
Welcome!
Files and Programme at:
http://isabelle.in.tum.de/nominal/ijcar-09.html

Have you already installed Nominal Isabelle?

Can you step through Minimal.thy without getting
an error message?

If yes, then very good.
If not, then please ask us now!
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A Quick and Dirty Overview
of Nominal Isabelle

Nominal Isabelle is a definitional extension of
Isabelle/HOL (i.e. no additional axioms, only
HOL),

provides an infrastructure for reasoning about
named binders,
for example lets you define

nominal_datatype lam =
Var "name"
j App "lam" "lam"
j Lam "«name»lam" ("Lam [_]._")

which give you named �-equivalence classes:
Lam [x].(Var x) = Lam [y].(Var y)
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That means Nominal Isabelle is aimed at
helping you with formalising results from:

programming language theory
term-rewriting
logic
. . .

. . . not just the lambda-calculus!
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A Six-Slides
Crash-Course on How

to Use Isabelle
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Proof General
Important buttons:

Next and Undo advance /
retract the processed part
Goto jumps to the current
cursor position, same as
ctrl-c/ctrl-return

Feedback:
warning messages are given in
yellow

error messages in red
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X-Symbols
. . . provide a nice way to input non-ascii
characters; for example:

8 , 9 , +, #,
V
, � ,�, 6=, 2, . . .

they need to be input via the combination
n<name-of-x-symbol>

short-cuts for often used symbols

[j . . . [[
j] . . . ]]

==> . . . =)
=> . . . )

=n . . . ^
n= . . . _
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Isabelle Proof-Scripts
Every proof-script (theory) is of the form

theory Name
imports T1:::Tn

begin
:::

end

For Nominal Isabelle proof-scripts, T1 will
normally be the theory Nominal.
We use here the theory Lambda.thy, which
contains the definition for lambda-terms and for
capture-avoiding substitution.
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Types
Isabelle is typed, has polymorphism and
overloading.

Base types: nat, bool, string, lam, . . .
Type-formers: ’a list, ’a� ’b, ’c set, . . .
Type-variables: ’a, ’b, ’c, . . .

Types can be queried in Isabelle using:
typ nat
typ bool
typ lam
typ "(’a� ’b)"
typ "’c set"
typ "nat) bool"

Sydney, 11. August 2008 – p. 8/98



Types
Isabelle is typed, has polymorphism and
overloading.

Base types: nat, bool, string, lam, . . .
Type-formers: ’a list, ’a� ’b, ’c set, . . .
Type-variables: ’a, ’b, ’c, . . .

Types can be queried in Isabelle using:
typ nat
typ bool
typ lam
typ "(’a� ’b)"
typ "’c set"
typ "nat) bool"

Sydney, 11. August 2008 – p. 8/98



Terms
The well-formedness of terms can be queried
using:
term c
term "1::nat"
term 1
term "{1, 2, 3::nat}"
term "[1, 2, 3]"
term "Lam [x].(Var x)"
term "App t1 t2"

Isabelle provides some useful colour feedback
term "True" gives "True" :: "bool"
term "true" gives "true" :: "’a"
term "8 x. P x" gives "8 x. P x" :: "bool"
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Formulae
Every formula in Isabelle needs to be of type bool

term "True"
term "True ^ False"
term "{1,2,3} = {3,2,1}"
term "8 x. P x"
term "A�! B"

When working with Isabelle, you are confronted
with an objet logic (HOL) and a meta-logic (Pure)

term "A�! B" ’=’ term "A =) B"
term "8 x. P x" ’=’ term "

V
x. P x"

term "A =) B =) C" = term "[[A; B]] =) C"
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Definition for
the Evaluation Relation,

Contexts and
the CK Machine
on Six Slides
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Evaluation Relation
inductive
eval :: "lam) lam) bool" ("_ + _")

where
e_Lam: "Lam [x].t + Lam [x].t"
j e_App: "[[t1+ Lam [x].t; t2+ v’; t[x::=v’]+ v]] =) App t1 t2 + v"

declare eval.intros[intro]

inductive
val :: "lam) bool"

where
v_Lam[intro]: "val (Lam [x].t)"

The attribute [intro] adds the corresponding
clause to the hint theorem base (later more).
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Theorems
Isabelle’s theorem database can be querried using
thm e_Lam
thm e_App
thm conjI
thm conjunct1

Sydney, 11. August 2008 – p. 13/98

e_Lam: Lam [?x].?t + Lam [?x].?t
e_App: [[?t1 + Lam [?x].?t; ?t2 + ?v’; ?t[?x::=?v’] + ?v]]

=) App ?t1 ?t2 + ?v
conjI: [[?P; ?Q]] =) ?P ^ ?Q

conjunct1: ?P ^ ?Q =) ?P
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Theorems
Isabelle’s theorem database can be querried using
thm e_Lam[no_vars]
thm e_App[no_vars]
thm conjI[no_vars]
thm conjunct1[no_vars]
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attributes

e_Lam: Lam [x].t + Lam [x].t
e_App: [[t1 + Lam [x].t; t2 + v’; t[x::=v’] + v]] =)

App t1 t2 + v
conjI: [[P; Q]] =) P ^ Q

conjunct1: P ^ Q =) P



Generated Theorems
Most definitions result in automatically generated
theorems; for example

thm eval.intros[no_vars]
thm eval.induct[no_vars]
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intr’s: Lam [x].t + Lam [x].t
[[t1 + Lam [x].t; t2 + v’; t[x::=v’] + v]] =) App t1 t2 + v

ind’ct: [[x1 + x2;V
x t. P Lam [x].t Lam [x].t;V
t1 x t t2 v’ v. [[t1 + Lam [x].t; P t1 Lam [x].t; t2 + v’; P

t2 v’; t[x::=v’] + v; P t[x::=v’] v]] =) P (App t1 t2) v;]]
=)P x1 x2
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Theorem / Lemma / Corollary

. . . they are of the form:
theorem theorem_name:
fixes x::"type"
. . .
assumes "assm1"
and "assm2"
. . .
shows "statement"
. . .

