
Extended and Unscented Kalman Filters for mobile robot
localization and environment reconstruction

Giuseppe Cotugno, Luigi D’Alfonso, Walter Lucia, Pietro Muraca, Paolo Pugliese

Abstract— In this work we compare the performance of
two algorithms, respectively based on the Extended Kalman
Filter and the Unscented Kalman Filter, for the mobile robot
localization and environment reconstruction problem. The pro-
posed algorithms do not require any assumption on the robot
working space: they are driven only by the measurements taken
using ultrasonic sensors located onboard the robot. We also
devise a switching sensors activation policy, which allows energy
saving still achieving accurate tracking and reliable mapping
of the workspace. The results show that the two filters work
comparably well, in spite of the superior theoretical properties
of the Unscented Filter.

I. INTRODUCTION

Mobile robot navigation in an unknown environment is a
well-known problem that involves:
• building a (possibly partial) map of the workspace;
• localizing the robot within such map.

The two tasks are related to each other: on the one hand, to
know where the robot is located, a map of the environment
is needed; on the other hand, to reconstruct the environment,
robot position and orientation must be estimated, because
mapping is performed using such variables [1].

Many classical solutions to the navigation problem in a
known environment are based on the use of the Extended
Kalman Filter. When no information on the robot workspace
is given, the filter must be complemented with a suitable
model for the measurement devices: in the most common
situation, mobile robots are equipped with onboard ultrasonic
sensors, battery-powered, that measure the distance from the
boundaries of the surroundings.

The problem has received relevant attention in the litera-
ture; among the others, a graph based technique has been
proposed in [2], where the environment is scanned using a
laser sensor and the measurements are clustered and assigned
to a feature-type group (i.e. lines, points or edges). Then a
graph is built from the features, that represents an observa-
tion of the environment. Other techniques for simultaneous
localization and mapping (SLAM) can be found in [3]-[4].

In this work we assume that the robot workspace is
totally unknown, and we use local information to give a
good measurement model to complement the filter. The basic
idea behind our algorithms is that we do not need to know
the whole environment to estimate the current position and
orientation of the robot, but only those portions that interact

G. Cotugno is with King’s College London, England.
E-mail: giuseppe.cotugno@kcl.ac.uk

L. D’Alfonso, W.Lucia, P. Muraca, P. Pugliese are
with DIMES, Università della Calabria, Rende, Italy
E-mail: ldalfonso,wlucia,muraca,pugliese@dimes.unical.it

with the robot sensors. This leads to the Neighbors Based
Algorithm (NBA) of Section III.

Another issue we have investigated is the opportunity to
use a sensor switching policy. Mobile robots are equipped
with several sensors, but although it is intuitive that the more
of them you use, the better estimate you get, yet there are
reasons for do not exceed in their use.

The most important is that sensors consume battery power,
and an intensive activation reduces its autonomy. There are
also situations where multiple sonar sensors cannot operate
simultaneously, for example when they use the same fre-
quency band [5]. Also bandwidth consumption and possible
collisions when sending measurements from the sensors to
the filter have to be considered. These considerations impose
to find a trade-off between the number of sensors which are
active at each instant and the accuracy of the estimate. In
other words, we look for the best sequence of activation of
a small fraction of the available sensors.

We have adapted the Extended Kalman Filter (EKF) and
the Unscented Kalman Filter (UKF) to include the Neighbors
Based Algorithm, and have also included in the filters the
proposed sensors switching policy. It has turned out that, in
spite of the superior theoretical properties of the Unscented
Filter, the Extended Filter performs comparably well on this
specific problem, and the proposed rule to switch between
sensors gives for both filters good results.

The paper is organized as follows: in Section II the model
of the mobile robot is presented; in Section III we present our
modified version of the EKF and of the UKF; in Section IV
we propose the switching technique to improve the accuracy
of the state estimate; in Section V we describe the algorithm
used to reconstruct an environment estimation. Finally in
Section VI and VII we present and discuss the results of the
experiments and outline some possible extensions for future
investigations.

