UNIVERSITE J
DE MONTPELLIER LIRMM Institut de bio

computationnelle

Hierarchical Overlap Graph

B. Cazaux and E. Rivals

* LIRMM & IBC, Montpellier

8. Feb. 2018

arXiv:1802.04632 2018

B. Cazaux & E. Rivals 1/29

https://arxiv.org/abs/1802.04632

b‘

LIRMM

Overlap Graph for a set of words

Consider the set
P .=
{abaa, abba, ababb, aab}

The Overlap Graph (OG) is applied in shortest superstring problems,
DNA assembly, and other applications [Gevezes, Pitsoulis, 2011]

B. Cazaux & E. Rivals 2/29

f=d Overlap graph ‘

» Quadratic number of arcs / weights to compute

» Computing the weights requires to solve
the so-called All Pairs Suffix Prefix overlaps problem (APSP)

» Optimal time algorithm for APSP by
[Gusfield et al 1992] and others [Lim, Park 2017] or [Tustumi et al. 2016]

» Useful information are difficult to get in the OG

We propose an alternative to the Overlap Graph
and an algorithm to build it

B. Cazaux & E. Rivals 3/29

=] Hierarchical Overlap Graph .

all input words

B. Cazaux & E. Rivals 4/29

=] Hierarchical Overlap Graph ,

all input words and their maximal overlaps

B. Cazaux & E. Rivals 4/29

*<] Hierarchical Overlap Graph

LIRMM

all input words and their maximal overlaps
red arcs: link a string to its longest suffix

B. Cazaux & E. Rivals 4/29

=] Hierarchical Overlap Graph

all input words and their maximal overlaps

blue arcs: link a longest prefix to its string

B. Cazaux & E. Rivals 4/29

b‘

LIRMM

Hierarchical Overlap Graph

all input words and their maximal overlaps

A red & blue “path” represents the merge of any two words

B. Cazaux & E. Rivals 4/29

Basic definitions

B. Cazaux & E. Rivals 5/29

f=d Input

Throughout this article, the input is P := {sq,...,sp} a set of words.

Without loss of generality, P is assumed to be substring free

No word of P is substring of another word of P.

Let us denote the norm of P by ||P|| := Y7 |sil.

B. Cazaux & E. Rivals 6/29

f=d Overlaps 180]

Definition
Let w a string.

» a substring of w is a string included in w,
» a prefix of w is a substring which begins w
» a suffix is a substring which ends w.

v

an overlap from w over v is a suffix of w that is also a prefix of v.

w a b abbabaa a

B. Cazaux & E. Rivals 7129

f=d Overlaps 180]

Definition
Let w a string.

> a substring of w is a string included in w,
» a prefix of w is a substring which begins w
» a suffix is a substring which ends w.

v

an overlap from w over v is a suffix of w that is also a prefix of v.

w abaaa

B. Cazaux & E. Rivals 7129

f=d Overlaps 180]

Definition
Let w a string.

» a substring of w is a string included in w,
» a prefix of w is a substring which begins w
» a suffix is a substring which ends w.

v

an overlap from w over v is a suffix of w that is also a prefix of v.

w ~lababbabaaga

B. Cazaux & E. Rivals 7129

k=] Overlaps

Definition
Let w a string.

» a substring of w is a string included in w,
» a prefix of w is a substring which begins w
» a suffix is a substring which ends w.

> an overlap from w over v is a suffix of w that is also a prefix of v.

w ababbablaaa

v

B. Cazaux & E. Rivals

7129

k=] Overlaps

Definition
Let w a string.

» a substring of w is a string included in w,
» a prefix of w is a substring which begins w
» a suffix is a substring which ends w.

> an overlap from w over v is a suffix of w that is also a prefix of v.

v

w a b abbabaa a
v a b aaabbb b

B. Cazaux & E. Rivals

7129

k=] Overlaps

Definition
Let w a string.

» a substring of w is a string included in w,
» a prefix of w is a substring which begins w
» a suffix is a substring which ends w.

> an overlap from w over v is a suffix of w that is also a prefix of v.

v

w ababblabaa a
v a2 b a a alb b b by

B. Cazaux & E. Rivals

7129

k=] Overlaps

Definition
Let w a string.

» a substring of w is a string included in w,
» a prefix of w is a substring which begins w
» a suffix is a substring which ends w.

> an overlap from w over v is a suffix of w that is also a prefix of v.

w ababblabaa a
v a2 b a a alb b b by

u abaa a
%/—/
ov(w,v)

B. Cazaux & E. Rivals 7129

b Supersting

Definition Superstring

Let P={s1,sp,...,5,} be a set of strings. A superstring of P is
a string w such that any s; is a substring of w.