Grey parts are optional.
Assumptions and the (goal)statement must be of
type bool. Assumptions can have labels.
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lemma alpha_equ:
shows "Lam [x].Var x = Lam [y].Var y"

. . .

lemma Lam_freshness:
assumes a: "x 6= y"
shows "y # Lam [x].t =) y # t"

. . .

lemma neutral_element:
fixes x::"nat"
shows "x + 0 = x"

. . .



Datatypes
We define contexts with a single hole as the
datatype:

datatype ctx =
Hole ("�")
j CAppL "ctx" "lam"
j CAppR "lam" "ctx"

Isabelle now knows about:
typ ctx
term "�"
term "CAppL"
term "CAppL � (Var x)"

types ctxs = "ctx list" (a type abbreviation)
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CK Machine
A CK machine works on configurations h_,_i
consisting of a lambda-term and a framestack.

inductive
machine :: "lam)ctxs)lam)ctxs)bool" ("h_,_i 7! h_,_i")

where
m1: "hApp e1 e2,Esi 7! he1,(CAppL � e2)#Esi"
j m2: "val v =) hv,(CAppL � e2)#Esi 7! he2,(CAppR v �)#Esi"
j m3: "val v =) hv,(CAppR (Lam [x].e) �)#Esi 7! he[x::=v],Esi"

inductive
machines :: "lam)ctxs)lam)ctxs)bool" ("h_,_i 7!* h_,_i")

where
ms1: "he,Esi 7!* he,Esi"
j ms2: "[[he1,Es1i 7! he2,Es2i; he2,Es2i 7!* he3,Es3i]]

=) he1,Es1i 7!* he3,Es3i"
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Initial state of
the CK machine:

ht,[]i
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An Isar Proof for
Evaluation implying
the CK Machine
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An Isar Proof . . .
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The Isar proof language has been conceived by Markus
Wenzel, the main developer behind Isabelle.
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An Isar Proof . . .
A Rough Schema of an Isar Proof:

have

n1:

"assumption"

by justification

have

n2:

"assumption"

by justification

. . .
have

n:

"statement"

by justification

have

m:

"statement"

by justification

. . .
show "statement"

by justification

qed

each have-statement can be given a label
obviously, everything needs to have a justifiation
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. . .
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qed

each have-statement can be given a label
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Justifications
Omitting proofs
sorry
Assumptions
by fact
Automated proofs
by simp simplification (equations, definitions)
by auto simplification & proof search

(many goals)
by force simplification & proof search

(first goal)
by blast proof search
. . .
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Automatic justifications can also be:
using . . . by . . .

using ih by . . .
using n1 n2 n3 by . . .
using lemma_name. . .by . . .



First Exercise
Lets try to prove a simple lemma. Remember we
defined

Transitive Closure of the CK Machine:

he,Esi 7!* he,Esi
ms1

he1,Es1i 7! he2,Es2i he2,Es2i 7!* he3,Es3i
he1,Es1i 7!* he3,Es3i

ms2

lemma
assumes a: "he1,Es1i 7!* he2,Es2i"
and b: "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a b
proof (induct)
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Proofs by Induction
Proofs by induction involve cases, which are of
the form:

proof (induct)
case (Case-Name x. . . )
have "assumption" by justification
. . .
have "statment" by justification
. . .
show "statment" by justification

next
case (Another-Case-Name y. . . )
. . .
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Your Turn
lemma
assumes a: "he1,Es1i 7!* he2,Es2i"
and b: "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a b
proof (induct)
case (ms1 e1 Es1)
have c: "he1,Es1i 7!* he3,Es3i" by fact
show "he1,Es1i 7!* he3,Es3i" sorry

next
case (ms2 e1 Es1 e2 Es2 e2’ Es2’)
have ih: "he2’,Es2’i 7!* he3,Es3i =) he2,Es2i 7!* he3,Es3i" by fact
have d1: "he2’,Es2’i 7!* he3,Es3i" by fact
have d2: "he1,Es1i 7! he2,Es2i" by fact

have d3: "he2,Es2i 7!* he3,Es3i" using ih d1 by auto

show "he1,Es1i 7!* he3,Es3i" sorry
qed Sydney, 11. August 2008 – p. 25/98
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then have d3: "he2,Es2i 7!* he3,Es3i" using ih by auto
show "he1,Es1i 7!* he3,Es3i" using d2 d3 by auto

qed
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A Chain of Facts
Isar allows you to build a chain of facts as
follows:

have n1: “. . . ”
have n2: “. . . ”

. . .

have ni: “. . . ”
have “. . . ” using n1 n2 . . . ni

have “. . . ”
moreover have “. . . ”

. . .