II. ROBOT MODEL
We consider a battery-powered mobile robot with two inde-
pendent driving wheels and one castor wheel, as shown in
Fig. 1. As an example we refer to the Khepera III robot [6]
used in our experiments and in many academic laboratories.
An approximated, discrete-time model of such a robot, which
neglects the dynamic of the motors and the frictions, is [7]:

x1k+1 = x1k + vk T cos(θk+1) + wxk
x2k+1 = x2k + vk T sin(θk+1) + wyk
θk+1 = θk + ∆k + wθk,

(1)

where the state of the system is:
• (x1k, x

2
k): the position of the robot center at time tk,

• θk: the angle between the robot axle and the x-axis,

Fig. 1. Robot sketch.

and the other symbols denote:
• vk = R (ωlk + ωrk)/2: the linear velocity of the robot,
• ωlk and ωrk: the angular velocities of wheels,
• wxk , w

y
k, w

θ
k: zero-mean uncorrelated Gaussian noises,

• R: the radius of the wheels,
• l: the length of the axes,
• ∆k = R (ωlk − ωrk)T/l: the rotation within [tk−1, tk],
• T = tk − tk−1: the sampling period.

The input variables of the model are the angular velocities
of the wheels, denoted by ωlk and ωrk, that have been pre-
computed to make the robot follow the desired trajectories.
The Gaussian disturbances take into account for unmodeled
dynamics, friction, wheels slipping and external disturbances.

Geometry and observation structure

We suppose that the robot is equipped with five ultrasonic
sensors (this is the case of the Khepera III), located as shown
in Fig. 1 and denoted by Si, i = 1, . . . , 5. Each sensor pro-
vides the distance between the center of the robot, denoted by
P = (x1, x2), and a point on the surrounding environment,
denoted by P̃i = (x̃1i , x̃

2
i).

We assume that the robot is moving in an unknown work-
space, that we represent by a set of segments, each of them
intersecting at least one point of the boundary (see Fig. 2).
The measurement provided by sensor Si is approximated,
as shown in that figure, by the distance between P and the
intersection P̄i = (x̄1i , x̄

2
i) between the axis of sensor Si and

one of the representative segments of the boundary.
Denoting the axis of sensor Si by x2 = aix

1 + qi, and
the axis of the representative segment by x2 = cix

1 +si, the
intersection P̄i is

x̄1i =
si − qi
ai − ci

, x̄2i =
aisi − ciqi
ai − ci

, (2)

therefore the distance between P and P̃i can be approximated
by the distance between P and P̄i, which is given by

ηi = ((x1 − x̄1i)2 + (x2 − x̄2i)2)1/2. (3)

Now let us denote by αi the orientation of each sensor
Si with respect to the robot axis (corresponding to the third

Fig. 2. Observation model.

sensor axis); the parameters of Si axis are then given by:

ai = tan(θ + αi), qi = x2 − aix1, (4)

and using (2) and (4) within (3) we obtain a distance func-
tion ηi depending only on the robot state and segment (si, ci)

ηi = h((x1, x2, θ), (si, ci)), i = 1, . . . , 5.

These relationships allow to define the output equation of the
model of the robot, and will be written in the compact form

yk = h(xk, (s̄k, c̄k)) + vk, (5)

where the dimension of vector yk ranges from one to five,
depending on how many sensors we use, xk = [x1k x

2
k θk]′

is the state of the robot at time k, the vector vk collects
the sensor noises, also assumed Gaussian and zero-mean,
and uncorrelated with wk; the vectors s̄k and c̄k contain the
parameters (s, c) of the segments hit by the sensors at time k.

III. NEIGHBORS BASED EXTENDED AND
UNSCENTED KALMAN FILTERS (NEKF, NUKF)

Nonlinear filtering is the problem of estimating the state of
a nonlinear stochastic system from noisy measurements. For
discrete-time systems the framework is given by the equa-
tions

xk+1 = f(xk, uk) + wk

yk = h(xk) + vk,
(6)

where x is the state to be estimated, y is the measured output,
w and v are the system and measurements noises.

Beside (s̄k, c̄k), model (1), (5) falls within this framework
on defining

xk = [x1k x2k θk]′, wk = [wxk wyk wθk]′, uk = [ωlk ωrk]′.

