Repetition length in random sequences

Ph.Chassignet and M. Régnier

Ecole polytechnique & CNRS & INRIA-Team AMIBIO

February, 8th - 2018

Motivation

Many repetitive structures in genomic sequences:

- microsatellites
- DNA transposons
- long terminal repeats
- long interspersed nuclear elements
- ribosomal DNA
- short interspersed nuclear elements

Treangen&Salzberg2012: half of the genome : repetitive elements.

Applications : assembly, de Bruijn graphs, ...

Assembly strategies

de Bruijn graph.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

- Reads \rightarrow *k*-mers
- Node = one k-mer
- Edge $\rightarrow 1 \ (k-1)$ -mer

State of the art

Model: trie versus (word, sequence) repetition Deviations from uniformity

Flajolet&Nigel : binary alphabet Σ; uniform Bernoulli model:

- almost all words of length $\leq k$ appear.
- almost no word of length > k appear.

 Park&al. 2009; binary alphabet; biased Bernoulli model: transition domain for trie profile: "many" words of length k appear.

State of the art

Model: trie versus (word, sequence) repetition Deviations from uniformity

- **Flajolet&Nigel** : binary alphabet Σ; uniform Bernoulli model:
 - almost all words of length $\leq k$ appear.
 - almost no word of length > k appear.
- Park&al. 2009; binary alphabet; biased Bernoulli model: transition domain for trie profile: "many" words of length k appear.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

General alphabets ?

State of the art

Figure 5: The silhouettes of the expected external (left) and internal (right) profiles of an asymmetric trie (p = 0.75). Note that the right subtrees of the asymmetric trie have more nodes than their left siblings since p > 1/2. Also, the first few levels contain almost no external nodes, but are almost full of internal nodes.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Method

Analytic combinatorics

functional equation on a generating function, or an induction.

- ▶ asymptotics of coefficients of G.F. (Mellin, saddle point; ...)
- Bernoulli-Poisson cycle

Method

Analytic combinatorics

functional equation on a generating function, or an induction.

- ▶ asymptotics of coefficients of G.F. (Mellin, saddle point; ...)
- Bernoulli-Poisson cycle
- ▶ probability ⇒ coefficients
- Lagrange multipliers

Words and tries

Axiom: repeat \Leftrightarrow internal node

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注 のへで

Words and tries

Axiom: repeat ⇔ internal node Unique *k*-mer :

wa : once; w : twice; |wa| = k

In the sequence : wa ··· wb w : (right) maximal repeat

► In a trie :

w : internal node ; w : leaf

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Myriad virtues of Tries (and Suffix arrays)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Notations

n words OR sequence of length n

$$B(n,k) = \# \text{unique } k \text{-mers}$$

$$\mu(n,k-1) = E(B(n,k))$$

$$\alpha = \frac{k}{\log n}$$

Notations

n words OR sequence of length n

$$B(n,k) = \# \text{unique } k \text{-mers} \le n$$

$$\mu(n,k-1) = E(B(n,k)) \sim B(n,k): \text{ LLN}$$

$$\alpha = \frac{k}{\log n} \quad 0 \cdots \infty$$

Notations

n words OR sequence of length *n* Σ alphabet χ_1, \dots, χ_V Probabilities: p_1, \dots, p_V

$$eta_i = \log rac{1}{p_i}$$

•

$$p_{min} = \min\{p_i; 1 \le i \le V\} \quad \text{and} \quad \alpha_{min} = \frac{1}{\log \frac{1}{p_{min}}} = \frac{1}{\max(\beta_i)}$$
$$p_{max} = \max\{p_i; 1 \le i \le V\} \quad \text{and} \quad \alpha_{max} = \frac{1}{\log \frac{1}{p_{max}}} = \frac{1}{\min(\beta_i)}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへぐ

Barycentric coordinates & objective function

$$\rho(k_1,\cdots,k_V) = \sum_{i=1}^V \frac{k_i}{k} \beta_i - \frac{1}{\alpha} \quad . \tag{1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\sum_{i=1}^{V} \frac{k_i}{k} \beta_i \in [\min(\beta_i), \max(\beta_i)]$

Barycentric coordinates & objective function

$$\rho(k_1,\cdots,k_V) = \sum_{i=1}^V \frac{k_i}{k} \beta_i - \frac{1}{\alpha} \quad . \tag{1}$$

A k-mer $w\chi_i$ is said

- a common k-mer if $\rho(k_1, \cdots, k_V) < 0$;
- a transition k-mer if ρ(k₁, · · · , k_V) ≥ 0 and its ancestor is a common k-mer;
- ► a *rare k-mer* , otherwise.

