Some results on the number of periodic factors in words

R. Kolpakov

Lomonosov Moscow State University, Dorodnicyn Computing Centre, Russia

8 February 2018

R. Kolpakov Some results on the number of periodic factors

 $w = a_1 \dots a_n$, |w| = n — the length of wDef: p is a *period* of w if $a_1 \dots a_{n-p} = a_{p+1} \dots a_n$

p(w) - the minimal period of w $e(w) = \frac{|w|}{p(w)} - \text{ the exponent of } w$ re(w) = e(w) - 1 - the reduced exponent of w **Ex:** w = aabaa3, 4 and 5 - periods of w3 - minimal period of w $\frac{5}{3}$ - exponent of w, $\frac{2}{3}$ - reduced exponent of w

$$w$$
 — repetition if $e(w) \ge 2$

伺い イヨト イヨト 三日

r — repetition in w

aba, baa, aab — cyclic roots in repetition *abaabaab abaabaab, aabaabaaba* — repetitions with the same cyclic roots

→ Ξ →

- ∢ ≣ >

Maximal repetitions

a repetition r in a word w is maximal (run) if

Ex:

向下 イヨト イヨト

Number of maximal repetitions

R(n) — maximum number of maximal repetitions in words of length nE(n) — maximum sum of exponents of maximal repetitions in words of length n $2R(n) \le E(n)$

R.Kolpakov, G.Kucherov 1999: $E(n) = \Theta(n)$

H.Bannai, T.I, S.Inenaga, Y.Nakashima, M.Takeda, K.Tsuruta 2014: R(n) < n, E(n) < 3n

 $R^{(2)}(n)$ — maximum number of maximal repetitions in binary words of length nJ.Fischer, S.Holub, T.I, M.Lewenstein 2015: $R^{(2)}(n) \leq \frac{22}{23}n$

э

Number of maximal repetitions

 $\lambda = 1, 2, \dots$

 $R_{\geq\lambda}(w)$ — number of maximal repetitions with minimal periods $\geq \lambda$ in word w

 $R_{\geq\lambda}(n) = \max_{|w|=n} R_{\geq\lambda}(w)$ — maximum number of maximal repetitions with minimal periods $\geq \lambda$ in words of length n

$$R(n) = R_{\geq 1}(n) \geq R_{\geq 2}(n) \geq R_{\geq 3}(n) \geq ...$$

Conjecture1: $R_{\geq\lambda}(n) \leq cn$ where $c \to 0$ as $\lambda \to infty$ **Conjecture2:** the same letter of word w is contained in o(|w|) maximal repetitions of w

The conjectures are wrong!

▲□ ► ▲ □ ► ▲

Number of maximal repetitions

Ex:
$$w_k = (01)^k 0(01)^k 0 = (01)^k 00(10)^k$$
, $|w_k| = 4k + 2$

 $R_{\geq 1}(w_k) = k+3, \quad R_{\geq \lambda}(w_k) = k+3 - \lfloor \lambda/2 \rfloor \gtrsim k \gtrsim |w_k|/4$

 $R_{\geq 1}(n) \geq R_{\geq 2}(n) \geq R_{\geq 3}(n) \geq ... \gtrsim n/4$

middle letters are contained in k + 2 repetitions

 $r' \equiv w[i'..j'], r'' \equiv w[i''..j'']$ — maximal repetitions in w with the same cyclic roots, p(r') = p(r'') = p

maximal repetition $r \equiv w[i..j]$ is generated by r' and r'' if $p(r) \geq 3p$, $i' < i \leq j'$, $i'' \leq j < j''$

通 とう ほう ううせい

maximal repetition is secondary if it is generated by other maximal repetitions

maximal repetition is primary if it is not secondary

Prop. Any secondary repetition is generated by only one pair of primary repetitions

 $Rp_{\geq\lambda}(n)$ — maximum number of primary repetitions with minimal periods $\geq \lambda$ in words of length n $Ep_{\geq\lambda}(n)$ — maximum sum of exponents of primary repetitions with minimal periods $\geq \lambda$ in words of length n $Eps_{\geq\lambda}(n)$ — maximum sum of exponents of primary repetitions with minimal periods $\geq \lambda$ and secondary repetitions generated by these primary repetitions in words of length n

$$Eps_{\geq\lambda}(n) \geq Ep_{\geq\lambda}(n) \geq 2Rp_{\geq\lambda}(n)$$

Theorem 1. $Eps_{\geq \lambda}(n) = O(n/\lambda)$

Cor. $Ep_{\geq\lambda}(n) = O(n/\lambda)$, $Rp_{\geq\lambda}(n) = O(n/\lambda)$

Primary and secondary repetitions

Prop. The exponent of any secondary repetition is < 7/3, i.e. any maximal repetition with exponent $\ge 7/3$ is primary