From now on we will denote by W and V the covariance
matrices of the noises wk and vk, respectively. These matri-
ces will be assumed known. Moreover, we suppose we are
given an initial estimate of the state x̂0|0 and its estimation
error covariance matrix P0|0.

The observation structure (5) is well-posed only if (s̄k, c̄k)
are known: the Neighbors Based Algorithm (NBA) has been
devised to approximate them.

Neighbors Based Algorithm
The core idea behind the NBA is the proximity among
acquired measurements; we define two points P1, P2 as
neighbors if ||P1 − P2|| < r, where r is a parameter of
the algorithm. Moreover, for a given set of points A and a
point P ∈ A, we define the set-valued closeness function N
by

B = N (P,A),

where B = {Pi ∈ A : ||Pi − P || < r}, i.e., the subset of
points of A which are neighbors, in a radius r, of P .

Once a new measurement yi has been acquired by sensor
Si, and given the actual estimate of the robot state, we can
compute an approximation of the environment point P̃i hit
by the sensor beam. This approximation, denoted by P ∗i ,
differs from the actual point because of both the estimation
and the measurement errors.

The NBA then computes the closeness function of P ∗i on
the set of the previously identified boundary points, denoted
by M. At this point we compute the parameters (s, c) of
the Least Mean Square line approximating the points in this
neighbors. This will be represented by the function

(s, c) = LMS(N (P ∗,M)).

Finally, the point P̄i is computed as the intersection between
the Least Mean Square line and the sensor beam. We
summarize the NBA algorithm as follows:

Neighbors Based Algorithm

for each step k, given x̂1k, x̂
2
k, θ̂k,Mk, Ik, do

1) for i ∈ Ik
• acquire a measurement yi from the sensor Si
• P ∗i,1 = x̂1k + yi cos(θ̂k + αi)

• P ∗i,2 = x̂2k + yi sin(θ̂k + αi)
• P ∗i = (P ∗i,1, P

∗
i,2)

end
2) Mk+1 =Mk ∪ {∪i∈Ik{P ∗i }}
3) for i ∈ Ik

• (ŝi, ĉi) = LMS(N (P ∗i ,Mk+1))

end
end
• Ik is the set of sensor indexes to be used at step k
• x̂1k, x̂

2
k, θ̂k is the robot state estimation at step k

• Mk is the set of previously acquired environment points
• (ŝi, ĉi) are the approximations, at step k, of the param-

eters of the segments intercepted by sensor Si axis.

From now on, we will use the NBA algorithm as a function:

(ŝi, ĉi) = NBA(i, k),

where i is the sensor index and k is the time step, and we
will use it to complement the EKF and UKF.

Neighbors based Extended Kalman Filter

The Extended Kalman Filter (EKF) has been used for many
years to estimate the state of nonlinear systems from noisy
measurements, and it has been probably the first concrete
application of Kalman’s work on filtering [8].

It is based on the linearization of the nonlinear maps (f, h)
of (6) around the estimated trajectory, and on the assumption
that the initial state and measurement noises are Gaussian
and uncorrelated each other.

From the computational point of view, the EKF is simply
a time-varying Kalman filter where the dynamic and output
matrices are given by

Ak =
∂f(x, uk)

∂x

∣∣∣∣
x=x̂k|k

, Ck =
∂h(x)

∂x

∣∣∣∣
x=x̂k|k−1

, (7)

and the output is a sequence of state estimates x̂k|k and of
matrices Pk|k. Including the NBA algorithm within a stan-
dard EKF [9], we have:

Neighbors based Extended Kalman Filter

x̂k+1|k = f(x̂k|k, uk)

Pk+1|k = AkPk|kA
′
k +W

Kk+1 = Pk+1|kC
′
k+1(Ck+1Pk+1|kC

′
k+1 + V)−1

(ˆ̄sk, ˆ̄ck) = NBA(Ik, k)

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − h(x̂k+1|k, (ˆ̄sk, ˆ̄ck)))

Pk+1|k+1 = Pk+1|k −Kk+1Ck+1Pk+1|k

There x̂k+1|k represents the estimate of xk+1 before getting
the observation yk+1, x̂k+1|k+1 represents the estimate after
getting that observation, and (ŝk, ĉk) represent the output of
NBA at time k and for each sensor Si, i ∈ Ik.

