
Hierarchical Overlap Graph

B. Cazaux and E. Rivals

∗ LIRMM & IBC, Montpellier

8. Feb. 2018

arXiv:1802.04632 2018

B. Cazaux & E. Rivals 1 / 29

https://arxiv.org/abs/1802.04632

Overlap Graph for a set of words

Consider the set
P :=
{abaa,abba,ababb,aab}

The Overlap Graph (OG) is applied in shortest superstring problems,
DNA assembly, and other applications [Gevezes, Pitsoulis, 2011]

B. Cazaux & E. Rivals 2 / 29

Overlap graph

I Quadratic number of arcs / weights to compute

I Computing the weights requires to solve
the so-called All Pairs Suffix Prefix overlaps problem (APSP)

I Optimal time algorithm for APSP by
[Gusfield et al 1992] and others [Lim, Park 2017] or [Tustumi et al. 2016]

I Useful information are difficult to get in the OG

We propose an alternative to the Overlap Graph
and an algorithm to build it

B. Cazaux & E. Rivals 3 / 29

Hierarchical Overlap Graph

ababb aab

abba abaa

abb

aa

ab

a

ε

all input words

and their maximal overlaps
red arcs: link a string to its longest suffix
blue arcs: link a longest prefix to its string

A red & blue “path” represents the merge of any two words

B. Cazaux & E. Rivals 4 / 29

Hierarchical Overlap Graph

ababb aab

abba abaa

abb

aa

ab

a

ε

all input words and their maximal overlaps

red arcs: link a string to its longest suffix
blue arcs: link a longest prefix to its string

A red & blue “path” represents the merge of any two words

B. Cazaux & E. Rivals 4 / 29

Hierarchical Overlap Graph

ababb aab

abba abaa

abb

aa

ab

a

ε

all input words and their maximal overlaps
red arcs: link a string to its longest suffix

blue arcs: link a longest prefix to its string
A red & blue “path” represents the merge of any two words

B. Cazaux & E. Rivals 4 / 29

Hierarchical Overlap Graph

ababb aab

abba abaa

abb

aa

ab

a

ε

all input words and their maximal overlaps

red arcs: link a string to its longest suffix

blue arcs: link a longest prefix to its string

A red & blue “path” represents the merge of any two words

B. Cazaux & E. Rivals 4 / 29

Hierarchical Overlap Graph

ababb aab

abba abaa

abb

aa

ab

a

ε

all input words and their maximal overlaps

red arcs: link a string to its longest suffix
blue arcs: link a longest prefix to its string

A red & blue “path” represents the merge of any two words

B. Cazaux & E. Rivals 4 / 29

Basic definitions

B. Cazaux & E. Rivals 5 / 29

Input

Throughout this article, the input is P := {s1, . . . ,sn} a set of words.

Without loss of generality, P is assumed to be substring free

No word of P is substring of another word of P.

Let us denote the norm of P by ‖P‖ := ∑
n
1 |si |.

B. Cazaux & E. Rivals 6 / 29

Overlaps

Definition
Let w a string.

I a substring of w is a string included in w ,

I a prefix of w is a substring which begins w

I a suffix is a substring which ends w .

I an overlap from w over v is a suffix of w that is also a prefix of v .

w a b a b b a b a a a

v a b a a a b b b b

u a b a a a

ov(w ,v)

B. Cazaux & E. Rivals 7 / 29

Overlaps

Definition
Let w a string.

I a substring of w is a string included in w ,

I a prefix of w is a substring which begins w

I a suffix is a substring which ends w .

I an overlap from w over v is a suffix of w that is also a prefix of v .

w a b a b b a b a a a

v a b a a a b b b b

u a b a a a

ov(w ,v)

B. Cazaux & E. Rivals 7 / 29

Overlaps

Definition
Let w a string.

I a substring of w is a string included in w ,

I a prefix of w is a substring which begins w

I a suffix is a substring which ends w .

