
An Approach to Supervisory Control of
Multi-Robot Teams in Dynamic Domains
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Abstract. This paper explores an approach to human/multi-robot team
interaction where a human provides supervisory instruction to a group
of robots by assigning tasks and the robot team coordinates to execute
the tasks autonomously. A novel, human-centric graph-based model is
presented which captures the complexity of task scheduling problems in
a dynamic setting and takes into account the spatial distribution of the
locations of the tasks and the robots that can complete them. The focus
is on problem domains which involve inter-dependent and multi-robot
tasks requiring tightly-coupled coordination, occurring in dynamic envi-
ronments where additional tasks may arrive over time. A user study was
conducted to assess the efficacy of this graph-based model. Key factors
have been identified, derived from the model, which impact how the hu-
man supervisors make task-assignment decisions. The findings presented
here illustrate how these key factors capture the complexity of the task-
assignment situation and correlate to the mental workload as reported
by human supervisors.
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1 Introduction

This work investigates possible approaches to improve human performance in
Single-Operator Multi-Robot (SOMR) control, in domains such as Urban Search
and Rescue (USAR), where the human operator interacts with the team at a
tactical level, while the lower level control decisions, such as trajectory plan-
ning, navigation and collision avoidance, are left to the autonomous platforms.
In previous work, different interaction schemes have been developed that in-
clude automated planning agents to help a human operator [2]. These studies
have shown that these agents may become a hindrance to the human opera-
tors Situational Awareness (SA) [3] if the proposed automated solutions are not
understood by the operators or do not meet the operators’ expectations [1].

In this work, we define a formal, graph-based model that captures the com-
plexity of task scheduling problems from the human operator’s perspective. Our



conjecture is that such models are key to improving the interaction between
autonomous robot teams and human operators.

The formal model defined here is extended from our earlier model derived
for static environments [8]. This extension captures dynamic domains, where
task allocation occurs simulateously with task execution and new tasks may
arrive while allocation—and execution—are underway. Several key parameters
are verified via a user study, which is described in Section 3.

2 Methodology

The application domains we consider are complex task environments, where tasks
may require multiple robots to work in tight-coordination and/or tasks may de-
pend on other tasks. Our experiment scenarios are inspired from RoboCup Res-
cue Simulation [6] where heterogeneous groups of agents attend to victims, fires
and roadblocks in the aftermath of an earthquake in an urban environment. In
our scenarios, a fixed number of robots and tasks are scattered around an office-
like environment. The tasks can be either a sensor-sweep task, where a robot
is expected to go to a specific location and send back sensor information (e.g.,
camera feed), a fire-extinguishing task, resulting from a fire in the environment
or a debris-removal task, resulting from structural collapses that create debris.
These latter two types of tasks may require multiple robots to execute, and they
block any access to areas adjacent to those in which they appear. Sensor-sweep
tasks can be executed by a single robot and do not block access.

Our problem domain falls into the Multi-Robot (MR) and Instantaneous
Assignment (IA) categories within the taxonomy introduced by Gerkey and
Matarić [4] and the constrained tasks (CT) and dynamic allocation (DA) cat-
egories within the extensions added by Landén et al. [7]. The CT dimension
signifies the dependencies between tasks, which appear as precedence relation-
ships in our experimental scenarios; for example, a sensor-sweep task that is
located inside a room whose entrance is blocked by heavy debris is thus de-
pendent on the completion of a debris-removal task before the sensor-sweep task
location can be accessed and the task completed. The DA dimension corresponds
to possible changes in the task-assignment problem due to arrival of new tasks
while existing tasks are being allocated and/or executed.

We are studying ways in which humans interact with teams of robots faced
with the range of MR-CT -DA scenarios mentioned above. In earlier work, we de-
veloped a graph-based data structure, called a Task Assignment Graph (TAG) [8],
which represents spatial relationships between task locations and robots. For-
mally, in an environment containing m robots, R = {r1, ..., rm}, and n tasks,
K = {k1, ..., kn}, we define TAG = (V,E) as a set of vertices V = {v1, ..., vn},
where each vertex, vi, represents a task, ki ∈ K, and a set of edges E. There
exists an edge in E between any two task vertices vi and vj iff tasks ki and
kj can be accessed from one to the other in the robots’ physical environment.
Each task vertex vi contains a set of robots Acci that can access task ki, and
a domain Domi which consists of the sets of all possible assignments for that



task. The cardinality of each set in Domi is defined by the number of robots,
Reqi, required to execute task ki. A vertex may be labelled critical if they are
responsible for maintaining connectivity between components of the graph (see
[8] for details). Essentially, a TAG is a hybrid graph structure that combines a
connectivity graph and a constraint network. This level of abstraction allows us
to focus on spatial relationships in our analysis, without paying further attention
to other specifics of the mission domain or environment.

A TAG models an isolated assignment problem instance. In a dynamic en-
vironment, the addition of new tasks will lead to a sequence of TAGs. Here, we
introduce a new model, which we call a Mission Assignment Problem (MAP),
to reflect the changes to the task-assignment problem space that occurs during
a mission. A MAP is an ordered list, MAP = 〈TAG0, TAG1, ...〉, where TAGi

is added to the map at time ti, and t0 represents the time when the first task
appears. Every entry in the MAP represents a decision point for a human who
is assigning tasks to robots.