It is well known that the EKF is prone to diverge, mainly
for bad initial estimates and high noises [10], but to the
best of our knowledge no testable convergence conditions
are known.

It is worth to remind that, differently from the linear case,
the trace of Pk|k only is an approximation (because of the
linearization) of the MS estimation error E{‖xk − x̂k|k‖2}.

Neighbors based Unscented Kalman Filter

The Unscented Kalman Filter (UKF) has been developed in
recent years to overcome two main problems of the EKF, i.e.,
the poor fitting properties of the first order approximation and
the requirement for the noises to be Gaussian [11],[12].

The basic idea behind the UKF is that of finding a transfor-
mation that allows to approximate the mean and covariance
of a random vector of length n when it is transformed by a
nonlinear map. This is done by computing a set of 2n + 1
points, called σ-points, on the basis of the mean and variance
of the original vector, transforming these points by the non-
linear map and then approximating the mean and variance
of the transformed vector from the transformed σ-points.

As for approximating properties of the filter, it has been
shown [12] that, while the EKF estimate of the state is

accurate to the first order, the same UKF estimate is accurate
to the third order in the case of Gaussian noises.
Moreover, the covariance estimate is accurate to the first
order for the EKF, and to the second order for the UKF.

We report here the so-called NonAugmented version of
that filter [13], which is appropriate for additive noises, and
it is easy to implement. The description follows partially the
one given in [14], with some modifications that make it more
compact and suitable for a MATLAB [15] implementation,
and also convenient to compute the trace of the covariance
estimate. The values of the weights of that filter

Rm = [Rm1 · · ·Rm2n+1]′, Rc = diag{Rc1, . . . , Rc2n+1}

and of the parameter λ are given in Section VI.

Neighbors based Unscented Kalman Filter

for each step k, starting from x̂k|k and Pk|k, do

1) Compute Bk|k =
√

(n+ λ)Pk|k, i.e., the scaled square
root of matrix Pk|k

2) Compute the σ-points matrix

χk|k = [x̂k|k x̂k|k+Bk|k x̂k|k−Bk|k] ∈ Rn×(2n+1)

There (and in the sequel) the sum of a vector plus a
matrix is intended as summing the vector to all the
column of the matrix (à la MATLAB)

3) Transform the σ-points matrix (columnwise)

χ∗k+1|k = f(χk|k, uk)

4) Compute the a-priori statistics

x̂k+1|k = χ∗k+1|k R
m

Pk+1|k = (χ∗k+1|k− x̂k+1|k)Rc(χ∗k+1|k− x̂k+1|k)′+W

5) Update B and compute the new σ-points

Bk+1|k =
√

(n+ λ)Pk+1|k

χk+1|k = [x̂k+1|k x̂k+1|k+Bk+1|k x̂k+1|k−Bk+1|k]

6) Compute NBA

(ŝk, ĉk) = NBA(Ik, k)

7) Compute the predicted output

Γk+1|k = h(χk+1|k, (ŝk, ĉk))

ŷk+1|k = Γk+1|k R
m

8) Compute the Kalman gain

Pyy = (Γk+1|k − ŷk+1|k)Rc(Γk+1|k − ŷk+1|k)′ + V

Pxy = (χk+1|k − x̂k+1|k)Rc(Γk+1|k − ŷk+1|k)′

Kk+1 = PxyP
−1
yy

9) Compute the a-posteriori statistics

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − ŷk+1|k)

Pk+1|k+1 = Pk+1|k −Kk+1PyyK
′
k+1

end

IV. THE SENSORS SWITCHING POLICY

Selecting at each time instant a small fraction of the available
sensors to be activated is an old problem; the original motiva-
tion, three decades ago, was the limited capacity of the trans-
mission medium and the low computational power of the
processors that made the computation.

Nowadays, the above difficulties are vanished, thanks to
the huge development in the transmission and computational
devices; however, a new and important problem is that of
saving the lifetime of the batteries that power the sensors.