moreover have “. . . ”
ultimately have “. . . ”

also works for show

Sydney, 11. August 2008 – p. 29/98



Your Turn
lemma
assumes a: "he1,Es1i 7!* he2,Es2i"
and b: "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a b
proof (induct)
case (ms1 e1 Es1)
show "he1,Es1i 7!* he3,Es3i" by fact

next
case (ms2 e1 Es1 e2 Es2 e2’ Es2’)
have ih: "he2’,Es2’i 7!* he3,Es3i =) he2,Es2i 7!* he3,Es3i" by fact
have "he1,Es1i 7! he2,Es2i" by fact
moreover
have "he2’,Es2’i 7!* he3,Es3i" by fact
then have "he2,Es2i 7!* he3,Es3i" using ih by auto
ultimately show "he1,Es1i 7!* he3,Es3i" by auto
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Automatic Proofs
Do not expect Isabelle to be able to solve
automatically show "P=NP", but. . .

lemma
assumes a: "he1,Es1i 7!* he2,Es2i"
and b: "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a b
by (induct) (auto)
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Eval Implies CK
theorem
assumes a: "t + t’"
shows "ht,[]i 7!* ht’,[]i"

using a
proof (induct)
case (e_Lam x t) (no assumption avail.)
show "hLam [x].t,[]i 7!* hLam [x].t,[]i" sorry

next
case (e_App t1 x t t2 v’ v)
have a1: "t1 + Lam [x].t" by fact (all assumptions)
have ih1: "ht1,[]i 7!* hLam [x].t,[]i" by fact
have a2: "t2 + v’" by fact
have ih2: "ht2,[]i 7!* hv’,[]i" by fact
have a3: "t[x::=v’] + v" by fact
have ih3: "ht[x::=v’],[]i 7!* hv,[]i" by fact

show "hApp t1 t2,[]i 7!* hv,[]i" sorry
qed Sydney, 11. August 2008 – p. 32/98
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Proof Idea:
hApp t1 t2,[]i

7!* ht1,[CAppL � t2]i
7!* hLam [x].t,[CAppL � t2]i
7!* ht2,[CAppR (Lam [x].t) �]i
7!* hv’,[CAppR (Lam [x].t) �]i
7!* ht[x::=v’],[]i
7!* hv,[]i

thm machine.intros
thm machines.intros
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Eval Implies CK
theorem
assumes a: "t + t’"
shows "ht,Esi 7!* ht’,Esi"

using a
proof (induct arbitrary: Es)
case (e_Lam x t) (no assumption avail.)
show "hLam [x].t,Esi 7!* hLam [x].t,Esi" sorry

next
case (e_App t1 x t t2 v’ v)
have a1: "t1 + Lam [x].t" by fact (all assumptions)
have ih1: "

V
Es. ht1,Esi 7!* hLam [x].t,Esi" by fact

have a2: "t2 + v’" by fact
have ih2: "

V
Es. ht2,Esi 7!* hv’,Esi" by fact

have a3: "t[x::=v’] + v" by fact
have ih3: "

V
Es. ht[x::=v’],Esi 7!* hv,Esi" by fact

show "hApp t1 t2,Esi 7!* hv,Esi" sorry
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thm machines.intros
thm eval_to_val
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Finally: Eval Implies CK
theorem eval_implies_machines_ctx:
assumes a: "t + t’"
shows "ht,Esi 7!* ht’,Esi"

using a
proof (induct arbitrary: Es)
. . .

corollary eval_implies_machines:
assumes a: "t + t’"
shows "ht,[]i 7!* ht’,[]i"

using a eval_implies_machines_ctx by auto
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thm eval_implies_machines_ctx

gives

?t + ?t’ =) h?t,?Esi 7!* h?t’,?Esi



Weakening Lemma
(trivial / routine)
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Definition of Types
nominal_datatype ty =
tVar "string"
j tArr "ty" "ty" ("_! _")

(x :T ) 2 � valid �
� ` x : T

� ` t1 : T1!T2 � ` t2 : T1

� ` t1 t2 : T2

x # � (x :T1) ::� ` t : T2

� ` �x:t : T1!T2

valid []
x # � valid �
valid (x :T ) ::�
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Typing Judgements
types ty_ctx = "(name�ty) list"

inductive
valid :: "ty_ctx) bool"

where
v1: "valid []"
j v2: "[[valid � ; x#� ]]=) valid ((x,T)#� )"

inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set � ]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1! T2"

Sydney, 11. August 2008 – p. 37/98



Typing Judgements
types ty_ctx = "(name�ty) list"

inductive
valid :: "ty_ctx) bool"

where
v1: "valid []"
j v2: "[[valid � ; x#� ]]=) valid ((x,T)#� )"

inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set � ]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1! T2"
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#: list cons
#: freshness

(n<sharp>)



Freshness
Freshness is a concept automatically defined in
Nominal Isabelle; it corresponds roughly to the
notion of “not-free-in”.

lemma
fixes x::"name"
shows "x#Lam [x].t"
and "x#t1 ^ x#t2 =) x#App t1 t2"
and "x#(Var y) =) x#y"
and "[[x#t1; x#t2]] =) x#(t1,t2)"
and "[[x#l1; x#l2]] =) x#(l1@l2)"
and "x#y =) x6=y"

by (simp_all add: abs_fresh fresh_list_append fresh_atm)
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Freshness
Freshness is a concept automatically defined in
Nominal Isabelle; it corresponds roughly to the
notion of “not-free-in”.