I an overlap from w over v is a suffix of w that is also a prefix of v .

w a b a b b a b a a a

v a b a a a b b b b

u a b a a a

ov(w ,v)

B. Cazaux & E. Rivals 7 / 29

Overlaps

Definition
Let w a string.

I a substring of w is a string included in w ,

I a prefix of w is a substring which begins w

I a suffix is a substring which ends w .

I an overlap from w over v is a suffix of w that is also a prefix of v .

w a b a b b a b a a a

v a b a a a b b b b

u a b a a a

ov(w ,v)

B. Cazaux & E. Rivals 7 / 29

Overlaps

Definition
Let w a string.

I a substring of w is a string included in w ,

I a prefix of w is a substring which begins w

I a suffix is a substring which ends w .

I an overlap from w over v is a suffix of w that is also a prefix of v .

w a b a b b a b a a a

v a b a a a b b b b

u a b a a a

ov(w ,v)

B. Cazaux & E. Rivals 7 / 29

Overlaps

Definition
Let w a string.

I a substring of w is a string included in w ,

I a prefix of w is a substring which begins w

I a suffix is a substring which ends w .

I an overlap from w over v is a suffix of w that is also a prefix of v .

w a b a b b a b a a a

v a b a a a b b b b

u a b a a a

ov(w ,v)

B. Cazaux & E. Rivals 7 / 29

Overlaps

Definition
Let w a string.

I a substring of w is a string included in w ,

I a prefix of w is a substring which begins w

I a suffix is a substring which ends w .

I an overlap from w over v is a suffix of w that is also a prefix of v .

w a b a b b a b a a a

v a b a a a b b b b

u a b a a a

ov(w ,v)

B. Cazaux & E. Rivals 7 / 29

Superstring

Definition Superstring

Let P = {s1,s2, . . . ,sp} be a set of strings. A superstring of P is
a string w such that any si is a substring of w .

w :

s3 :

s2 :

s1 :

a c a a c a
1 2 3 4 5 6

a a c
a c

a c a

B. Cazaux & E. Rivals 8 / 29

Shortest Linear Superstring problem

Definition Shortest Linear Superstring problem (SLS)

Input: P a set of finite strings over an alphabet Σ
Output: w a linear superstring of P of minimal length.

B. Cazaux & E. Rivals 9 / 29

State of the art

Problem: Shortest Linear Superstrings problem (SLS)
I NP-hard [Gallant 1980]
I difficult to approximate [Blum et al. 1991]
I best known approximation ratio 2 + 11

30 [Paluch 2015]

B. Cazaux & E. Rivals 10 / 29

Aho-Corasick and greedy algorithm for SLS

B. Cazaux & E. Rivals 11 / 29

Aho Corasick automaton

I Part of the 1st solution to Set Pattern Matching [Aho Corasick 1975]

I Search all occurrences of a set P of words in a text T

1. store the words in a tree whose arcs are labeled with an alphabet
symbol

2. compute the Failure Links
3. scan T using the automaton

I Takes O(‖P‖) time for building the automaton and O(|T |) time for
scanning T .

I Generalisation of Morris-Pratt algorithm for single pattern search

B. Cazaux & E. Rivals 12 / 29

Greedy algorithm for SLS [Ukkonen 1990]

Linear time implementation of greedy algorithm for SLS by Ukkonen.

I Simulate greedy algorithm on Aho Corasick automaton of P

I Characterizes states / nodes that are overlaps of pairs of words

B. Cazaux & E. Rivals 13 / 29

Greedy algorithm for SLS [Ukkonen 1990]

Linear time implementation of greedy algorithm for SLS by Ukkonen.