For that sake, a switching policy to use a small fraction q
of the p available sensors is worthwhile, although it is evident
that such a policy will have an impact on the estimate.

To formalize the problem, on activating at each instant
q out of p sensors, we get a q-valued output equation h(·)
and a q × n output matrix Ck by Eq. (5) and (7). Different
choices of the activation sequence return different estimates
of xk for both the EKF and the UKF, thus we are interested
in finding the best, in some statistical sense, estimate.

The switching policy we propose may be described by:

At each instant, among the p sensors, choose q of
them in such a way that the effect of the current
observation on the estimate is maximized.

In a linear estimation problem, a meaningful quality mea-
surement of the estimate is the trace of the estimation error
covariance matrix Pk|k, i.e., the MS estimation error, and a
simple way to evaluate the effect of the current observation
yk is to take the trace of the difference between Pk|k−1 and
Pk|k, i.e., the a-priori and a-posteriori estimation error.

This is correct under the additional assumption that all
the state variables are coherent, i.e., they share the same
measurement units. If that is not the case, as in our problem,
a weighted trace has to be used, where the weights both
make the sum coherent and also can be used to emphasize
some eigenvalues of Pk|k respect to the others.

Although in a nonlinear filtering problem the matrix Pk|k
only is an approximation of the estimation error covariance,
its weighted trace has been chosen as our criterion, by anal-
ogy with the linear case, and because it is simple to be
computed, as shown in the following. Our criterion will be

At each instant, among the p sensors, choose q of
them in such a way that the trace of the difference
between Pk|k−1 and Pk|k is maximized.

The approach of maximizing at each step that trace has
been introduced for the first time in [16] for the state
estimation of linear systems using a Kalman filter, but here it
is used for the first time in conjunction with the Unscented
Kalman Filter. It is worth noticing that the trace criterion
becomes more meaningful when the UKF is used because
the approximation of Pk|k is correct to the second order.

Although there is no guarantee that this choice may take
to the optimal switching sequence (finding it would be
a problem of combinatorial complexity), we look at this
criterion as a heuristic method to improve the convergence
properties of the EKF and the UKF.

Computing the trace criterion for the EKF

As for the EKF, the difference Jk = Pk|k−1 − Pk|k, whose
trace has to be maximized by the choice of Ck, is simply

Jk = Pk|k−1C
′
k(CkPk|k−1C

′
k + V)−1CkPk|k−1.

When a small fraction q of sensors is used, the computa-
tional cost of this formula is low, because of many common
terms and symmetries, and it is suitable to be done online.
The hypothesis that q is small is intrinsic in our problem
(we want a small number of sensors active at each instant),
hence the best trace is easily computed by enumeration of
the
(
p
q

)
possible values.

Computing the trace criterion for the UKF

For this filter the difference Jk = Pk|k−1−Pk|k amounts to

Jk = KkPyyK
′
k.

Here the computation is a little more complex; let Qk be a
q × p matrix where the j-th entry of each row is one if the
j-th sensor is active, and zero otherwise, and define

φk = (χk|k−1 − x̂k|k−1)Rc, ψk = Qk(Γk|k−1 − ŷk|k−1).

Then the value of the matrix Jk can be written as

Jk = φkψ
′
k (ψk R

cψ′k +QkV Q
′
k)−1ψkφ

′
k,

and again, being Rc diagonal and Qk sparse, and because
of the symmetry, the computational cost of the trace index
is low.

V. ENVIRONMENT RECONSTRUCTION

Environment reconstruction is obtained by clustering the set
of points P ∗i generated by the algorithm, and then mapping
each cluster to a graph, which is representative of a section of
the workspace. Once all the graphs have been built, they are
refined to get a more precise representation of the workspace
boundaries by finding the shortest paths and selecting the
most convenient path for approximating the environment. A
sketch of the reconstruction algorithm is shown in Figure 3.
Points clustering is performed using the Fuzzy C-Means
algorithm (FCM) [17]. Clusters of points can be used as
a rough estimate of sections of the environment. The need
for clustering is to group the environment into large areas;
for each area (cluster) a graph is associated. A graph is just
a model of its associated area; the advantage of using graph
models is the wide variety of well established algorithms that
can be used for later elaboration. A graph is built as follows:
each point in a cluster is a vertex of the associated graph,
and an edge among two vertexes P ∗1 and P ∗2 there exists if
and only if ‖P ∗1 − P ∗2 ‖ ≤ δ, where δ is a small constant (in
our experiments we use δ = 0.2).
Once the environment reconstruction problem has been
mapped into a graph theoretic problem, it is possible to apply
graph theory techniques to refine the graph and approximate
the environment. As graphs’ structure could be very complex,
featuring many edges an cycles, the core idea is to simplify
the structure in order to extract a linear structure from a

