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Abstract— This paper reports on a study conducted with
human-robot teams in which computational argumentation-
based dialogue was implemented as part of a framework de-
signed to support collaborative decision making. The focus here
is on detailed analysis of how argumentation-based dialogue
was employed during the study, illustrating ways in which
this type of dialogue impacted how users engaged with the
robot. The analysis demonstrates that users took advantage
of the capability and reached shared decisions as a result
of exchanging information with the robot and coming to
agreement about robot actions and the team’s task environment.

I. INTRODUCTION

We are interested in situations where the initiative for
collaboration in a human-robot team can emanate from either
the human or the robot, where discussion about actions
can ensue, reasons for and against taking particular actions
can be passed back and forth, and the responsibility for
actions can flow to either the human or the robot, until a
mission is completed. For example, suppose a human-robot
team is asked to fetch an orange ball from an unfamiliar
environment. If the human asks a robot to help her look for
such a ball which she can pick up, the robot may wander
around their environment taking pictures and sending them
to the human, without knowing whether it has captured an
image of a ball or a round fruit that is orange-colored.
Feedback from the human about the content of the image
would improve the likelihood that the human-robot team
obtains a picture of an orange ball, because humans have
better abilities to distinguish between items that closely
resemble each other. If the robot does not have a manipulator
or the image shows that the orange ball has rolled under a
piece of furniture such that the robot cannot reach it, then
the robot will need help from the human to pick up the ball.
Feedback from the robot about the location where the image
was taken and directions for how to get there would improve
the likelihood that the human-robot team retrieves the ball,
because robots have better abilities to map their environment
and perform path planning using the map.

If the robot and human disagree about an aspect of
their task, the ability to communicate the reasons for their
individual opinions—the evidence that led each to reach their
own conclusion—can be invaluable in resolving the conflict.
Thus, rich discussion enables shared decision making about
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the content of candidate images, agreement about an image
that indeed contains an orange ball and guidance for retriev-
ing the ball. In particular, reaching agreement—evolving to a
state of shared belief regarding the task at hand—is a long-
studied topic in artificial intelligence (AI) and includes work
on joint intentions [1], shared plans [2] and teamwork [3].

For human-robot interaction (HRI) systems to be truly
collaborative, participants must be able to engage in oppor-
tunistic exchange that can adjust dynamically as the situa-
tion unfolds. However, dialogue that facilitates opportunistic
exchange of ideas is not well supported in today’s human-
robot systems. Upon experiencing (or expecting to experi-
ence) failure or discovering new opportunities—at moments
unforeseen by the human collaborator—the robot, as well as
the human, needs to be able to take the initiative [4] in an
ongoing or new conversation.

This paper reports on the use of computational
argumentation-based dialogue [5], [6] to support shared
decision making in human-robot teams, in particular focusing
on analysis of interaction logs taken from a study in which
such a dialogue framework was implemented and evaluated.
The argumentation-based dialogue theory underlying the
framework is described elsewhere [7]. Experimental results
from the study that focus on task performance statistics (such
as how long it took for human-robot teams to make decisions,
how long it took for robots to perform actions and how far
robots traveled) are also reported elsewhere [8]. In this paper,
we focus on detailed examination of how decisions were
made, by analyzing the situations in which computational
argumentation-based dialogue was invoked, by both humans
and the robot, and how the use of this dialogue capability
influenced actions in the experimental domain.

II. APPROACH

Our technical approach is centered on the application of
computational argumentation, a formal logic-based model
of reasoning in which claims are examined with respect
to evidence that either supports the claim or conflicts with
it [9], [10]. We have developed a software framework called
ArgHRI [7] which employs computational argumentation-
based dialogue [5], [6] to enable a robot to interact with a
human and exchange ideas. The formal theory allows the
robot to manage its beliefs in a structured way. Beliefs
are represented using first-order logic and maintained using
fundamental elements of computational argumentation [6],
[11], which include a store of the robot’s committed beliefs
about itself and its environment, its beliefs about the human
and a record of what has been said in a dialogue.
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Fig. 1. Cases for different types of dialogues (from [7]), based on the
beliefs of the robot (R) and its beliefs about the human (H). b ∈ R means
that the robot believes b. (b ∈ H) ∈ R means that the robot believes that
the human believes b. The notation ?b means that the robot (or human) has
no knowledge of or information about b (or not b, written ¬b).