I Simulate greedy algorithm on Aho Corasick automaton of P

I Characterizes states / nodes that are overlaps of pairs of words

B. Cazaux & E. Rivals 13 / 29

Definitions of EHOG and HOG

B. Cazaux & E. Rivals 14 / 29

Extended HOG and HOG

Definition Extended Hierarchical Overlap Graph (EHOG)

The EHOG of P, denoted by EHOG(P), is the directed graph
(VE ,PE ,SE) where VE = P ∪Ov+(P) and PE is the set:
{(x ,y) ∈ (P ∪ Ov+(P))2 | y is the longest proper suffix of x}
SE is the set:
{(x ,y) ∈ (P ∪Ov+(P))2 | x is the longest proper prefix of y}

Definition Hierarchical Overlap Graph (HOG)

The HOG of P, denoted by HOG(P), is the digraph (VH ,PH ,SH)
where V := P ∪Ov(P) and PH is the set:
{(x ,y) ∈ (P ∪Ov(P))2 | y is the longest proper suffix of x}
SH is the set:
{(x ,y) ∈ (P ∪Ov(P))2 | x is the longest proper prefix of y}

B. Cazaux & E. Rivals 15 / 29

Visual example of construction steps

Aho Corasik tree of P

takes O(‖P‖) time

Extended HOG of P

O(‖P‖) time

HOG of P

time?

Here P := {aabaa,aacd ,cdb}.

B. Cazaux & E. Rivals 16 / 29

Visual example of construction steps

Aho Corasik tree of P
takes O(‖P‖) time

Extended HOG of P
O(‖P‖) time

HOG of P
time?

Here P := {aabaa,aacd ,cdb}.

B. Cazaux & E. Rivals 16 / 29

Construction algorithm

B. Cazaux & E. Rivals 17 / 29

HOG construction: algorithm overview

Algorithm 1: HOG construction

1 Input: P a substring free set of words; Output: HOG(P)

2 Variable: bHog a bit vector of size #(EHOG(P))

3 build EHOG(P)

4 set all values of bHog to False

5 traverse EHOG(P) to build Rl(u) for each internal node u

6 run MarkHOG(r) where r is the root of EHOG(P)

7 Contract(EHOG(P),bHog)

// Procedure Contract traverses EHOG(P) to discard
nodes that are not marked in bHog and contract the
appropriate arcs

B. Cazaux & E. Rivals 18 / 29

List Rl(u) for a node u of the EHOG

For any internal node u, Rl(u) lists the words of P that admit u as a
suffix.
Formally:

Rl(u) := {i ∈ {1, . . . ,#(P)} : u is suffix of si}.

I A traversal of EHOG(P) allows to build a list Rl(u) for each
internal node u see [Ukkonen, 1990].

I The cumulated sizes of all Rl is linear in ‖P‖

indeed, internal nodes represent different prefixes of words of P and
have thus different begin/end positions in those words.

B. Cazaux & E. Rivals 19 / 29

Example list Rl(.)

EHOG for instance
P :=
{tattatt,ctattat,gtattat,cctat}.

4

tatcc

2

tat

ta
tc

3

gtattat

1

t
at

t
at

t

{4}

{2,3}

{1}

{2, 3,4}

{1, 2,3, 4}

{1,2, 3, 4}

B. Cazaux & E. Rivals 20 / 29

MarkHOG(u) algorithm

1 Input:u a node of EHOG(P); Output:C: a boolean array of size #(P)

2 if u is a leaf then
3 set all values of C to False

4 bHog[u] := True

5 return C

// Cumulate the information for all children of u

C := MarkHOG(v) where v is the first child of u

foreach v among the other children of u do
C := C∧MarkHOG(v)

// Process overlaps arising at node u: Traverse Rl (u)

for node x in the list Rl (u) do
if C[x] = False then

bHog[u] := True

C[x] := True

return C

B. Cazaux & E. Rivals 21 / 29

Two invariants

Invariant #1 (after line 7):
C[w] is True iff for any leaf l in the subtree of u the pair ov(w , l)> |u|.

Invariant #2 (after line 11):
C[w] is True iff for any leaf l in the subtree of u the pair ov(w , l)≥|u|.