Fig. 3. A summary of the reconstruction algorithm.

connected one. All the edges of such simplified structure
approximate a small portion of the area modelled by the
associated graph. In other words, an environment’s border is
approximated by an ordered set of segments, each segment
is a graph’s edge.
In this context, the best way to highlight approximating
sections of the graphs is to use Dijkstra’s shortest path
algorithm and then select the longest path from all the
ones found by the algorithm. Dijkstra’s algorithm is used to
simplify the graph’s structure into an acyclic linear sequence
of segments; by selecting the longest path among all, most of
the cluster’s extension can be covered. Since the graphs are
built from real measurements, there is a mapping between
a real point and a vertex in the graph model; hence the
correspondence between an edge and a boundary in the real
world.
As this step is performed on every graph, and all the asso-
ciated clusters cover the full extension of the environment,
the final outcome is a collection of lists of vertexes, one
for each area of the environment. The lists are then sorted,
having the last vertex of a list as close as possible to the first
vertex of another list. After connecting each last vertex to a
first vertex, a continuous structure can be built by calculating
the linear equations associated to each edge.

VI. EXPERIMENTAL RESULTS

To evaluate the performances of the proposed filters we have
performed three series of experiments, each series referring
to a trajectory followed by the Khepera III robot in a rectan-
gular workspace of 1.5× 1.0 m.

The first trajectory is an open Z-shaped path starting from
the point (0.6, 0.3) and passing by (1.0, 0.3), (0.6, 0.5), and
finally (1.0, 0.5). The second one is a circle of radius 0.2 m,
centered in (0.6, 0.5), starting from (0.6, 0.3). The third
trajectory is the same circle repeated three times.

The robot executed each trajectory 20 times; one run
corresponds to one experiment. With a sampling time T =
1 sec, the first and the second trajectory have been completed
in kf = 80 sec, the third one in kf = 200 sec. For each
trajectory, a trapezoidal profile to the angular velocities of
the wheels has been imposed.

In each simulation we have tested both filters using three
different settings. In the first one a single sensor sj is used,

(a) Z-shaped trajectory estimation. (b) Workspace reconstruction.

Fig. 4. Trajectories used to validate the filters

TABLE I
NEKF - ε

Trajectory s1 s2 s3 s4 s5 Switching All

zeta 0.036 0.050 0.036 0.041 0.032 0.041 0.039

circle 0.058 0.053 0.046 0.043 0.032 0.044 0.034

3× circle 0.105 0.087 0.073 0.072 0.058 0.095 0.023

TABLE II
NEKF - µ*100

Trajectory s1 s2 s3 s4 s5 Switching All

zeta 1.102 1.055 1.036 1.138 1.113 0.479 0.370

circle 1.131 1.131 1.03 1.134 1.100 0.473 0.371

3× circle 0.975 0.947 0.857 0.726 0.960 0.308 0.205

TABLE III
NEKF - ρ

Trajectory s1 s2 s3 s4 s5 Switching All

zeta 0.031 0.034 0.030 0.033 0.030 0.033 0.0310

circle 0.033 0.030 0.031 0.033 0.043 0.043 0.027

3× circle 0.129 0.120 0.106 0.115 0.097 0.088 0.025

keeping it fixed along the path, i.e. Ik = {j}, k = 0, . . . , kf ;
this has been repeated for all five sensors. In the second
setting we use a single sensor (q = 1), switching between
the five sensors available with the policy discussed in Section
IV. Finally, in the third setting we use all five sensors together
to provide a base for comparison.