 $\hat{R}p_{\geq\lambda}(n)$ — maximum number of maximal repetitions with minimal periods $\geq \lambda$ and exponents $\geq 7/3$ in words of length n

Cor.
$$\hat{R}p_{\geq\lambda}(n) = O(n/\lambda)$$

Theorem 2. In a word of length *n* the same letter is contained in $O(\log \frac{n}{\lambda})$ primary repetitions with minimal periods $\geq \lambda$

Cor. In a word of length *n* the same letter is contained in $O(\log \frac{n}{\lambda})$ maximal repetitions with minimal periods $\geq \lambda$ and exponents $\geq 7/3$

r is a subrepetition (δ -subrepetition) if e(r) < 2 $(1 + \delta \le e(r) < 2 \Leftrightarrow \delta \le re(r) < 1)$

a subrepetition r in a word w is maximal if

• 3 > •

- ∢ ⊒ ⊳

Gapped repeats

 $\sigma = uvu$ — a gapped repeat in w:

$$p(\sigma) = |uv| - \text{ the period of } \sigma$$

$$c(\sigma) = |u| - \text{ the length of copies of } \sigma$$

$$\hat{e}(\sigma) = \frac{|\sigma|}{p(\sigma)} = 1 + \frac{|u|}{p(\sigma)} - \text{ the exponent of } \sigma,$$

$$r\hat{e}(\sigma) = \hat{e}(\sigma) - 1 = \frac{|u|}{p(\sigma)} - \text{ the reduced exponent of } \sigma$$

$$\alpha > 1$$

$$\sigma \text{ is } \alpha\text{-gapped repeat if } p(\sigma) \le \alpha c(\sigma)$$

Maximal gapped repeats

 σ is maximal gapped repeat in w if

Ex:

- A 3 >

э

3 ×

Maximal gapped repeats

any α -gapped repeat $\sigma = uvu$ is contained in either (uniquely defined) maximal α -gapped repeat $\sigma' = u'v'u'$ with the same period, **e.g:**

or (uniquely defined) maximal repetiton r such that p(r) is a divisor of $p(\sigma)$, **e.g**:

Maximal gapped repeats and subrepetitions

r — maximal δ -subrepetition in a word w

 $\sigma = uvu$ — maximal $\frac{1}{\delta}$ -gapped repeat

 ${\it r}$ and σ are the same factor in ${\it w}$

r and σ are uniquely defined by each other

1

$$p(\sigma) = p(r)$$
, so $\hat{e}(\sigma) = e(r) (r\hat{e}(\sigma) = re(r))$, we have $\hat{e}(\sigma) = re(r)$

R. Kolpakov Some results on the number of periodic factors

Maximal gapped repeats and subrepetitions

Ex:

 $\sigma = uvu$ — maximal gapped repeat respective to r $\sigma' = u'v'u'$ — maximal gapped repeat, s.t. r and σ' are same factor but σ' is not respective to r

thus, σ is principal, and σ' is not principal

Primitive gapped repeats

$$\underline{uu} \dots \underline{u} - n$$
-th power of $u, n \ge 2$

word is *primitive* if it is not a power of some word gapped repeat *uvu* is primitive if *uv* primitive **Ex:**

 $\sigma' = u'v'u' - \text{maximal nonprimitive gapped repeat}$ $\sigma'' = u''v''u'' - \text{maximal primitive gapped repeat}$

Primitive gapped repeats

maximal nonprimitive gapped repeat $\sigma' = u'v'u'$ corresponds to maximal repetition r s.t. p(r) = p(u'v')

any maximal repetition r corresponds to no more than $\lceil e(r)/2 \rceil$ maximal nonprimitive gapped repeats

word of length *n* contains no more than O(E(n)) = O(n)maximal nonprimitive gapped repeats any principal maximal repeat is primitive, but maximal primitive repeats can be not principal