B. Cazaux & E. Rivals 22 / 29

Example for MarkHOG(root)

EHOG for P := {tattatt,ctattat,gtattat,cctat}.

4

tatcc

2

tat

ta
tc

3

gtattat

1

t
at

t
at

t

{4}

{2,3}

{1}

{2, 3,4}

{1, 2, 3, 4}

{1,2, 3,4}

Trace of MarkHOG(root).

node R` C(before) C(after) Spec pairs bHog
ctat {4} 0000 0001 (4,2) 1
tattat {2,3} 0000 0110 (2,1) (3,1) 1
tatt {1} 0110 1110 (1,1) 1
tat {2,3,4} 1110 1111 (4,1) 1
t {1,2,3,4} 1111 1111 empty 0
root {1,2,3,4} 0000 ˆ 0001 0000
root {1,2,3,4} 0000 ˆ 0000 0000 (2/3,2)
root {1,2,3,4} 0000 ˆ 1111 0000 (1/2/3/4,4)
root {1,2,3,4} 0000 1111 (2/3/4,3) 1

B. Cazaux & E. Rivals 23 / 29

Another example

P := {abcba,baba,abab,bcbcb}

EHOG & HOG Trace of MarkHOG(root).

node R` C(before) C(after) Specific pairs bHog
bcb {1} 0000 1000 (1,1) 1
bab {4} 0000 0001 (4,2) 1
ba {2,3} 0001 0111 (2,2) (3,2) 1
b {1, 4} 1000 ˆ 0111
b {1, 4} 0000 1001 (4,1) (1,2) 1
aba {2} 0000 0100 (2,4) 1
ab {4} 0000 ˆ 0100
ab {4} 0000 0001 (4,3) (4,4) 1
a {2,3} 0001 0111 (2,3) (3,3) (3,4) 1
root {1,2,3,4} 1001 ˆ 0111
root {1,2,3,4} 0001 1111 (1,3) (1,4) (2,1) (3,1) 1

B. Cazaux & E. Rivals 24 / 29

Complexity

Theorem 1

Let P be a set of words. Then Algorithm 1 computes
HOG(P) using O(‖P‖+ #(P)2) time and O(‖P‖+ #(P)×
min(#(P),max{|s| : s ∈ P}) space.

If all words of P have the same length, then the space complex-
ity is O(‖P‖).

Can we improve on this?

B. Cazaux & E. Rivals 25 / 29

Conclusion

B. Cazaux & E. Rivals 26 / 29

Conclusions

I The Hierarchical Overlap Graph (HOG) is a compact alternative
to the Overlap Graph (OG)

I For constructing the HOG, Algorithm 1 takes O(‖P‖) space and
O(‖P‖+ #(P)2) time.

Can one compute the HOG in a time linear in ‖P‖+ #(P)?

I HOG useful for variants of SLS: for a cyclic cover, with
Multiplicities, etc.

More on Hierarchical Overlap Graph. arXiv:1802.04632 2018

B. Cazaux & E. Rivals 27 / 29

https://arxiv.org/abs/1802.04632

Open questions

I Mapping from EHOG to HOG is not a bijection

I How different are EHOG and HOG in practice?

There exist instances such that in the limit
the ratio between their number of nodes can goes to ∞

when ‖P‖ tends to ∞ with a bounded number of words.
http://www.lirmm.fr/˜rivals/res/superstring/hog-art-appendix.pdf

I Reverse engineering of HOG

Recognition of OG by [Gevezes & Pitsoulis 2014]

B. Cazaux & E. Rivals 28 / 29

http://www.lirmm.fr/~rivals/res/superstring/hog-art-appendix.pdf

Funding and acknowledgements

Work on compact EHOG implementation with R. Canovas

Thank you for your attention!

Questions?

B. Cazaux & E. Rivals 29 / 29

	Introduction
	Basic definitions
	Aho-Corasick and greedy algorithm for SLS
	Definitions of EHOG and HOG
	Construction algorithm
	Conclusion