The argumentation-based dialogue system developed for
ArgHRI is an implementation of a dialogue game, adapted
from [12], [6]. This formal model prescribes a structure
for defining protocols for utterances associated with each
type of dialogue, essentially a list of legal moves that each
participant in the dialogue game is allowed to select from.
In related work, we have defined the protocols for each
of the types of dialogue implemented in ArgHRI [13], [7],
including state machines that control the possible sequences
of locutions, from start state to termination state. One of
the advantages of employing argumentation-based dialogue
games is that it has been proven formally that the rules for
each type of dialogue guarantee termination [6].

Three types of argumentation-based dialogue have been
implemented in ArgHRI: information-seeking [5]—where
one participant seeks answers to questions from another
participant, who is believed by the initiating participant to
know the answers; inquiry dialogue [14]—where the par-
ticipants collaborate to answer a question or questions whose
answers are not known to any participant; and persuasion
dialogue [15]—where one participant seeks to persuade
another party with a different opinion to adopt a belief or
point-of-view. Examples of human-robot scenarios where
each type of dialogue may be applied include the following.
The robot could ask the human for information that the
robot does not have and believes that the human has, in
order to prevent errors; this is an example of an information-
seeking dialogue. The robot and human may agree to seek
an answer to an unknown query because neither of them
has enough information to make an informed decision;
this is an example of a inquiry dialogue. The robot might
discover information that the human does not possess or that
contradicts something the human knows, in order to correct
the human’s misconception(s) and pre-empt possible failure;
this is an example of a persuasion dialogue.

Figure 1 lists the conditions under which the robot can
initiate each of these three types of dialogue. A belief, b,
is considered, and a decision is made about which type of
dialogue is appropriate based on the robot’s belief in b (or its
negation, ¬b), taken in combination with the robot’s beliefs
about the human’s beliefs. Note that there is also the case
where the robot or human “do not know b”, represented as ?b
(i.e., neither has information about b or ¬b).

An argumentation-based dialogue game is defined by the
following [16][17]: a set of rules that defines the pre-

conditions or circumstances under which the dialogue game
can begin; the complete set of possible moves consisting
of statements issued by one participant and directed toward
the other participant; a set of protocols that governs which
moves a participant can make in each dialogical context and
when each participant can move; a set of rules that defines
the circumstances under which each participant may commit
to a conclusion (acceptance); and a set of rules that enables
a dialogue to reach its termination condition.

Following the rules of dialogue games [12], participants
can only utter beliefs that they can support in the formal
sense of argumentation. This means that a participant is
allowed to utter b, where b is represented as an atomic fact
in the participant’s internal set of beliefs, or c, where c is a
conclusion that can be drawn from a set of arguments (S, c).
Here, S is considered the support for the conclusion c, such
that each element of S is either an atomic fact (like b) or can
be derived from rules that are part of the participant’s set of
beliefs. For example, the rule: GoTo(t, loc) → At(t+1, loc)
says that if the predicate on the left is true, then the
predicate on the right can be concluded as the result of
applying the rule. An atomic fact, b, can represent fixed
knowledge about the world or about the domain or the robot’s
environment, all of which could be established a priori and
remain unchanged during a robot’s mission. In addition, b
can represent information about the robot or its environment
that does change during a mission, e.g., the output of a
Sense(t, loc) action.