lemma ty_fresh:
fixes x::"name"
and T::"ty"
shows "x#T"

by (induct T rule: ty.induct)
(simp_all add: fresh_string)
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Freshness
Freshness is a concept automatically defined in
Nominal Isabelle; it corresponds roughly to the
notion of “not-free-in”.

lemma ty_fresh:
fixes x::"name"
and T::"ty"
shows "x#T"

by (induct T rule: ty.induct)
(simp_all add: fresh_string)
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nominal_datatype ty =
tVar "string"
j tArr "ty" "ty" ("_! _")



The Weakening Lemma
We can overload� for typing contexts, but this
means we have to give explicit type-annotations.

abbreviation
"sub_ty_ctx" :: "ty_ctx) ty_ctx) bool" ("_� _")

where
"� 1 � � 2 � 8 x. x 2 set � 1 �! x 2 set � 2"

lemma weakening:
fixes � 1 � 2::"(name�ty) list"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
proof (induct arbitrary: � 2)
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Your Turn: Variable Case
lemma
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
proof (induct arbitrary: � 2)
case (t_Var � 1 x T)
have a1: "valid � 1" by fact
have a2: "(x,T) 2 set � 1" by fact
have a3: "valid � 2" by fact
have a4: "� 1 � � 2" by fact
. . .

show "� 2 ` Var x : T" sorry
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My Proof for the Variable Case
lemma
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
proof (induct arbitrary: � 2)
case (t_Var � 1 x T)
have "� 1 � � 2" by fact
moreover
have "valid � 2" by fact
moreover
have "(x,T)2 set � 1" by fact
ultimately show "� 2 ` Var x : T" by auto
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Induction Principle for Typing
The induction principle that comes with the
typing definition is as follows:

8� xT: (x :T ) 2 � ^ valid� ) P � (x) T

8� t1 t2 T1 T2:
P � t1 (T1!T2) ^ P � t2 T1 ) P � (t1 t2) T2

8� x t T1 T2:
x#� ^ P ((x :T1) ::� ) t T2 ) P � (�x:t) (T1!T2)

� ` t : T ) P � t T
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Note the quantifiers!



Proof Idea for the Lambda Cs.
x # � (x :T1) ::� ` t : T2

� ` �x:t : T1!T2

If �1` t :T1 then 8�2: valid�2 ^ �1��2)�2` t :T2

For all �1, x, t, T1 and T2:

We know:
8�3: valid�3 ^ (x :T1) ::�1��3 ) �3 ` t :T1

x # �1

valid�2

�1��2

We have to show:
�2`�x:t :T1!T2
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Proof Idea for the Lambda Cs.
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Your Turn: Lambda Case
lemma
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
proof (induct arbitrary: � 2)
case (t_Lam x � 1 T1 t T2)
have ih: "

V
� 3. [[valid � 3; (x,T1)#� 1 � � 3]] =) � 3 ` t : T2" by fact

have a0: "x#� 1" by fact
have a1: "valid � 2" by fact
have a2: "� 1 � � 2" by fact
. . .

show "� 2 ` Lam [x].t : T1! T2" sorry
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Strong Induction Principle
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Instead we are going to use the strong induction
principle and set up the induction so that the
binder “avoids” �2.



2nd Attempt
lemma
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
proof (induct arbitrary: � 2)
case (t_Lam x � 1 T1 t T2)
have ih: "

V
� 3. [[valid � 3; (x,T1)#� 1 � � 3]] =) � 3 ` t : T2" by fact

have a0: "x#� 1" by fact
have a1: "valid � 2" by fact
have a2: "� 1 � � 2" by fact
. . .

show "� 2 ` Lam [x].t : T1! T2" sorry
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2nd Attempt
lemma
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
proof (nominal_induct avoiding: � 2 rule: typing.strong_induct)
case (t_Lam x � 1 T1 t T2)
have vc: "x#� 2" by fact
have ih: "

V
� 3. [[valid � 3; (x,T1)#� 1 � � 3]] =) � 3 ` t : T2" by fact

have a0: "x#� 1" by fact
have a1: "valid � 2" by fact
have a2: "� 1 � � 2" by fact
. . .

show "� 2 ` Lam [x].t : T1! T2" sorry
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lemma weakening:
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T" and b: "valid � 2" and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
proof (nominal_induct avoiding: � 2 rule: typing.strong_induct)
case (t_Lam x � 1 T1 t T2)
have vc: "x#� 2" by fact
have ih: "[[valid ((x,T1)#� 2); (x,T1)#� 1�(x,T1)#� 2]]

=) (x,T1)#� 2 ` t:T2" by fact
have "� 1 � � 2" by fact
then have "(x,T1)#� 1 � (x,T1)#� 2" by simp
moreover
have "valid � 2" by fact
then have "valid ((x,T1)#� 2)" using vc by auto
ultimately have "(x,T1)#� 2 ` t : T2" using ih by simp
then show "� 2 ` Lam [x].t : T1!T2" using vc by auto

qed (auto)
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lemma weakening:
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T" and b: "valid � 2" and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
by (nominal_induct avoiding: � 2 rule: typing.strong_induct)

(auto)

Perhaps the weakening lemma is after all trivial /
routine / obvious ;o)
We shall late see that the work we put into the
stronger induction principle needs a bit of
thinking. For you, of course, it is provided
automatially.
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Function Definitions
and the Simplifier
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Function Definitions
Later on we will need a few functions about
contexts:

fun
filling :: "ctx) lam) lam" ("_[[_]]")

where
"�[[t]] = t"
j "(CAppL E t’)[[t]] = App (E[[t]]) t’"
j "(CAppR t’ E)[[t]] = App t’ (E[[t]])"

