops until undesired character x exits, replace by new character y.

Actually, better name: loops \rightarrow bows (see next slide); one for each character.

Zs. Lipták, P. Burcsi, W.F. Smyth

On the Parikh-de-Bruijn grid

 $k = 4, \sigma = 3$

Walk corresponding to aabacabb. (k + 1)- and (k - 1)-order Pv's: triangles incident to the edges traversed by the walk. The (k + 1) and (k - 1)-order Pv's for loops (same k-order Pv twice) lie in opposite direction, hence the name bow.

Back to Parikh-de-Bruijn and covering strings

Theorem 1 No (k, 3)-PdB strings exist for $k \ge 4$.

Theorem 2 A (2, σ)-PdB string exists if and only if σ is odd.

Theorem 3 For every $\sigma \ge 3$ and $k \ge 4$, there exist (k, σ) -covering strings which are not $(k - 1, \sigma)$ -covering.

Theorem 1 No (k, 3)-PdB strings exists for $k \ge 4$.

Zs. Lipták, P. Burcsi, W.F. Smyth

On the Parikh-de-Bruijn grid

Parikh-de-Bruijn and covering strings

Theorem

A (2, σ)-PdB string exists if and only if σ is odd.

Proof

Pv's of order 2 have either the form (0...0, 2, 0..0) or (0...0, 1, 0...0, 1, 0...0). So s has to have exactly one substring of the form aa for all $a \in \Sigma$, and either ab or ba for all $a, b \in \Sigma$. Consider the undirected complete graph G = (V, E) with loops where $V = \Sigma$ (N.B.: not the PdB-grid!): an Euler path exists iff σ is odd.

Parikh-de-Bruijn and covering strings

Theorem 3

For every $\sigma \ge 3$ and $k \ge 4$, there exist (k, σ) -covering strings which are not $(k - 1, \sigma)$ -covering.

Proof

w = aaaaabbbbbbcabbaaacacbbcbccacaccccbccccc

General construction:

- remove (k 1)-order Pv $p = (k - 3, 1, 1, 0, \dots, 0)$ with incident edges and vertices
- the rest is connected, hence a string exists (Lemma)
- add vertices of p without traversing edges incident to p
- can be done by detours from corners of PdB-grid

Zs. Lipták, P. Burcsi, W.F. Smyth

On the Parikh-de-Bruijn grid

Experimental results

k	σ	string	length
			(excess)
2	3	aabbcca	7 (0)
3	3	abbbcccaaabc	12 (0)
4	3	aaaabbbbccccaacabcb	19 (1)
5	3	aaaaabbbacccccbbbbbaacaaccb	27 (2)
6	3	aaaabccccccaaaaaabbbbbbbcccbbcabbaca	35 (2)
7	3	aabbbccbbcccabacaaabcbbbbbbbaaaaaaacccccc	44 (2)
2	4	aabbcadbccdd	12 (1)
3	4	aaabbbcaadbdbccadddccc	22 (0)
4	4	aabbbbcaacadbddbccacddddaaaabdbbccccdd	38 (0)
5	4	aaaaabbbbbcaaaadbbbcccccddddaaaccdbcbaccaccddbddbadacddbbbb	60 (0)
2	5	aabbcadbeccddeea	16 (0)
3	5	aaabbbcaadbbeaccbdddcccebededadceeeaa	37 (0)
4	5	${\tt aaaabbbbcaaadbbbeaaccbbddaaeaebcccadbeeeadddcccceeeedddd\dots}$	73 (0)

Conclusion and open problems

- new tool for modeling and solving abelian problems
- find good characterization for walks which correspond to strings
- several open problems on PdB- and covering strings (see paper on Arxiv)
- apply PdB-grid to other abelian problems

Zs. Lipták, P. Burcsi, W.F. Smyth

On the Parikh-de-Bruijn grid

LSD/LAW 2018 24 / 24