ArgHRI employs the ArgTrust argumentation engine [18]
to calculate the support for a specific conclusion based on
the robot’s beliefs. It is used by the robot to reason about
how a goal might be achieved or to resolve conflicts found
within its internal set of beliefs or between its beliefs and its
beliefs about the human’s beliefs. Conflicts can be formally
computed in two ways: undermining, where the human’s
conclusion of an argument conflicts with the conclusion of
the robot’s arguments or vice versa; and rebuttal, where the
conclusion of the human’s argument conflicts with some
element in the support of the robot’s argument or vice versa.
The output from ArgTrust is an accept or defeat (reject)
predicate, containing evidence that supports or attacks a
conclusion, respectively; the output can also be undecided,
if the evidence is inconclusive.

The robot is actualized for ArgHRI through the HRTeam
robot operating environment [19]. The HRTeam framework is
structured around a client-server architecture that comprises
an agent layer (for intelligence), a robot layer (for actuating
robot behaviors) and a centralized server for passing mes-
sages between nodes on each layer. The robot layer is built
on Player/Stage [20], which supports easy switching between
physical or simulated robots. Figure 2 shows the HRTeam
arena (a) and robot (b) that were employed in ArgHRI and
used for the experiments described here.

III. EXPERIMENTS

The experiments analyzed here are based on two user
studies conducted using the ArgHRI framework to play an



(a) arena (b) robot (c) example treasure

Fig. 2. The ArgHRI+HRTeam experimental setup.

adaptation of the Treasure Hunt Game (THG) [21] [7]. Our
version of the THG involves a human and a robot player who
work together as a team. The robot operates inside the arena
and has the ability to move around, use sensors to gather
data and communicate with the human. The human operates
outside the arena and has the ability to receive data from the
robot about the arena and communicate with the robot. Their
task is framed as a real-time strategy game in which they
must locate objects, or “treasures,” in the arena. The robot
has an energy level that decreases when it moves, when it
gathers sensor data, and when it transmits sensor data to the
human. The robot does not have enough energy to perform
an exhaustive search of the arena to find all the treasures.
Thus, the shared mission of the THG is for the human-robot
team to find and correctly identify as many treasures in the
arena as possible before the robot loses all of its energy.
The human-robot team’s score in the game is the number of
points earned by correctly identifying treasures. They lose
points by incorrectly identifying treasures (see Figure 2c).

In order to conduct controlled experiments, we designed a
series of three decision points to test the shared decision-
making capabilities of the human-robot teams. First, the
human and robot decide where to go—which rooms should
be visited in order to look for treasure (since an exhaustive
search is not possible). Second, the human and robot decide
how to get there—the order in which the agreed-upon rooms
should be visited. The human plans a travel sequence to
visit the rooms, and so does the robot, using the A* path
planner [22]. Then, the human and robot engage in dialogue
to identify any conflicts in their plans and reach agreement
about which path plan the robot will follow. Third, the human
and robot decide what is found there—whether the sensor
data collected by the robot (e.g., images) contains treasures.

Here we analyze dialogue transcripts from two user stud-
ies, each conducted under a different operating condition.
The same user interface was employed for both operating
conditions, shown in Figure 3. Under one condition, human
subjects interacted with physical robots operating in the
physical arena shown in Figure 2a. Under the other, humans
interacted with simulated robots operating in a virtual version
of this arena. The data for each condition is analyzed
independently here. In both studies, each human subject
played two treasure hunt games: one with a robot capable
of engaging in dialogue, which produced the data analyzed
here; and one with a robot unable to engage in dialogue1.

1This provided a baseline control for comparing task performance metrics,
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Fig. 3. The ArgHRI user interface

Statistical analysis comparing objective performance metrics,
which included distance travelled by robots and game score
obtained by each team, showed significantly better results for
the teams with the dialogue-enabled robot for both operating
conditions. Statistical analysis comparing subjective results,
in which users indicated their level of satisfaction and trust
working with the robot, were also significantly better for the
teams with the dialogue-enabled robot. See [8] for details.