Barycentric coordinates & objective function

$$\rho(k_1,\cdots,k_V) = \sum_{i=1}^V \frac{k_i}{k} \beta_i - \frac{1}{\alpha} \quad . \tag{1}$$

A k-mer $w\chi_i$ is said

- ▶ a common k-mer if $\rho(k_1, \dots, k_V) < 0$; $E(w\chi_i) > 1$
- a transition k-mer if ρ(k₁, · · · , k_V) ≥ 0 and its ancestor is a common k-mer; E(wχ_i) ≤ 1, E(w) > 1
- a rare k-mer; $E(w) \leq 1$

Barycentric coordinates & objective function

$$\rho(k_1,\cdots,k_V) = \sum_{i=1}^V \frac{k_i}{k} \beta_i - \frac{1}{\alpha} \quad . \tag{1}$$

A k-mer $w\chi_i$ is said

- ▶ a common k-mer if $\rho(k_1, \cdots, k_V) < 0$; $E(w\chi_i) > 1$
- a transition k-mer if ρ(k₁, · · · , k_V) ≥ 0 and its ancestor is a common k-mer; E(wχ_i) ≤ 1, E(w) > 1
- a rare k-mer; $E(w) \leq 1$

Main contribution for each given level k :transition nodes.

Combinatorial sums

$$\mu(n,k) = n \sum_{k_1 + \dots + k_V = k} {\binom{k}{k_1, \dots, k_V}} \phi(k_1, \dots, k_V) \psi_n(k_1, \dots, k_V)$$

$$\phi(k_1, \dots, k_V) = p_1^{k_1} \dots p_V^{k_V}$$

$$\psi : \sum_{i=1}^V p_i [(1 - \phi(k_1, \dots, k_V)p_i)^{n-1} - (1 - \phi(k_1, \dots, k_V))^{n-1}]$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Combinatorial sums

$$\mu(n,k) = n \sum_{k_1 + \dots + k_V = k} {k \choose k_1, \dots, k_V} \phi(k_1, \dots, k_V) \psi_n(k_1, \dots, k_V)$$

$$\phi(k_1, \dots, k_V) p_i = p_1^{k_1} \cdots p_V^{k_V} p_i : P(w\chi_i)$$

$$\psi : \sum_{i=1}^V p_i [(1 - \phi(k_1, \dots, k_V) p_i)^{n-1} - (1 - \phi(k_1, \dots, k_V))^{n-1}]$$

$$(1 - \phi(k_1, \dots, k_V) p_i)^{n-1} : \text{no other } w\chi_i$$

$$(1 - \phi(k_1, \dots, k_V))^{n-1} : \text{at least an other } w$$

Combinatorial sums

$$S(k) = n \sum_{D_k(n)} {k \choose k_1 \cdots k_V} \phi(k_1, \cdots, k_V) \psi_n(k_1, \cdots, k_V) ;$$

$$T(k) = n \sum_{E_k(n)} {k \choose k_1 \cdots k_V} \phi(k_1, \cdots, k_V) \psi_n(k_1, \cdots, k_V) .$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Tech: two diff. approx. when

- ▶ w : rare or transition
- w : common

Computable for moderate *k*.

Lagrange multipliers

Large Deviation Principle

$$np_1^{k_1} \cdots p_V^{k_V} = e^{-k\rho(k_1, \cdots, k_V)}$$
$$\begin{pmatrix} k \\ k_1, \cdots, k_V \end{pmatrix} \phi(k_1, \cdots, k_V) \rightarrow e^{-k\sum_i \frac{k_i}{k} \log \frac{k_i}{k}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dominating contribution S(k), T(k): $\rho(k_1, \dots, k_V) = 0$.

Large Deviation principle

Main contribution

For each given level k :transition nodes.