 $K^{s}_{\delta}(K^{s})$ — class of all maximal δ -subrepetitions (subrepetitions) = principal maximal $\frac{1}{\delta}$ -gapped repeats (gapped repeats) $K^{p}_{\delta}(K^{p})$ — class of all maximal primitive $\frac{1}{\delta}$ -gapped repeats (gapped repeats) $K^{m}_{\delta}(K^{m})$ — class of all maximal $\frac{1}{\delta}$ -gapped repeats (gapped repeats)

$$\mathcal{K}^{s}_{\delta}(\mathcal{K}^{s})\subseteq\mathcal{K}^{p}_{\delta}(\mathcal{K}^{p})\subseteq\mathcal{K}^{m}_{\delta}(\mathcal{K}^{m})$$

周下 イヨト イヨト 二日

Maximal gapped repeats and subrepetitions

 $RE^{m}(w)$ — sum of reduced exponents of all maximal gapped repeats in word wR.Kolpakov, G.Kucherov, P.Ochem 2010: $RE^{m}(w) \leq n \ln n$

a gapped repeat σ is α -gapped if $\frac{p(\sigma)}{c(\sigma))} \leq \alpha \Leftrightarrow r\hat{e}(\sigma) = \frac{c(\sigma)}{p(\sigma)} \geq 1/\alpha$ Cor. 1 Number of all maximal α -gapped repeats in word w is not greater than $\alpha n \ln n$

 $RE^{s}(w)$ — sum of reduced exponents of all maximal subrepetitons in word w = sum of reduced exponents of all principal maximal gapped repeats $\leq RE^{m}(w) \leq n \ln n$ **Cor. 2** Number of all maximal δ -subrepetitons in word w is not greater than $n \ln n/\delta$ $RE^{m}_{\geq\lambda}(w)$ $(RE^{m}_{\leq\lambda}(w))$ — sum of reduced exponents of all maximal gapped repeats with periods $\geq \lambda$ ($\leq \lambda$) in word w

R.Kolpakov, G.Kucherov, P.Ochem 2010: $RE_{\geq\lambda}^{m}(w) \leq n \ln(n/\lambda), RE_{\leq\lambda}^{m}(w) \leq n(1 + \ln \lambda)$

Cor. 1 Number of all maximal α -gapped repeats with periods $\geq \lambda \ (\leq \lambda)$ in word w is not greater than $\alpha n \ln(n/\lambda) \ (\alpha n(1 + \ln \lambda))$

Cor. 2 Number of all maximal δ -subrepetitons with minimal periods $\geq \lambda \ (\leq \lambda)$ in word w is not greater than $n \ln(n/\lambda)/\delta$ $(n(1 + \ln \lambda)/\delta)$

A K K B K K B K K B

Maximal gapped repeats and subrepetitions

 $RE^{m}(n) = \max_{|w|=n} RE^{m}(w), \quad RE^{s}(n) = \max_{|w|=n} RE^{s}(w)$ $RE^{p}(n) = \max_{|w|=n} RE^{p}(w)$ where $RE^{p}(w)$ — sum of reduced exponents of all maximal primitive gapped repeats in word w

Lower bounds for unbounded alphabet:

$$w'_{k} = ab_{1}ab_{2}ab_{3}\dots ab_{k}a, \quad |w'_{k}| = 2k + 1$$

$$RE^{m}(w'_{k}) = RE^{p}(w'_{k}) = RE^{s}(w'_{k}) > \frac{1}{2}[(k+1)\ln(k+1) - k]$$

$$\gtrsim \frac{1}{4}|w'_{k}|\ln|w'_{k}|$$

$$\frac{1}{4}n\ln n \lesssim RE^{s}(n) \le RE^{p}(n) \le RE^{m}(n) \le n\ln n$$

 $RE^{s}(n) = \Theta(n \log n)$ $RE^{p}(n) = \Theta(n \log n)$ $RE^{m}(n) = \Theta(n \log n)$

 w'_k contains no less than $\lfloor \alpha/2 \rfloor [(k+1) - \lceil \alpha/2 \rceil] = \Omega(\alpha |w'_k|)$ maximal primitive α -gapped repeats and no less than $\lfloor \frac{1}{2\delta} \rfloor [(k+1) - \lceil \frac{1}{2\delta} \rceil] = \Omega(|w'_k|/\delta)$ maximal δ -subrepetitons