In the physical robot experiment, there were 27 partic-
ipants. In the simulated robot experiment, there were 33
participants. In the physical experiments, 20 participants
were male and 7 were female. In the simulation experiment,
22 participants were male and 11 were female. In both
experiments, most of the participants were undergraduates
(97%) and ranged in age from 18 to 24 (74%), while the
remaining 26% of the participants were 25 to 39 years old.
About half of the participants had no prior experience with
robots; the rest had less than one year of experience.

IV. RESULTS

For each treasure-hunt game, the human-robot team has
three decision points in which to discuss where to search,
how to get there and the identity of any treasure found. With
60 participants, there were at least 180 unique opportunities
for the robot or human to initiate dialogue. If the robot
visited more than one room, there were opportunities for
additional dialogues, because the third decision point was
revisited each time the robot collected sensor data in a room.
At each decision point, depending on the pre-conditions met
(see Figure 1), one of three types of argumentation dialogue
(information-seeking, inquiry, or persuasion) was triggered.
We analyze the dialogue transcripts in several ways.

First, we examine the number of opportunities where
dialogue could have occurred in each game. The first two
decision points occurred once per game, whereas the third
decision point occurred each time the robot captured images.
There were 3-4 treasures hidden per game; we compute sum-
mary statistics for the first five times that the third decision
point was encountered. Figure 4 presents summary statistics
for the average number of times, under each experimental
operating condition, the opportunity to engage in dialogue



no dialogue dialogue
(agreement) occurred

(a) first decision point, where to go
physical 9 (30%) 18 (70%)

simulation 6 (18%) 27 (82%)
(b) second decision point, how to get there

physical 12 (40%) 18 (60%)
simulation 11 (33%) 22 (67%)
(c) third decision point, what is found there,
for the first five candidate treasures

physical 31 (23%) 104 (77%)
simulation 49 (30%) 116 (70%)

Fig. 4. Number of arg.-based dialogues triggered per decision point

was taken. When a decision point is reached and the human
and robot agree, there is no dialogue. The high percentages
in the figure for cases where dialogue did take place indicate
how frequently the human and robot disagreed. On average,
under the physical operating condition, 69% of opportunities
triggered dialogue; under the simulated operating condition,
73% of opportunities triggered dialogue. This result shows
the value of providing the opportunity for dialogue, even in
the simple, controlled experimental domain employed here.

The number of times that each human-robot team reached
the third decision point varied, depending on how quickly
the team was playing, how many rooms the robot was able
to search, how many images the robot was able to capture
and send to the human, and how much energy the robot had
left. Figure 5 shows the percentage of dialogue opportunities
triggered at the third decision point, as games progressed, av-
eraged over human subjects, grouped by operating condition.
The plot clearly illustrates that the proportion of players who
reached beyond a fifth opportunity declined dramatically.

Fig. 5. Percentage of opportunities in which arg.-based dialogue was
triggered at 3rd decision point, per successive candidate treasure (1st-8th).

Second, we look at the breakdown for each type of
dialogue. Figure 6 illustrates the percentage for each type
of dialogue that occurred in the physical (a) and simulation
(b) operating conditions. For the first two decision points, the
least frequently used dialogue was inquiry, which is triggered
when neither the human nor the robot have knowledge about
the belief under consideration. The persuasion dialogue was
not employed for the third decision point, primarily because

(a) physical

(b) simulation

Fig. 6. Breakdown of dialogue usage, by dialogue type.

the human users were able to draw conclusions about images,
while the robots were unable to interpret the image data.
Consequently, the first instance of decision point 3 was
always an information-seeking dialogue, initiated by the
robot, who made the initial assumption that the human could
provide information about the image. If this were not the
case, then the robot (or human) would initiate an inquiry in
the second (and later) instance(s) of the third decision point.