Once a function is defined, the simplifier will be
able to solve equations like
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Function Definitions
Later on we will need a few functions about
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fun
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"�[[t]] = t"
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Function Definitions
Later on we will need a few functions about
contexts:

fun
filling :: "ctx) lam) lam" ("_[[_]]")

where
"�[[t]] = t"
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Function Definitions
Later on we will need a few functions about
contexts:

fun
filling :: "ctx) lam) lam" ("_[[_]]")

where
"�[[t]] = t"
j "(CAppL E t’)[[t]] = App (E[[t]]) t’"
j "(CAppR t’ E)[[t]] = App t’ (E[[t]])"

Once a function is defined, the simplifier will be
able to solve equations like
lemma
shows "(CAppL � (Var x))[[Var y]] = App (Var y) (Var x)"
by simp
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Context Composition
fun
ctx_compose :: "ctx) ctx) ctx" ("_ � _" [101,100] 100)
where
"� � E’ = E’"
j "(CAppL E t’) � E’ = CAppL (E � E’) t’"
j "(CAppR t’ E) � E’ = CAppR t’ (E � E’)"

fun
ctx_composes :: "ctxs) ctx" ("_#" [110] 110)

where
"[]# = �"
j "(E#Es)# = (Es#) � E"

Explicit preedences are given in order to enforce
the notation:

(E1 � E2) � E3 (E1 � E2)#
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Context Composition
fun
ctx_compose :: "ctx) ctx) ctx" ("_ � _" [101,100] 100)
where
"� � E’ = E’"
j "(CAppL E t’) � E’ = CAppL (E � E’) t’"
j "(CAppR t’ E) � E’ = CAppR t’ (E � E’)"

fun
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Your Turn
lemma ctx_compose:
shows "(E1 � E2)[[t]] = E1[[E2[[t]]]]"

proof (induct E1)
case Hole
show "� � E2[[t]] = �[[E2[[t]]]]" sorry

next
case (CAppL E1 t’)
have ih: "(E1 � E2)[[t]] = E1[[E2[[t]]]]" by fact
show "((CAppL E1 t’) � E2)[[t]] = (CAppL E1 t’)[[E2[[t]]]]" sorry

next
case (CAppR t’ E1)
have ih: "(E1 � E2)[[t]] = E1[[E2[[t]]]]" by fact
show "((CAppR t’ E1) � E2)[[t]] = (CAppR t’ E1)[[E2[[t]]]]" sorry

qed
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datatype ctx =
Hole
j CAppL "ctx" "lam"
j CAppR "lam" "ctx"



Your Turn
lemma ctx_compose:
shows "(E1 � E2)[[t]] = E1[[E2[[t]]]]"

proof (induct E1)
case Hole
show "� � E2[[t]] = �[[E2[[t]]]]" sorry

next
case (CAppL E1 t’)
have ih: "(E1 � E2)[[t]] = E1[[E2[[t]]]]" by fact
show "((CAppL E1 t’) � E2)[[t]] = (CAppL E1 t’)[[E2[[t]]]]" sorry

next
case (CAppR t’ E1)
have ih: "(E1 � E2)[[t]] = E1[[E2[[t]]]]" by fact
show "((CAppR t’ E1) � E2)[[t]] = (CAppR t’ E1)[[E2[[t]]]]" sorry

qed

Sydney, 11. August 2008 – p. 54/98

thm filling.simps[no_vars]
thm ctx_compose.simps[no_vars]

datatype ctx =
Hole
j CAppL "ctx" "lam"
j CAppR "lam" "ctx"
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Your Turn Again
Assuming:
lemma neut_hole: shows "E � � = E"
lemma circ_assoc: shows "(E1 � E2) � E3 = E1 � (E2 � E3)"

Prove
lemma shows "(Es1 @ Es2)# = (Es2#) � (Es1#)"
proof (induct Es1)
case Nil
show "([] @ Es2)# = Es2# � []#" sorry

next
case (Cons E Es1)
have ih: "(Es1 @ Es2)# = Es2# � Es1#" by fact

show "((E#Es1) @ Es2)# = Es2# � (E#Es1)#" sorry
qed
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My Solution
lemma
shows "(Es1 @ Es2)# = (Es2#) � (Es1#)"

proof (induct Es1)
case Nil
show "([]@Es2)# = Es2# � []#" using neut_hole by simp

next
case (Cons E Es1)
have ih: "(Es1 @ Es2)# = Es2# � Es1#" by fact
have lhs: "((E#Es1) @ Es2)# = (Es1 @ Es2)# � E" by simp
have lhs’: "(Es1 @ Es2)# � E = (Es2# � Es1#) � E" using ih by simp
have rhs: "Es2# � (E#Es1)# = Es2# � (Es1# � E)" by simp
show "((E#Es1) @ Es2)# = Es2# � (E#Es1)#"
using lhs lhs’ rhs circ_assoc by simp

qed
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Equational Reasoning in Isar
One frequently wants to prove an equation
t1 = tn by means of a chain of equations, like

t1 = t2 = t3 = t4 = : : : = tn

This kind of reasoning is supported in Isar as:

have "t1 = t2" by just.
also have "::: = t3" by just.
also have "::: = t4" by just.
. . .
also have "::: = tn" by just.
finally have "t1 = tn" by simp