The following values for the covariance parameters and

TABLE IV
NUKF - ε

Trajectory s1 s2 s3 s4 s5 Switching All

zeta 0.040 0.047 0.038 0.034 0.028 0.037 0.036

circle 0.065 0.056 0.057 0.049 0.036 0.033 0.033

3× circle 0.122 0.094 0.089 0.086 0.058 0.071 0.021

TABLE V
NUKF - µ*100

Trajectory s1 s2 s3 s4 s5 Switching All

zeta 1.151 1.106 1.129 1.194 1.242 0.664 0.375

circle 1.182 1.145 1.059 1.146 1.126 0.668 0.376

3× circle 1.038 0.979 0.882 0.870 0.992 0.535 0.212

TABLE VI
NUKF - ρ

Trajectory s1 s2 s3 s4 s5 Switching All

zeta 0.033 0.031 0.029 0.029 0.028 0.032 0.030

circle 0.036 0.034 0.037 0.035 0.051 0.036 0.026

3× circle 0.133 0.138 0.130 0.120 0.096 0.073 0.023

the initial conditions were common to all simulations:

• W = 10−4diag{4, 4, 3.046}: a standard deviation of
0.02 m on x1 and x2 and of 1◦ on θ.

• V = 9×10−4I: a standard deviation of 0.03 m for each
sensor, supposed sharing the same statistical properties.

• x̂0|0 = [0.57, 0.33, 0]′; the true initial state of the robot

is x0 = [0.6, 0.3, 0]′ for each trajectory.
• P0|0 = 10−2diag{0.25, 0.25, 0.27}: a standard devia-

tion of 0.05 m on robot position and 3◦ on orientation.
We adopt as UKF weights the values α = 0.001, β = 2,
κ = 3 − n and λ = α2(n + κ) − n. According to [11], the
choice β = 2 minimizes the error in the fourth-order moment
of the a-posteriori covariance when the noises are Gaussian.
Furthermore:

Rm1 =
λ

n+ λ
, Rc1 =

λ

n+ λ
+ 1 + β − α2

Rmj = Rcj =
λ

2 (n+ λ)
, j = 2, . . . , 2n+ 1.

The closeness function radius has been set to r = 0.1 m. As
for the initialization of the set M, we allow 15 initial steps
at the beginning of each experiment, during which we only
acquire measurements and points of the environment; these
points will form the initial condition for M.

To evaluate the performance of the filters we define:

ε =
1

kf + 1

kf∑
k=0

(
(x1k − x̂

1
k|k)2 + (x2k − x̂

2
k|k)2

)1/2
,

µ =
1

kf + 1

kf∑
k=0

tr{Pk|k},

where the first index is a measurement of the localization
error, and the second is a measurement of the quality of
the estimate. We have also defined a threshold εd = 0.15
m on the obtained estimates, to identify divergences of the
filters: if the ε index of an experiment exceeds the threshold
that experiment is discarded. To evaluate the quality of
the environment reconstruction a further index ρ has been
defined as follows. The edge Ei between two vertices vi and
vi+1 in the graph represents the segment between the two
vertices. We consider the points Pij , j = 1, . . . , ni, equally
spaced by an amount equal to 0.01 m along the segment.
For each of these points, the distance dij between it and the
nearest portion of the real environment is computed, and the
following index ρ has been defined

ρ =
1

ne

ne∑
i=1

 1

ni

ni∑
j=1

dij

 ,

where ne is the number of edges of the graph.
The clustering procedure requires the number of clusters

used in the FCM step to be given: this has been set to c = 5
at the beginning of the computation, and to c = 25 when
the computation reaches the steady state. A typical result
of the algorithm can be viewed in Fig. 4(b) for the NUKF
filter, while Fig. 4(a) reports the corresponding estimated
trajectory. We report in Tables I, II and III the values of
the indexes ε, µ and ρ, for the NEKF and all trajectories;
in tables IV, V and VI the values of the same indexes, there
using NUKF. All the values are averaged over the number
of experiments that do not exceed the divergence threshold
(they were very few). In all the tables:
• sj refers to the cases where the j-th sensor is kept fixed

along all the path
• Switching refers to the proposed switching policy
• All refers to the case where all sensors are used together
• zeta, circle, 3× circle refer to the first, the second and

the third trajectory respectively.