Maximization problem $\sim \max\{-\sum_{i=1}^{V} \frac{k_i}{k} \log \frac{k_i}{k}; \rho(k_1, \cdots, k_V) = 0\}$

Rewrite :
$$\max\{\sum_{i=1}^{V} \theta_i \log \frac{1}{\theta_i}; \sum_{i=1}^{V} \theta_i = 1; \sum_{i=1}^{V} \beta_i \theta_i = \frac{1}{\alpha}; 0 \le \theta_i \le 1\}$$

・ロト・西・・日・・日・・日・

Lagrange multipliers and Large Deviation Principle

Lagrange multipliers $\max\{\sum_{i=1}^{V} \theta_i \log \frac{1}{\theta_i}; \sum_{i=1}^{V} \theta_i = 1; \sum_{i=1}^{V} \beta_i \theta_i = \frac{1}{\alpha}; 0 \le \theta_i \le 1\}$

Implicit equation solution

Let τ_{α} be the unique real root of the equation

$$\frac{1}{\alpha} = \frac{\sum_{i=1}^{V} \beta_i e^{-\beta_i \tau}}{\sum_{i=1}^{V} e^{-\beta_i \tau}}$$
(2)

Let ψ be the function defined in $[\alpha_{\textit{min}}, \alpha_{\textit{ext}}]$ as

$$egin{aligned} lpha_{\textit{min}} &\leq lpha &\leq arlpha &: \psi(lpha) = au_lpha + lpha \log(\sum_{i=1}^V e^{-eta_i au_lpha}) \ ; \ &arlpha &\leq lpha &: \psi(lpha) = 2 - lpha \log rac{1}{\sigma_2} \ . \end{aligned}$$

Results and interpretation

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Results and interpretation

• $\bar{\alpha} \leq \alpha_{max}$: transition *k*-mers decrease

$$\frac{\log \mu(n,k)}{\log n} = \psi_2(\alpha) = 2 - \alpha \log \frac{1}{\sigma_2}$$

Simulations

	observed	predicted		observed	asymptotic]	
k	B(k+1)	S(k)	T(k)	$\mu(N,k)$	$\frac{\log B(k+1)}{\log N}$	$\psi(\alpha)$	$\psi(lpha)+\xi(lpha)$	
11	0.29	0.0	0.3	0.3	-0.0803]
12	7.91	0.0	8.3	8.3	0.1341			Ι _ν .
13	87.87	0.1	86.9	87.1	0.2902	0.0843	0.0012	^////
14	552.88	1.2	550.3	551.5	0.4094	0.3340	0.2485	
15	2456.77	86.6	2366.4	2453.0	0.5061	0.4962	0.4085	
16	8269.20	209.4	8069.1	8278.5	0.5848	0.6181	0.5282	
17	22516.20	406.1	22097.7	22503.8	0.6497	0.7136	0.6218	
18	51085.15	4823.8	46267.2	51091.0	0.7028	0.7897	0.6960	
19	99387.01	6636.1	92717.6	99353.7	0.7460	0.8504	0.7549	
20	169303.03	37415.5	131882.6	169298.1	0.7805	0.8984	0.8013	
21	256358.10	42003.9	214454.4	256458.3	0.8074	0.9357	0.8370	
22	349801.23	137615.9	212264.2	349880.1	0.8276	0.9635	0.8634	
23	434625.83	134807.6	299824.7	434632.4	0.8416	0.9830	0.8814	
24	495572.93	122283.1	373279.8	495562.8	0.8501	0.9949	0.8919	
25	522788.19	255284.4	267476.3	522760.7	0.8536	0.9998	0.8955	ĩ
26	513374.76	211204.2	302252.5	513456.7	0.8524	0.9982	0.8926	^
27	472126.51	315154.7	157087.0	472241.6	0.8470	0.9906	0.8838	
28	408946.76	242583.4	166360.3	408943.7	0.8377	0.9772	0.8692	
29	335080.05	273441.0	61579.7	335020.7	0.8248	0.9582	0.8491	
30	260999.29	198163.4	62712.5	260875.9	0.8086	0.9339	0.8236	
31	194100.36	137502.0	56463.1	193965.1	0.7894	0.9043	0.7930	Ī
32	138437.13	122218.3	16090.9	138309.2	0.7675	0.8699	0.8136	
33	95017.33	80937.1	14067.8	95004.9	0.7431	0.8346	0.7783	