Sydney, 11. August 2008 – p. 57/98



Equational Reasoning in Isar
One frequently wants to prove an equation
t1 = tn by means of a chain of equations, like

t1 = t2 = t3 = t4 = : : : = tn

This kind of reasoning is supported in Isar as:

have "t1 = t2" by just.
also have "::: = t3" by just.
also have "::: = t4" by just.
. . .
also have "::: = tn" by just.
finally have "t1 = tn" by simp

Sydney, 11. August 2008 – p. 57/98



A Readable Solution
lemma
shows "(Es1 @ Es2)# = (Es2#) � (Es1#)"

proof (induct Es1)
case Nil
show "([]@Es2)# = Es2# � []#" using neut_hole by simp

next
case (Cons E Es1)
have ih: "(Es1 @ Es2)# = Es2# � Es1#" by fact
have "((E#Es1) @ Es2)# = (Es1 @ Es2)# � E" by simp
also have "::: = (Es2# � Es1#) � E" using ih by simp
also have "::: = Es2# � (Es1# � E)" using circ_assoc by simp
also have "::: = Es2# � (E#Es1)#" by simp
finally show "((E#Es1) @ Es2)# = Es2# � (E#Es1)#" by simp

qed
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Capture-Avoiding
Substitution and the
Substitution Lemma
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Capture-Avoiding Subst.
Lambda.thy contains a definition of capture-
avoiding substitution with the characteristic
equations:

"(Var x)[y::=s] = (if x=y then s else (Var x))"

"(App t1 t2)[y::=s] = App (t1[y::=s]) (t2[y::=s])"

"x#(y,s) =) (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])"

Despite its looks, this is a total function!

Sydney, 11. August 2008 – p. 60/98



Capture-Avoiding Subst.
Lambda.thy contains a definition of capture-
avoiding substitution with the characteristic
equations:

"(Var x)[y::=s] = (if x=y then s else (Var x))"

"(App t1 t2)[y::=s] = App (t1[y::=s]) (t2[y::=s])"

"x#(y,s) =) (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])"

Despite its looks, this is a total function!

Sydney, 11. August 2008 – p. 60/98



Substitution Lemma: If x 6� y and x 62 fv(L), then
M [x := N ][y := L] �M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .
Case 1: M is a variable.
Case 1.1. M � x. Then both sides equal N [y := L] since

x 6� y.
Case 1.2.M � y. Then both sides equal L, for x 62 fv(L)

implies L[x := : : :] � L.
Case 1.3.M � z 6� x; y. Then both sides equal z.

Case 2: M � �z:M1. By the variable convention we may
assume that z 6� x; y and z is not free inN;L.
(�z:M1)[x :=N ][y :=L]� �z:(M1[x :=N ][y :=L])

� �z:(M1[y :=L][x :=N [y :=L]])
� (�z:M1)[y :=L][x :=N [y :=L]].

Case 3: M �M1M2. The statement follows again from
the induction hypothesis. �
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Remember only if y 6= x and x 62 fv(N) then

(�y:M)[x := N ] = �y:(M [x := N ])

(�z:M1)[x := N ][y := L]

� (�z:(M1[x := N ]))[y := L]
1

 

� �z:(M1[x := N ][y := L])
2

 

� �z:(M1[y := L][x := N [y := L]]) IH

� (�z:(M1[y := L]))[x := N [y := L]])
2

! !

� (�z:M1)[y := L][x := N [y := L]]. 1

!
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Case Distintions
Assuming P1 _ P2 _ P3 is true then:

{ assume "P1"
. . .
have "something" . . . }

moreover
{ assume "P2"
. . .
have "something" . . . }

moreover
{ assume "P3"
. . .
have "something" . . . }

ultimately have "something" by blast
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P1 7! (z=x)
P2 7! (z=y) ^ (z6=x)
P3 7! (z6=y) ^ (z6=x)
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{ assume "P1"
. . .
have "something" . . . }
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. . .
have "something" . . . }
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. . .
have "something" . . . }
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P1 =) smth
P2 =) smth
P3 =) smth

smth
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lemma substitution_lemma:
assumes a: "x6=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x6=y" by fact
have a2: "x#L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed
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thm forget:
x # L =) L[x::=P] = L

a

a

lemma substitution_lemma:
assumes a: "x6=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x6=y" by fact
have a2: "x#L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed
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lemma substitution_lemma:
assumes a: "x6=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Lam z M1)
have ih: "[[x6=y; x#L]] =) M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "x#L" by fact
have vc: "z#x" "z#y" "z#N" "z#L" by fact+
then have "z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = :::" sorry

also have "::: = ?RHS" sorry
finally show "?LHS = ?RHS" by simp

qed
next
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a
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Substitution Lemma: If x 6� y and x 62 fv(L), then
M [x := N ][y := L] �M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .
Case 1: M is a variable.
Case 1.1. M � x. Then both sides equal N [y := L] since

x 6� y.
Case 1.2.M � y. Then both sides equal L, for x 62 fv(L)

implies L[x := : : :] � L.
Case 1.3.M � z 6� x; y. Then both sides equal z.

Case 2: M � �z:M1. By the variable convention we may
assume that z 6� x; y and z is not free inN;L.
(�z:M1)[x :=N ][y :=L]� �z:(M1[x :=N ][y :=L])

� �z:(M1[y :=L][x :=N [y :=L]])
� (�z:M1)[y :=L][x :=N [y :=L]].

