Hierarchical Overlap Graph

B. Cazaux and E. Rivals
* LIRMM \& IBC, Montpellier

8. Feb. 2018
arXiv:1802.04632 2018

The Overlap Graph (OG) is applied in shortest superstring problems, DNA assembly, and other applications [Gevezes, Pitsoulis, 2011]

- Quadratic number of arcs / weights to compute
- Computing the weights requires to solve the so-called All Pairs Suffix Prefix overlaps problem (APSP)
- Optimal time algorithm for APSP by [Gusfield et al 1992] and others [Lim, Park 2017] or [Tustumi et al. 2016]
- Useful information are difficult to get in the OG

We propose an alternative to the Overlap Graph and an algorithm to build it

all input words

all input words and their maximal overlaps

all input words and their maximal overlaps red arcs: link a string to its longest suffix

all input words and their maximal overlaps
blue arcs: link a longest prefix to its string

all input words and their maximal overlaps

A red \& blue "path" represents the merge of any two words

Basic definitions

Throughout this article, the input is $P:=\left\{s_{1}, \ldots, s_{n}\right\}$ a set of words.

Without loss of generality, P is assumed to be substring free No word of P is substring of another word of P.

Let us denote the norm of P by $\|P\|:=\sum_{1}^{n}\left|s_{i}\right|$.

Definition
Let w a string.

- a substring of w is a string included in w,
- a prefix of w is a substring which begins w
- a suffix is a substring which ends w.
- an overlap from w over v is a suffix of w that is also a prefix of v.
w

Definition
Let w a string.

- a substring of w is a string included in w,
- a prefix of w is a substring which begins w
- a suffix is a substring which ends w.
- an overlap from w over v is a suffix of w that is also a prefix of v.
w \square a b b b a a_{M}

Definition
Let w a string.

- a substring of w is a string included in w,
- a prefix of w is a substring which begins w
- a suffix is a substring which ends w.
- an overlap from w over v is a suffix of w that is also a prefix of v.
w

Definition
Let w a string.

- a substring of w is a string included in w,
- a prefix of w is a substring which begins w
- a suffix is a substring which ends w.
- an overlap from w over v is a suffix of w that is also a prefix of v.
w

Definition
Let w a string.

- a substring of w is a string included in w,
- a prefix of w is a substring which begins w
- a suffix is a substring which ends w.
- an overlap from w over v is a suffix of w that is also a prefix of v.
w

v

Definition
Let w a string.

- a substring of w is a string included in w,
- a prefix of w is a substring which begins w
- a suffix is a substring which ends w.
- an overlap from w over v is a suffix of w that is also a prefix of v.
w

V

Definition
Let w a string.

- a substring of w is a string included in w,
- a prefix of w is a substring which begins w
- a suffix is a substring which ends w.
- an overlap from w over v is a suffix of w that is also a prefix of v.
w

v

u

$$
\underbrace{\mathrm{a} \mathrm{~b} \mathrm{a} \mathrm{a} \mathrm{a}_{v}}_{o v(w, v)}
$$

Definition Superstring

Let $P=\left\{s_{1}, s_{2}, \ldots, s_{p}\right\}$ be a set of strings. A superstring of P is a string w such that any s_{i} is a substring of w.

Definition Shortest Linear Superstring problem (SLS)

Input: P a set of finite strings over an alphabet Σ Output: w a linear superstring of P of minimal length.

Problem: Shortest Linear Superstrings problem (SLS)

- NP-hard [Gallant 1980]
- difficult to approximate [Blum et al. 1991]
- best known approximation ratio $2+\frac{11}{30}$ [Paluch 2015]

Aho-Corasick and greedy algorithm for SLS

- Part of the 1st solution to Set Pattern Matching [Aho Corasick 1975]
- Search all occurrences of a set P of words in a text T

1. store the words in a tree whose arcs are labeled with an alphabet symbol
2. compute the Failure Links
3. scan T using the automaton

- Takes $O(\|P\|)$ time for building the automaton and $O(|T|)$ time for scanning T.
- Generalisation of Morris-Pratt algorithm for single pattern search

Linear time implementation of greedy algorithm for SLS by Ukkonen.

- Simulate greedy algorithm on Aho Corasick automaton of P
- Characterizes states / nodes that are overlaps of pairs of words

Linear time implementation of greedy algorithm for SLS by Ukkonen.

- Simulate greedy algorithm on Aho Corasick automaton of P
- Characterizes states / nodes that are overlaps of pairs of words

Lemma 3. Let string u represent state s. For all strings x_{j} in R, there is an overlap of length k between u and x_{j} if and only if, for some $h \geq 0$, state $t=f^{h}(s)$ is such that j is in $L(t)$ and $k=d(t)$.

Definitions of EHOG and HOG

Definition Extended Hierarchical Overlap Graph (EHOG)

The EHOG of P, denoted by $E H O G(P)$, is the directed graph (V_{E}, P_{E}, S_{E}) where $V_{E}=P \cup O v^{+}(P)$ and P_{E} is the set: $\left\{(x, y) \in\left(P \cup O v^{+}(P)\right)^{2} \mid y\right.$ is the longest proper suffix of $\left.x\right\}$ S_{E} is the set:
$\left\{(x, y) \in\left(P \cup O v^{+}(P)\right)^{2} \mid x\right.$ is the longest proper prefix of $\left.y\right\}$

Definition Hierarchical Overlap Graph (HOG)

The HOG of P, denoted by $\operatorname{HOG}(P)$, is the digraph $\left(V_{H}, P_{H}, S_{H}\right)$ where $V:=P \cup O v(P)$ and P_{H} is the set: $\left\{(x, y) \in(P \cup O v(P))^{2} \mid y\right.$ is the longest proper suffix of $\left.x\right\}$ S_{H} is the set:
$\left\{(x, y) \in(P \cup O v(P))^{2} \mid x\right.$ is the longest proper prefix of $\left.y\right\}$

Aho Corasik tree of P

Extended HOG of P

HOG of P

Here $P:=\{a a b a a, a a c d, c d b\}$.