Third, we examine the dialogue outcomes. Figure 7 con-
tains the number of times a dialogue initiator was chal-
lenged, and the number of times a dialogue terminated in
acceptance or rejection. A challenge move is invoked when
one participant does not agree with a belief put forth by
the other participant. The response is for the challenged
participant to provide their support (evidence) for their belief,
in a series of moves in the dialogue. It is a notable result
that more than half the decisions for the first two decision
points were challenged, yet more than 85% (on average)
were subsequently accepted. These data clearly illustrate
the effectiveness of the dialogues. Many fewer challenges
occurred at the third decision point. We surmise that this is
because the robot had limited image processing capabilities
and so was unable to contradict the human in most cases.

This analysis demonstrates the rich opportunities for in-
formation exchange and shared decision making afforded
by argumentation-based dialogue as implemented in our
ArgHRI framework. The information-seeking dialogues dur-



challenge accept reject
(a) first decision point, where to go

phys 10 (56%) 16 (89%) 2 (11%)
sim 16 (59%) 25 (93%) 2 (7%)

(b) second decision point, how to get there
phys 9 (53%) 15 (88%) 2 (12%)
sim 13 (59%) 17 (77%) 5 (23%)

(c) third decision point, what is found there
for the first five candidate treasures.
phys 1 1 (4%) 23 (96%) 1 (4%)
phys 2 7 (27%) 20 (77%) 6 (23%)
phys 3 3 (13%) 20 (87%) 3 (13%)
phys 4 5 (28%) 13 (72%) 5 (28%)
phys 5 3 (23%) 10 (77%) 3 (23%)
sim 1 5 (19%) 23 (88%) 3 (12%)
sim 2 9 (28%) 27 (84%) 5 (16%)
sim 3 3 (11%) 25 (89%) 3 (11%)
sim 4 4 (21%) 16 (84%) 3 (16%)
sim 5 3 (27%) 11 (100%) 0 (0%)

Fig. 7. Analysis of argumentation-based dialogues triggered during each
decision point.

ing the first two decision points showed that the human
sought the robot’s help. Our analysis suggests that the
humans most frequently asked for the robot’s help when there
was a lack of information at the first decision point. The robot
challenging the human during inquiry or information-seeking
dialogue showed that the robot attempted to correct the
human. For example, the robot had knowledge of the color of
a treasure, but did not know its shape; the robot believed that
the human could identify both color and shape by looking
at images captured in the arena; thus, the robot initiated
information-seeking dialogues. If the human chose the wrong
color for the treasure, then the robot would challenge the
human. If the human responded to the challenge stating she
was unsure, then the information-seeking dialogue would
terminate and trigger an inquiry dialogue, where the robot
would propose a treasure to the human based on the color
the robot believed it was. If the human agreed with the
robot, then the robot successfully provided information to
the human and they collaboratively identified the treasure.
Our analysis suggests that humans ultimately agreed with
the robot even though they frequently challenged the robot.
We believe the ability to argue or challenge is crucial for suc-
cessful collaboration. When the robot initiated a persuasion
dialogue, this was an indication that the robot believed it had
formulated a better decision than the human. For example, if
the robot successfully persuaded the human to agree with its
proposed path to visit an agreed-upon room, then the robot
would not travel as far.

V. RELATED WORK
The robot that is capable of collaborating with a hu-

man needs to be able to make high-level decisions by
communicating with human peers about joint actions [23],
[24], [25]. Current research in human-robot dialogue ex-
plores a wide range of opportunities and challenges and
represents diverse research areas, including robotics, multi-
modal interfaces, natural language processing, spoken dia-

logue systems, human-computer interaction and human-robot
interaction [26]. Thus as a broad community, we are still in
the early stages of research on enabling dialogue for fluent
human-robot interaction [26], [27].