St La . ¢ | ag

S2: a c

S3: La , a c¢c gy

w L a , ¢, a,a,;c¢c a,
1 2 3 4 5 6

B. Cazaux & E. Rivals 8/29

=] Shortest Linear Superstring problem \

Definition Shortest Linear Superstring problem (SLS)

Input: P a set of finite strings over an alphabet >
Output: w a linear superstring of P of minimal length.

B. Cazaux & E. Rivals 9/29

3:" State of the art a

Problem: Shortest Linear Superstrings problem (SLS)

» NP-hard [Gallant 1980]
» difficult to approximate [Blum et al. 1991]
> best known approximation ratio 2 + % [Paluch 2015]

B. Cazaux & E. Rivals 10/29

Aho-Corasick and greedy algorithm for SLS

B. Cazaux & E. Rivals 11/29

=] Aho Corasick automaton 80]

» Part of the 1st solution to Set Pattern Matching [Aho Corasick 1975]
» Search all occurrences of a set P of words inatext T
1. store the words in a tree whose arcs are labeled with an alphabet
symbol
2. compute the Failure Links
3. scan T using the automaton
> Takes O(||P||) time for building the automaton and O(| T|) time for
scanning T.
» Generalisation of Morris-Pratt algorithm for single pattern search

B. Cazaux & E. Rivals 12/29

*<] Greedy algorithm for SLS

LIRMM

Linear time implementation of greedy algorithm for SLS by Ukkonen.
» Simulate greedy algorithm on Aho Corasick automaton of P

» Characterizes states / nodes that are overlaps of pairs of words

B. Cazaux & E. Rivals 13/29

=] Greedy algorithm for SLS

Linear time implementation of greedy algorithm for SLS by Ukkonen.

» Simulate greedy algorithm on Aho Corasick automaton of P

» Characterizes states / nodes that are overlaps of pairs of words

LEMMA 3. Let string u represent state s. For all strings x; in R, there is an overlap
of length k between u and x; if and only if, for some h=0, state t=f"(s) is such
that j is in L(t) and k=d(t).

B. Cazaux & E. Rivals 13/29

Definitions of EHOG and HOG

B. Cazaux & E. Rivals 14/29

f=d Extended HOG and HOG

Definition Extended Hierarchical Overlap Graph (EHOG)

The EHOG of P, denoted by EHOG(P), is the directed graph
(VE, Pe, Se) where Ve = PU Ov' (P) and Pk is the set:
{(x,y) € (PU OvT(P))? | yis the longest proper suffix of x}
Sk is the set:

{(x,y) € (PUOvT(P))? | x is the longest proper prefix of y}

Definition Hierarchical Overlap Graph (HOG)

The HOG of P, denoted by HOG(P), is the digraph (Vi, Py, SH)
where V := PUOv(P) and Py is the set:

{(x,y) € (PUOv(P))?| y is the longest proper suffix of x}

SH is the set:

{(x,y) € (PUOV(P))? | x is the longest proper prefix of y}

B. Cazaux & E. Rivals

15/29

t=] Visual example of construction steps

LIRMM

Aho Corasik tree of P Extended HOG of P HOG of P

Here P := {aabaa, aacd, cdb}.

B. Cazaux & E. Rivals 16/29

t=] Visual example of construction steps

LIRMM

Aho Corasik tree of P Extended HOG of P HOG of P
takes O(|| P||) time O(]|P||) time time?
Here P := {aabaa, aacd, cdb}.

B. Cazaux & E. Rivals 16/29

Construction algorithm

B. Cazaux & E. Rivals 17/29

f=d HOG construction: algorithm overview 180]

Algorithm 1: HOG construction

Input: P a substring free set of words; Output: HOG(P)
Variable: bHog a bit vector of size #(EHOG(P))

build EHOG(P)

set all values of bHog to False

traverse EHOG(P) to build R;(u) for each internal node u
run MarkHOG(r) where r is the root of EHOG(P)
Contract(EHOG(P),bHog)

// Procedure Contract traverses EHOG(P) to discard
nodes that are not marked in bHog and contract the
appropriate arcs

B. Cazaux & E. Rivals 18/29

f=d List R)(u) for a node u of the EHOG a

For any internal node u, R)(u) lists the words of P that admit u as a
suffix.
Formally:

Ri(u):={ie{1,....,#(P)} : uis suffix of s;}.