Case 3: M �M1M2. The statement follows again from
the induction hypothesis. �
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Substitution Lemma
The strong structural induction principle for
lambda-terms allowed us to follow Barendregt’s
proof quite closely. It also enables Isabelle to
find this proof automatically:

lemma substitution_lemma:
assumes asm: "x6=y" "x#L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using asm

by (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
(auto simp add: fresh_fact forget)
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How To Prove
False Using the

Variable Convention
(on Paper)
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So Far So Good
A Faulty Lemma with the Variable Convention?

Variable Convention:
IfM1; : : : ;Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound
variables are chosen to be different from the free variables.

Barendregt in “The Lambda-Calculus: Its Syntax and Semantics”

Inductive Definitions:

prem1 : : : premn
scs

concl

Rule Inductions:
1.) Assume the property for

the premises. Assume
the side-conditions.

2.) Show the property for
the conclusion.
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Faulty Reasoning
Consider the two-place relation foo:

x 7! x t1 t2 7! t1 t2
t 7! t0

�x:t 7! t0

The lemma we going to prove:

Let t 7! t0. If y # t then y # t0.
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If M1; : : : ;Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound vari-
ables are chosen to be different from the free variables.

In our case:

The free variables are y and t0; the bound one is x.

By the variable convention we conclude that x 6= y.
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VC-Compatibility
We introduced two conditions that make the VC
safe to use in rule inductions:

the relation needs to be equivariant, and
the binder is not allowed to occur in the
support of the conclusion (not free in the
conclusion)
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A relation R is equivariant iff

8� t1 : : : tn
R t1 : : : tn ) R(��t1) : : : (��tn)

This means the relation has to be invariant under
permutative renaming of variables.
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Typing Judgements (2)
inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set � ]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1! T2"

equivariance typing
nominal_inductive typing

by (simp_all add: abs_fresh ty_fresh)
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CK Machine Implies
the Evaluation Relation

(Via A Small-Step
Reduction)
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A Direct Attempt
The statement for the other direction is as
follows:

lemma machines_implies_eval:
assumes a: "ht,[]i 7!* hv,[]i"
and b: "val v"
shows "t + v"

We can prove this direction by introducing a
small-step reduction relation.
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shows "t + v"
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small-step reduction relation.
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CBV-Reduction
inductive
cbv :: "lam)lam)bool" ("_�!cbv _")

where
cbv1: "val v =) App (Lam [x].t) v�!cbv t[x::=v]"
j cbv2: "t�!cbv t’ =) App t t2 �!cbv App t’ t2"
j cbv3: "t�!cbv t’ =) App t2 t�!cbv App t2 t’"

Later on we like to use the strong induction
principle for this relation.
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Conditions:
1.
V
v x t. val v =) x # App Lam [x].t v

2.
V
v x t. val v =) x # t[x::=v]



CBV-Reduction
inductive
cbv :: "lam)lam)bool" ("_�!cbv _")

where
cbv1: "[[val v; x#v]] =) App (Lam [x].t) v�!cbv t[x::=v]"
j cbv2[intro]: "t�!cbv t’ =) App t t2 �!cbv App t’ t2"
j cbv3[intro]: "t�!cbv t’ =) App t2 t�!cbv App t2 t’"

The conditions that give us automatically the
strong induction principle require us to add the
assumption x # v. This makes this rule less
useful.
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Better Introduction Rule
lemma better_cbv1[intro]:
assumes a: "val v"
shows "App (Lam [x].t) v�!cbv t[x::=v]"

proof -
obtain y::"name" where fs: "y#(x,t,v)"

by (rule exists_fresh) (auto simp add: fs_name1)
have "App (Lam [x].t) v = App (Lam [y].([(y,x)]�t)) v" using fs

by (auto simp add: lam.inject alpha’ fresh_prod fresh_atm)
also have ":::�!cbv ([(y,x)]�t)[y::=v]" using fs a

by (auto simp add: cbv1 fresh_prod)
also have "::: = t[x::=v]" using fs

by (simp add: subst_rename[symmetric] fresh_prod)
finally show "App (Lam [x].t) v�!cbv t[x::=v]" by simp

qed
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CBV-Reduction?
inductive
"cbvs" :: "lam) lam) bool" (" _�!cbv* _")

where
cbvs1[intro]: "e�!cbv* e"
j cbvs2[intro]: "[[e1�!cbv e2; e2 �!cbv* e3]] =) e1 �!cbv* e3"

lemma cbvs3[intro]:
assumes a: "e1 �!cbv* e2" "e2 �!cbv* e3"
shows "e1 �!cbv* e3"

using a by (induct) (auto)

lemma cbv_in_ctx:
assumes a: "t�!cbv t’"
shows "E[[t]] �!cbv E[[t’]]"

using a by (induct E) (auto)
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Is another such
exercise needed?