Simulations

	observed	predicted		observed	asymptotic]	
k	B(k+1)	S(k)	T(k)	$\mu(N,k)$	$\frac{\log B(k+1)}{\log N}$	$\psi(\alpha)$	$\psi(lpha)+\xi(lpha)$	
12	7.91	0.0	8.3	8.3	0.1341			k.
13	87.87	0.1	86.9	87.1	0.2902	0.0843	0.0012	^ min
19	99387.01	6636.1	92717.6	99353.7	0.7460	0.8504	0.7549	
24	495572.93	122283.1	373279.8	495562.8	0.8501	0.9949	0.8919	
25	522788.19	255284.4	267476.3	522760.7	0.8536	0.9998	0.8955	ĩ
26	513374.76	211204.2	302252.5	513456.7	0.8524	0.9982	0.8926	ĸ
27	472126.51	315154.7	157087.0	472241.6	0.8470	0.9906	0.8838	
29	335080.05	273441.0	61579.7	335020.7	0.8248	0.9582	0.8491	
31	194100.36	137502.0	56463.1	193965.1	0.7894	0.9043	0.7930	Ī
32	138437.13	122218.3	16090.9	138309.2	0.7675	0.8699	0.8136	ĸ
34	63082.67	60397.1	2744.6	63141.7	0.7165	0.7993	0.7430	
36	25679.21	23888.2	1817.4	25705.6	0.6582	0.7286	0.6724	
38	9645.84	9455.0	194.2	9649.2	0.5948	0.6580	0.6018	
40	3433.87	3426.4	12.1	3438.5	0.5278	0.5874	0.5311	
42	1188.84	1189.0	0.3	1189.3	0.4590	0.5167	0.4605	
43	692.28	694.8	0.2	695.0	0.4240	0.4814	0.4252	k
44	402.75	405.1	0.0	405.1	0.3889	0.4461	0.3899	^ max
46	135.42	137.0	0.0	137.0	0.3182	0.3755	0.3192	
48	44.69	46.2	0.0	46.2	0.2463	0.3048	0.2486	
50	14.57	15.6	0.0	15.6	0.1737	0.2342	0.1780	
52	4.76	5.2	0.0	5.2	0.1012	0.1636	0.1073	
54	1.74	1.8	0.0	1.8	0.0359	0.0929	0.0367	
56	0.64	0.6	0.0	0.6	-0.0289	0.0223	-0.0339	k.
57	0.32	0.3	0.0	0.3	-0.0739	-0.0130		rext
59	0.16	0.1	0.0	0.1	-0.1188	-0.0836		
61	0.08	0.0	0.0	0.0	-0.1637	-0.1543		J

Extensions

Right to left maximality

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Maximal repeats
- Markov model
- Errors

Thank you !

・ロト ・ 聞 ト ・ 注 ト ・ 注 ト

э

team-project AMIBIO Ecole Polytechnique www.lix.polytechnique.fr/ regnier/

A basic scheme

$$\mathcal{R}: f(n) = \sum \cdots \rightarrow f(n) \sim \cdots : \mathcal{R}$$

$$\downarrow 1983 \downarrow$$

$$\mathcal{C}: F(z) = \sum_{n} f(n) z^{n} \rightarrow f(n) \sim \cdots : (singularities!) \mathcal{C}$$

Generating functions

Combinatorial object and a size : trees, words, ... Generating functions :

$$F(z) = \sum_{n} f(n)z^{n} \text{ ordinary}$$
$$= \sum_{n} f(n)\frac{z^{n}}{n!} \text{ exponential}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

algebraic or probability

monovariate or multivariate

A systematic approach

$${f_n}_{n\geq 1} \leftrightarrow F(z) = \sum_n f_n z^n$$

Induction: Recursive combinatorial properties

₩

Functional equation on F(z)

₩

Asymptotics : n large: $f_n \sim \beta_n \rho^{-n}$ where ρ is the root of some algebraic equation.