 w'_k contains a total of $\Theta(|w'_k|^2)$ maximal subrepetitons

ヨト イヨト イヨト

Maximal gapped repeats and subrepetitions

$$RE_{bin}^{m}(n) = \max_{w \in \{0,1\}^{n}} RE^{m}(w)$$

$$RE_{bin}^{p}(n) = \max_{w \in \{0,1\}^{n}} RE^{p}(w)$$

$$RE_{bin}^{s}(n) = \max_{w \in \{0,1\}^{n}} RE^{s}(w)$$

Lower bounds for binary alphabet:

$$w_k'' = (0011)^k = \underbrace{00110011\dots0011}_k, \quad |w_k''| = 4k$$

$$RE^{p}_{bin}(w_{k}'') > (k - \frac{1}{4})[\ln(4k - 1) - \ln 3] - (k - 1) \gtrsim \frac{1}{4}|w_{k}''|\ln|w_{k}''|$$

$$\frac{1}{4}n\ln n \lesssim RE_{bin}^{p}(n) \le RE_{bin}^{m}(n) \le n\ln n$$
$$RE_{bin}^{p}(n) = \Theta(n\log n), \quad RE_{bin}^{m}(n) = \Theta(n\log n)$$

 w_k'' contains no less than $\lfloor \frac{\alpha-1}{4} \rfloor [4k - \lceil \alpha \rceil] = \Omega(\alpha |w_k''|)$ maximal primitive α -gapped repeats

R.Kolpakov, G.Kucherov, P.Ochem 2010: w_k'' contains a total of $\Theta(|w_k''|^2)$ maximal primitive gapped repeats

 w_k'' contains 2k + 1 maximal repetitions and only 2k - 2maximal subrepetitions (all these subrepetitions are of the form *abba* where $a, b \in \{0, 1\}, a \neq b$), i.e. $RE^s(w_k'') = (2k - 2)/3 \sim |w_k''|/6$

伺下 イヨト イヨト

w — word of length n

 $RE^{m}(w) - RE^{p}(w) =$ sum of reduced exponents of all maximal nonprimitive gapped repeats in word w < number of all maximal nonprimitive gapped repeats in word w = O(n)

$$RE^{m}(n) - RE^{p}(n) = O(n) \quad \Rightarrow \quad RE^{m}(n) \sim RE^{p}(n)$$

in analogous way $RE^m_{bin}(n) \sim RE^p_{bin}(n)$

(4) (5) (4) (5) (5)

M.Crochemore, R.Kolpakov, G.Kucherov 2015: word of length *n* contains $O(\alpha n)$ maximal α -gapped repeats P.Gawrychowski, T.I, S.Inenaga, D.Köppl, F.Manea 2015: word of length *n* contains no more than $18\alpha n$ maximal α -gapped repeats by the example of w_k'' , this bound is asymptotically tight for big enough α for any alphabet

Cor. word of length *n* contains no more than $18n/\delta$ maximal δ -subrepetitions

by the example of w'_k , this bound is asymptotically tight for small enough δ for unbounded alphabet

・ 回 ト ・ ヨ ト ・ ヨ ト

$$f: \mathbf{N}
ightarrow \mathbf{R}, \ g: \mathbf{N}
ightarrow \mathbf{R}, \ ext{s.t.} \ 0 < g(x) \leq f(x)$$

$$\sigma = uvu - f, g$$
-repeat if $g(|u|) \le |v| \le f(|u|)$

lpha-gapped repeats are f, g-repeats for $g(x) = \min(1, \alpha - 1)$, $f(x) = (\alpha - 1)x$

御 と く き と く き と … き

Maximal repeats with arbitrary gap

$$f : \mathbf{N} \to \mathbf{R}, g : \mathbf{N} \to \mathbf{R}, \text{ s.t. } 0 < g(x) \leq f(x)$$

$$\partial_f^+(x) = \begin{cases} (f(x+1) - f(x)), & \text{if } f(x+1) \ge f(x); \\ 0, & \text{otherwise}; \end{cases}$$

$$\partial_f^-(x) = \begin{cases} (f(x) - f(x+1)), & \text{if } f(x) \ge f(x+1); \\ 0, & \text{otherwise}. \end{cases}$$

 $\partial_f^+ = \sup_x \{\partial_f^+(x)\}, \quad \partial_f^- = \sup_x \{\partial_f^-(x)\}$ (if these supremums exist)

$$\begin{array}{l} \partial_{f,g}^{a} = \max\{\partial_{f}^{+},\partial_{g}^{-}\} \text{ (if } \partial_{f}^{+},\,\partial_{g}^{-} \text{ exists)} \\ \partial_{f,g}^{b} = \max\{\partial_{f}^{-},\partial_{g}^{+}\} \text{ (if } \partial_{f}^{-},\,\partial_{g}^{+} \text{ exists)} \end{array}$$