» A traversal of EHOG(P) allows to build a list R/(u) for each
internal node u see [Ukkonen, 1990].

> The cumulated sizes of all Ry is linear in || P||

indeed, internal nodes represent different prefixes of words of P and
have thus different begin/end positions in those words.

B. Cazaux & E. Rivals 19/29

fad Example list Ry(.)

EHOG for instance
P .=
{tattatt, ctattat, gtattat, cctat }.

B. Cazaux & E. Rivals 20/29

-

w N

f=d MarkHOG(u) algorithm 1180

Input:u a node of EHOG(P); Output:C: a boolean array of size #(P)

if u is a leaf then
set all values of Cto False

bHog[u] := True
return C

// Cumulate the information for all children of u
C := MarkHOG(v) where v is the first child of u
foreach v among the other children of u do

L C := C AMarkHOG(v)

// Process overlaps arising at node u: Traverse Ri(u)

for node x in the list Ri(u) do
if C[x] = False then
| bHogl[u] := True

C[x] :=True

return C

B. Cazaux & E. Rivals

21/29

fe1 Two invariants

LIRMM

Invariant #1 (after line 7):
C[w] is True iff for any leaf / in the subtree of u the pair ov(w,/)> |ul.

Invariant #2 (after line 11):
C[w] is True iff for any leaf / in the subtree of u the pair ov(w,/)> |ul.

B. Cazaux & E. Rivals 22/29

=] Example for MarkHOG(root)

EHOG for P := {tattatt, ctattat, gtattat, cctat } .

Trace of MarkHOG(root).
{4} 0000 0001 (4,2) 1
{2,3} 0000 0110 (2,1)(3,1) 1
{1} 0110 1110 (1,1) 1
{234} 1110 1111 (4,1) 1
{1,234} 1111 1111 empty 0
{1,234} 0000 " 0001 0000
{1,2,3,4} 0000 " 0000 0000 (2/3,2)
{1,234} 0000~ 1111 0000 (1/2/3/4,4)
{1,234} 0000 1111 (2/3/4,3) 1

B. Cazaux & E. Rivals 23/29

=4 Another example

P := {abcba, baba, abab, bcbcb}

EHOG & HOG

{1,2,3,4}

B. Cazaux & E. Rivals

Trace of MarkHOG(root).

{4} 0000 "

{23}
{1,234} 1001~
{1,234}

1000
0001
0111

1001
0100

0001
0111

1111

(4,3) (4,4)
(2,3) (3,3) (3,4)

(1,3) (1.4) (2,1) (3,1)

24/29

F=d Complexity |

Let P be a set of words. Then Algorithm 1 computes
HOG(P) using O(||P|| + #(P)?) time and O(||P|| + #(P) x
min(#(P),max{|s| : s € P}) space.

If all words of P have the same length, then the space complex-
ity is O(|| P||).

Can we improve on this?

B. Cazaux & E. Rivals 25/29

Conclusion

B. Cazaux & E. Rivals 26/29

f=d Conclusions {80

» The Hierarchical Overlap Graph (HOG) is a compact alternative
to the Overlap Graph (OG)

» For constructing the HOG, Algorithm 1 takes O(||P||) space and
O(||P|| + #(P)?) time.

Can one compute the HOG in a time linear in || P|| 4 #(P)?

» HOG useful for variants of SLS: for a cyclic cover, with
Multiplicities, etc.

More on Hierarchical Overlap Graph. arXiv:1802.04632 2018

B. Cazaux & E. Rivals 27/29

https://arxiv.org/abs/1802.04632

r=] Open questions

LIRMM

» Mapping from EHOG to HOG is not a bijection

» How different are EHOG and HOG in practice?

There exist instances such that in the limit

the ratio between their number of nodes can goes to «

when ||P|| tends to e with a bounded number of words.
http://www.lirmm.fr/ rivals/res/superstring/hog-art-appendix.pdf

» Reverse engineering of HOG
Recognition of OG by [Gevezes & Pitsoulis 2014]

B. Cazaux & E. Rivals 28/29

http://www.lirmm.fr/~rivals/res/superstring/hog-art-appendix.pdf

b\

LIRMM

Funding and acknowledgements

Work on compact EHOG implementation with R. Canovas

Thank you for your attention!

Questions?

B. Cazaux & E. Rivals 29/29

	Introduction
	Basic definitions
	Aho-Corasick and greedy algorithm for SLS
	Definitions of EHOG and HOG
	Construction algorithm
	Conclusion