We divide current work on human-robot dialogue into
three categories, as follows. The “how to say it” problem con-
cerns the mode of delivery (e.g., speech, gestures) and lan-
guage in which content is expressed (e.g., natural language
generation) [28], [29]. The TeamTalk project [30] explores
multi-modal interaction, including spoken dialogue as well
as mouse clicks and pen gestures to support human-robot
collaboration for search tasks. In this architecture, a multi-
agent dialogue manager helps prioritize tasks and process
input from the human; but the robot does not take initiative.
The “when to say it” problem concerns the timing of delivery
and turn-taking issues, i.e., figuring out which partner has
the floor to speak or act during a conversation [31]. The
CoBOT project investigates situations where a robot asks
a human for help [32], exploring when it is appropriate
to ask a human for assistance. The “what to say” problem
concerns the selection of content and can be considered from
an abstract, conceptual level, aligning with the types of logic-
based belief representation systems frequently employed in
many AI and HRI systems. For example, it is common for a
system to represent states and actions using predicates like
put(A,B), which is then translated using a script template
into an English sentence like Put box A on top of box B.

Fischer [33] studied how human-robot dialogue can be
designed to reduce uncertainty about joint tasks and robot
capabilities. The results of an experiment involving 22
human participants confirmed that the content of feedback
positively affects human-robot interaction by lowering user
uncertainty during interaction. The author concluded that
user expectations of robot capabilities and appearance affect
not only human-robot relationships but also human-robot dia-
logues. Lee & Makatchev [34] analyzed the dialogue content
from interactions with a robot receptionist to investigate the
types of dialogues used by human participants. The results
indicated that 41.54% of the dialogues were task-specific
questions (e.g., location of offices or where to get a taxi) and
related to seeking information. About 30% of the dialogues
were related to chatting about the robot, 20% of the dialogues
were related to greetings (saying hello), and 10% of the
dialogues related to impolite behaviors (insulting the robot).

Very few researchers have implemented and tested interac-
tive systems that employ computational argumentation-based
dialogue [35], [36]. To the best of our knowledge, we are the
first to demonstrate this capability with physical robots.

VI. DISCUSSION

Humans seek help when they are uncertain about some-
thing. Results from our user studies suggest that most human
participants did not know where to search, were without
clues, and as a result, sought help during the where-to-
search dialogue. This theory was validated by our analysis
of the dialogue data showing who engaged in information-
seeking dialogues. On average, 91% of the dialogues that



occurred during the first decision point ended in agreement,
even though the robot was challenged 57% of the time.

In contrast, humans are reluctant to get help when they
feel certain about something. For instance, results from our
user studies reported that robot peers challenged humans,
on average, more than half the time at the first two decision
points, and 20% of the time at the third decision point. At the
third decision point, the challenges were intended to prevent
the team from mistakenly identifying a treasure incorrectly.
Note that this includes repeated challenges that continued
until a dialogue terminated. Less than 15% resulted in
rejection. The robot in our set-up could only recognize colors
and did not know how to detect treasures, so it appeared
to be less confident about the image analysis evidence it
provided to humans. The results suggest that robots may
have failed to prevent human errors in these cases because
the human participants were more confident about their
selections. It may also be that humans unwarrantedly trust
their judgment over the robot. However, if humans think
they know something but are not absolutely sure, or there is
evidence presented that suggests otherwise, they will change
their minds. For instance, results from our user studies
demonstrated that the robot persuaded 85% of their human
teammates to change course during the where-to-search and
how-to-get-there discussions.

VII. CONCLUSION
The detailed analysis presented here contributes to the

complete story behind our empirical exploration of the influ-
ence of computational argumentation-based dialogue to facil-
itate shared decision making in human-robot teams. While
the task performance metrics described in [8] demonstrate
that our methodology works, the analysis here illustrates
how it works. The positive impact of our computational
argumentation-based dialogue model as a structured means
to exchange the reasons for making decisions has been
clearly demonstrated. Future work will explore extending the
methodology to multi-robot and multi-human environments.
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