ヨト イヨト イヨト

Maximal repeats with arbitrary gap

$$f: \mathbf{N} \to \mathbf{R}, g: \mathbf{N} \to \mathbf{R}, \text{ s.t. } 0 < g(x) \leq f(x)$$

if at least one of values $\partial_{f,g}^{a},\,\partial_{f,g}^{b}$ exists

$$\partial_{f,g} = \min\{\partial^{a}_{f,g}, \partial^{b}_{f,g}\}$$

$$egin{aligned} &\Delta_{f,g}(x) = rac{1}{x}(f(x) - g(x)) \geq 0 \ &\Delta_{f,g} = \sup_x \{\Delta_{f,g}(x)\} \ (ext{if these supremums exists}) \end{aligned}$$

Theorem. Let for f(x), g(x) the both values $\partial_{f,g}$, $\Delta_{f,g}$ exist. Then a word of length *n* contains no more than $O(n(1 + \max\{\partial_{f,g}, \Delta_{f,g}\}))$ maximal f, g-repeats.

Maximal repeats with arbitrary gap

Ex: $f(x) = \alpha_f + \beta_f x$, $g(x) = \alpha_g + \beta_g x$ where $0 < \alpha_g \le \alpha_f$, $0 \le \beta_g \le \beta_f$.

$$\begin{array}{l} \partial_{f}^{+}(x) = \beta_{f}, \ \partial_{f}^{-}(x) = 0, \ \partial_{g}^{+}(x) = \beta_{g}, \ \partial_{g}^{-}(x) = 0\\ \partial_{f}^{+} = \beta_{f}, \ \partial_{f}^{-} = 0, \ \partial_{g}^{+} = \beta_{g}, \ \partial_{g}^{-} = 0.\\ \partial_{f,g}^{a} = \beta_{f}, \ \partial_{f,g}^{b} = \beta_{g}\\ \partial_{f,g} = \min\{\beta_{f}, \beta_{g}\} = \beta_{g}.\\ \Delta_{f,g}(x) = \frac{1}{x}(\alpha_{f} - \alpha_{g}) + (\beta_{f} - \beta_{g})\\ \Delta_{f,g} = \Delta_{f,g}(1) = (\alpha_{f} - \alpha_{g}) + (\beta_{f} - \beta_{g}).\\ \text{Thus, the number of maximal } f, g\text{-repeats in a word of length } n \text{ is bounded by} \end{array}$$

$$O(n(1 + \max\{\beta_g, (\alpha_f - \alpha_g) + (\beta_f - \beta_g)\})) = O(n(1 + \max\{\beta_g, (\alpha_f - \alpha_g), (\beta_f - \beta_g)\})).$$

▲□ → ▲ 臣 → ▲ 臣 → ○ ● ○ ○ ○ ○

1. Check if for any λ

$$R_{\geq\lambda}(n) - R_{\geq\lambda+1}(n) = \Omega(n)$$

2.
$$\hat{w}_k = ((01)^k 0)^k$$

 $R_{\geq \lambda}(\hat{w}_k) \gtrsim k(k-1) \gtrsim |\hat{w}_k|/2$
 $R_{\geq 1}(n) \ge R_{\geq 2}(n) \ge R_{\geq 3}(n) \ge ... \gtrsim n/2$

Is the lower bound n/2 tight?

白 と く ヨ と く ヨ と

Э

3. Rp(n) — maximum number of primary repetitions in words of length nEp(n) — maximum sum of exponents of primary repetitions in

words of length *n*

$$Rp(n) \stackrel{?}{=} R(n), \quad Ep(n) \stackrel{?}{=} E(n)$$

4.
$$RE_{bin}^{s}(n) \stackrel{?}{=} \Theta(n \log n)$$

Is the $O(n/\delta)$ upper bound on the number of maximal δ -subrepetitions asymptotically tight for words over binary alphabet?

伺下 イヨト イヨト

5. Is it true that word of length *n* contains no more than αn maximal α -gapped repeats?

6. $f(x) = \alpha x$, $g(x) = \beta x$ where $\beta < \alpha$ Is it true that word of length *n* contains $O(n(1 + \alpha - \beta))$ maximal *f*, *g*-repeats?

伺下 イヨト イヨト