We are studying the impact of the MAP with respect to the human’s mental
workload. We surmise that a few small changes from any TAGi to TAGi+1 will
not be difficult to comprehend, whereas many significant changes will quickly
overwhelm the human, particularly if these changes occur in rapid succession.
Our hypothesis is that mental workload is directly affected by the number of
solutions that can be produced for a scenario, which in turn is affected by:
(i.) the ratio of tasks that require close coordination to the total number of
tasks; (ii.) the dependencies between the tasks; (iii.) the spatial distribution of
robot platforms across the environment; and (iv.) changes in the environment,
such as new tasks that may prevent robots reaching previously assigned tasks.

In our earlier work [8], we identified two factors derived from a TAG which in-
fluence the human’s mental workload. These are: the Average Platform Require-
ment, APR =

∑n
i=1 reqi/n; and the Critical Task Ratio, CTR = |Vcritical|/n.

We conducted a user study that involved static environments, and our results
verified that both APR and CTR are significant factors with respect to the
human’s mental demand. In the work presented here, we consider dynamic envi-
ronments. We identify two new metrics to account for conditions (iii) and (iv),
respectively. These are: the Average Domain Density, ADD =

∑n
i=1 DDi/n,

where DDi = |Domi|/
(
reqi
m

)
; and the Tag Disruption Ratio, TDR, which is

the ratio of the number of assignments removed to the number of assignments
performed from one TAG to the next.

3 User Study

We ran a user study in which 30 participants were presented with several RoboCup-
Rescue-like scenarios (described above) requiring real-time assignment of tasks
to a team of 3 robots. The gender balance of participants was: 10 female (33%)
and 20 male (67%). The average age of the participants was 31.5 years, and the
average amount of computer experience was 14.9 years.



Fig. 1. TASC Interface. On the left, the map area shows the locations of the robots and
tasks. Robots’ immediate paths are displayed in green. On the right, the task assignment
area is where users allocate robots to tasks. On the bottom, an expected timeline of plan
execution is displayed.

The experiments were conducted with a robot simulation environment and
the Task Assignment Supervision and Control (TASC) interface (Figure 1). This
interface was integrated with the HRTeam [9] multi-robot framework, which
is built on Player/Stage [5] and was developed in some of our earlier work.
In brief, HRTeam facilitates communication between multiple robot controllers,
the Stage simulator (or physical robots), and a user interface (e.g., TASC). The
TASC interface communicates with the robot controller processes through a
set of messages. The robots’ locations, paths to their task locations and state
information are updated in the interface based on the messages sent by the
robots. All task assignments and removals are made via the TASC interface
and are immediately updated on the robots. In this setup, the robots operate
autonomously with respect to path planning, navigation and collision avoidance.
As well, the robots rely fully on the TASC interface to dictate which tasks they
will execute and the order in which they will execute them.

Each experiment started with a training session, followed by 4 experimental
scenarios. Participants were instructed to distribute tasks to the robots in such a
way that the execution of the plan would result in the fastest completion time of
all the tasks. In addition, they were instructed to maintain a full assignment of
tasks at all times, meaning that they should keep adding tasks to the robots’ task
queue, without waiting for the robots the complete their immediate tasks. Each
experimental scenario contained 8 tasks, two of which were available initially.
Every 45 seconds, two new tasks are introduced, one of which was a single-robot



task and the other required two robots to complete. To control for order effect
and learning effect, the scenarios were presented in randomized order.

Our working hypothesis is that, at the TAG-level, the Average Domain Den-
sity (ADD), Critical Task Ratio (CTR) and Tag Disruption Ratio (TDR) all
have an effect on the human’s mental workload when assigning tasks to robots.
To represent objective mental demand, we measured Plan Completion Time,
which is the time between the arrival of the new TAG and the time when all
available tasks are fully assigned.

4 Results

As above, each participant was exposed to 16 TAGs (4 experimental scenarios,
4 TAGs per scenario—because each scenario’s 8 tasks were introduced in pairs).
For each TAG, we computed the factors described earlier: TDR, CTR and ADD.
We then partitioned the values for each factor into high and low categories (clus-
tered using Expectation-Maximization) and labelled each TAG according to a
tuple representing its complexity, 〈TDR,CTR,ADD〉, e.g., 〈high, high, low〉. Or-
ganised in this way, users were exposed to 0 or more instances of the 8 possible
TAG complexities.

We analysed the Plan Completion Time, our mental workload metric, for
each user, grouped according to TAG complexity. If a user was exposed to a
particular TAG complexity more than once, then the average plan completion
time was computed for that user. In order to evaluate the impact of each of
the three factors on the users’ plan completion times, we ran a 3-way repeated
measures analysis of variance (ANOVA). The “repetition condition” for each
user was considered to be exposure to different TAG complexity levels; thus
each user may have experienced up to 8 different conditions4.

All three factors (TDR, CTR and ADD) were found to have a significant
effect on the Plan Completion Time, as shown in Figure 2. For TDR, F (1, 21) =
12.02 and p = 0.0023; for CTR, F (1, 25) = 15.59 and p = 0.001; for ADD
F (1, 26) = 8.39 and p = 0.0075. There was no significant interaction found
among variables. These intuitive results show clearly that the selected model pa-
rameters have significant effect on human subjects’ task-assignment time, which
was also confirmed during post-experiment inverviews with participants.

5 Summary

In this work, we presented the MAP model for capturing human cognitive work-
load for dynamic task allocation environment and validated three key factors
derived from the MAP, namely: TDR, CTR and ADD. Planned future work
includes utilizing the MAP model features and the validated factors for steer-
ing an automated decision support agent, in order to improve the interaction
between the human operator and the agent.

4 In reality only 7, because there were no instances of 〈high, high, high〉 TAGS here.
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Fig. 2. Plan Completion Time vs. Scenario categories based on TDR, CTR and ADD
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