Aho Corasik tree of P takes $O(\|P\|)$ time

Extended HOG of P
$O(\|P\|)$ time

HOG of P time?

Here $P:=\{$ aabaa, aacd, cdb $\}$.

Construction algorithm

Algorithm 1: HOG construction

1 Input: P a substring free set of words; Output: $H O G(P)$
2 Variable: bHog a bit vector of size $\#(E H O G(P))$
3 build EHOG(P)
4 set all values of bHog to False
5 traverse $E H O G(P)$ to build $R_{l}(u)$ for each internal node u
6 run MarkHOG (r) where r is the root of $E H O G(P)$
7 Contract(EHOG(P), bHog)
// Procedure Contract traverses $E H O G(P)$ to discard nodes that are not marked in bHog and contract the appropriate arcs

For any internal node $u, R_{l}(u)$ lists the words of P that admit u as a suffix.
Formally:

$$
R_{l}(u):=\left\{i \in\{1, \ldots, \#(P)\}: u \text { is suffix of } s_{i}\right\}
$$

- A traversal of $E H O G(P)$ allows to build a list $R_{l}(u)$ for each internal node u
- The cumulated sizes of all R_{l} is linear in $\|P\|$ indeed, internal nodes represent different prefixes of words of P and have thus different begin/end positions in those words.

Input: u a node of $E H O G(P)$; Output: C : a boolean array of size $\#(P)$
2 if u is a leaf then
3 set all values of C to False
4 bHog[u]:=True
5
return C
// Cumulate the information for all children of u
$C:=\operatorname{MarkHOG}(v)$ where v is the first child of u foreach v among the other children of u do
$C:=C \wedge \operatorname{MarkHOG}(v)$
// Process overlaps arising at node u : Traverse $R_{l}(u)$ for node x in the list $R_{l}(u)$ do
if $C[x]=$ False then $\mathrm{bHog}[u]:=$ True
$C[x]:=$ True
return C

Invariant \#1 (after line 7):
$C[w]$ is True iff for any leaf $/$ in the subtree of u the pair $o v(w, I)>|u|$.

Invariant \#2 (after line 11):
$C[w]$ is True iff for any leaf I in the subtree of u the pair $o v(w, I) \geq|u|$.

EHOG for $P:=\{$ tattatt, ctattat, gtattat, cctat $\}$.

$P:=\{a b c b a, b a b a, a b a b, b c b c b\}$

EHOG \& HOG

Trace of MarkHOG(root).

node	R_{ℓ}	C (before)	C (after)	Specific pairs	bHog
bcb	$\{1\}$	0000	1000	$(1,1)$	1
bab	$\{4\}$	0000	0001	$(4,2)$	1
ba	$\{2,3\}$	0001	0111	$(2,2)(3,2)$	1
b	$\{1,4\}$	$1000^{\wedge} 0111$			
b	$\{1,4\}$	0000	1001	$(4,1)(1,2)$	1
aba	$\{2\}$	0000	0100	$(2,4)$	1
ab	$\{4\}$	$0000 \wedge 0100$			
ab	$\{4\}$	0000	0001	$(4,3)(4,4)$	1
a	$\{2,3\}$	0001	0111	$(2,3)(3,3)(3,4)$	1
root	$\{1,2,3,4\}$	$1001^{\wedge} 0111$			
root	$\{1,2,3,4\}$	0001	1111	$(1,3)(1,4)(2,1)(3,1)$	1

Theorem 1

Let P be a set of words. Then Algorithm 1 computes $H O G(P)$ using $O\left(\|P\|+\#(P)^{2}\right)$ time and $O(\|P\|+\#(P) \times$ $\min (\#(P), \max \{|s|: s \in P\})$ space.

If all words of P have the same length, then the space complexity is $O(\|P\|)$.

Can we improve on this?

Conclusion

- The Hierarchical Overlap Graph (HOG) is a compact alternative to the Overlap Graph (OG)
- For constructing the HOG, Algorithm 1 takes $O(\|P\|)$ space and $O\left(\|P\|+\#(P)^{2}\right)$ time.
Can one compute the HOG in a time linear in $\|P\|+\#(P)$?
- HOG useful for variants of SLS: for a cyclic cover, with Multiplicities, etc.

More on Hierarchical Overlap Graph. arXiv:1802.04632 2018

- Mapping from EHOG to HOG is not a bijection
- How different are EHOG and HOG in practice?

There exist instances such that in the limit the ratio between their number of nodes can goes to ∞ when $\|P\|$ tends to ∞ with a bounded number of words. http://www.lirmm.fr//rivals/res/superstring/hog-art-appendix.pdf

- Reverse engineering of HOG

Recognition of OG by [Gevezes \& Pitsoulis 2014]

Work on compact EHOG implementation with R. Canovas

Thank you for your attention!
Questions?