VII. CONCLUSIONS AND FUTURE WORKS
The experiments performed have shown that the two filters
work comparably well in giving both a reliable estimate of
the robot pose and an accurate reconstruction of the working
environment. In spite of the better theoretical approximating
properties of the UKF over the EKF, the NUKF is only
slightly better on the ε and ρ indices, while the NEKF is
marginally better on the µ.
The surprising equivalence of the two filters is probably due
to the fact that the nonlinearities in the model are not bad
enough to highlight any substantial difference.
For both filters, the proposed switching rule always gives a
value of the µ index which is much better than the one given
by any fixed sensor, and close to the reference one obtained
using all sensors together.
On considering workspace reconstruction, Tables III and VI
show that, especially when robot performs long paths (i.e.,
3×circle), relying on one switching sensor is more effective
than relying on one fixed sensor, whichever it is. Experiments
with more complex workspaces are in progress.
Future research will investigate the effect of loss of infor-
mation on the transmission channel from the sensors to the
filters. Furthermore, at the moment the world reconstruction
algorithm runs offline, because it is computationally expen-
sive. We are working on a much faster version to be used
simultaneously with the neighbors based filters.

REFERENCES
[1] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, MIT Press, 2005
[2] T. Bailey, E. Nebot, Localisation in large-scale environment, Robot.

Auton. Syst., 37:261–281, 2001
[3] J.J. Leonard, H.F. Durrant-Whyte, Mobile robot localization by track-

ing geometric beacons, IEEE Trans. Robot. Autom., 7(3):376–382,
1991

[4] H. Durrant-Whyte, T. Bailey, Simultaneous localisation and mapping
(SLAM): part I – The essential algorithms, IEEE Robot. Autom. Mag.,
13(2):99–110, 2006

[5] V. Gupta, T. Chung, B. Hassibi, R.M. Murray, On a stochastic
sensor selection algorithm with applications in sensor scheduling and
dynamic sensor coverage, Automatica, 42(2):251–260, 2006

[6] K-TEAM Corporation [Online]. Available: http://www.k-team.com
[7] E. Ivanjko, I. Petrović, Extended Kalman filter based mobile robot pose

tracking using occupancy grid maps, Proc. of the IEEE MELECON,
Dubrovnik, Croatia, May 2004, pp. 311–314

[8] M.S. Grewal, A.P. Andrews, Kalman Filtering: Theory And Practice
Using MATLAB, 3rd ed., Wiley, 2008

[9] B.D.O. Anderson, J.B. Moore, Optimal Filtering, Prentice-Hall, 1979
[10] K. Reif, S. Günther, E. Yaz, R. Unbehauen, Stochastic stability of the

discrete-time Extended Kalman Filter, IEEE Trans. Autom. Control,
44(4):714–729, 1999

[11] S.J. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation,
Proc. of the IEEE, 92(3):401–422, 2004

[12] E. Wan, R. van der Merwe, The Unscented Kalman Filter, in Kalman
Filtering and Neural Networks, S. Haykin, Ed., Wiley, 2001

[13] Y. Wu, D. Hu, M. Wu, X. Hu, Unscented Kalman filtering for additive
noise case: augmented versus nonaugmented, IEEE Signal Process.
Lett., 12(5):357–360, 2005

[14] Yi Cao, Learning the Unscented Kalman Filter [Online]. Available:
http://www.mathworks.com/matlabcentral/fileexchange/18217

[15] The Mathworks, Inc., MATLAB User’s Guide, Natick, MA, 1996
[16] L. Carotenuto, P. Muraca, G. Raiconi, On the optimal design of

the output transformation for discrete-time linear systems, J. Optim.
Theory Appl., 68(1):1–18, 1991

[17] J.C. Dunn, A fuzzy relative of the ISODATA process and its use in
detecting compact well-separated clusters, J. Cybernet., 3(3):32–57,
1973

[18] E.W. Dijkstra, A note on two problem in connexion with graphs,
Numer. Math., 1:269–271, 1959