CK Machine Implies CBV?

lemma machine_implies_cbvs_ctx:
assumes a: "he,Esi 7! he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a by (induct) (auto simp add: ctx_compose intro: cbv_in_ctx)

lemma machines_implies_cbvs_ctx:
assumes a: "he,Esi 7!* he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a by (induct) (auto dest: machine_implies_cbvs_ctx)

lemma machines_implies_cbvs:
assumes a: "he,[]i 7!* he’,[]i"
shows "e�!cbv* e’"

using a by (auto dest: machines_implies_cbvs_ctx)
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If we had not derived the better
cbv-rule, then we would have to do an
explicit renaming here.
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Your Turn
lemma machine_implies_cbvs_ctx:
assumes a: "he,Esi 7! he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a proof (induct)
case (m1 t1 t2 Es)

show "Es#[[App t1 t2]] �!cbv* (CAppL � t2#Es)#[[t1]]" sorry
next
case (m2 v t2 Es)
have "val v" by fact

show "(CAppL � t2#Es)#[[v]] �!cbv* (CAppR v �#Es)#[[t2]]" sorry
next
case (m3 v x t Es)
have "val v" by fact

show "(CAppR Lam [x].t �#Es)#[[v]] �!cbv* (Es#)[[t[x::=v]]]" sorry
qed
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CBV? Implies Evaluation
We need the following auxiliary lemmas in order
to show that cbv-reduction implies evaluation.

lemma eval_val:
assumes a: "val t"
shows "t + t"

using a by (induct) (auto)

lemma e_App_elim:
assumes a: "App t1 t2 + v"
shows "9 x t v’. t1 + Lam [x].t ^ t2 + v’ ^ t[x::=v’] + v"

using a by (cases) (auto simp add: lam.inject)
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lemma cbv_eval:
assumes a: "t1 �!cbv t2" "t2 + t3"
shows "t1 + t3"

using a proof(induct arbitrary: t3)
case (cbv1 v x t t3)
have a1: "val v" by fact
have a2: "t[x::=v] + t3" by fact
show "App Lam [x].t v + t3" sorry

next
case (cbv2 t t’ t2 t3)
have ih: "

V
t3. t’ + t3 =) t + t3" by fact

have "App t’ t2 + t3" by fact
then obtain x t’’ v’
where a1: "t’ + Lam [x].t’’"

and a2: "t2 + v’"
and a3: "t’’[x::=v’] + t3" using e_App_elim by blast

have "t + Lam [x].t’’" using ih a1 by auto
then show "App t t2 + t3" using a2 a3 by auto

qed (auto dest!: e_App_elim)
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Nothing Interesting
lemma cbvs_eval:
assumes a: "t1 �!cbv* t2" "t2 + t3"
shows "t1 + t3"

using a by (induct) (auto intro: cbv_eval)

lemma cbvs_implies_eval:
assumes a: "t�!cbv* v" "val v"
shows "t + v"

using a by (induct) (auto intro: eval_val cbvs_eval)

theorem machines_implies_eval:
assumes a: "ht1,[]i 7!* ht2,[]i" and b: "val t2"
shows "t1 + t2"

proof -
have "t1 �!cbv* t2" using a by (simp add: machines_implies_cbvs)
then show "t1 + t2" using b by (simp add: cbvs_implies_eval)

qed
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Extensions
With only minimal modifications the proofs can be
extended to the language given by:

nominal_datatype lam =
Var "name"
j App "lam" "lam"
j Lam "«name»lam" ("Lam [_]._")
j Num "nat"
j Minus "lam" "lam" ("_ -- _")
j Plus "lam" "lam" ("_ ++ _")
j TRUE
j FALSE
j IF "lam" "lam" "lam"
j Fix "«name»lam" ("Fix [_]._")
j Zet "lam"
j Eqi "lam" "lam"
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Honest Toil, No Theft!
The sacred principle of HOL:

“The method of ‘postulating’ what we want has
many advantages; they are the same as the
advantages of theft over honest toil.”

B. Russell, Introduction of Mathematical Philosophy

I will show next that the weak structural
induction principle implies the strong structural
induction principle.

(I am only going to show the lambda-case.)
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Permutations
A permutation acts on variable names as follows:

[]�a
def
= a

((a1 a2) ::�)�a
def
=

8><
>:

a1 if ��a = a2

a2 if ��a = a1

��a otherwise

[] stands for the empty list (the identity
permutation), and

(a1 a2) ::� stands for the permutation �
followed by the swapping (a1 a2).
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Permutations on Lambda-Terms
Permutations act on lambda-terms as follows:

��x
def
= “action on variables”

�� (t1 t2)
def
= (��t1) (��t2)

��(�x:t)
def
= �(��x):(��t)

Alpha-equivalence can be defined as:

t1 = t2
�x:t1 = �x:t2

x 6= y t1 = (x y)�t2 x # t2
�x:t1 = �y:t2
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Notice, I wrote equality here!



My Claim
8x: P x

8t1 t2: P t1 ^ P t2 ) P (t1 t2)

8x t: P t) P (�x:t)

P t

implies

8x c: Pc x

8t1 t2 c: (8d: Pd t1) ^ (8d: Pd t2) ) Pc (t1 t2)

8x t c: x # c ^ (8d: Pd t) ) Pc (�x:t)

Pc t
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Proof for the Strong Induction Principle
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We prove Pc t by induction on t.

I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t) ) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2
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This Proof in Isabelle
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lemma lam_strong_induct:
fixes c::"’a::fs_name"
assumes h1: "

V
x c. P c (Var x)"

and h2: "
V
t1 t2 c. [[8 d. P d t1; 8 d. P d t2]] =) P c (App t1 t2)"

and h3: "
V
x t c. [[x#c; 8 d. P d t]] =) P c (Lam [x].t)"

shows "P c t"
proof -

have "8 (�::name prm) c. P c (��t)" : : :
interesting bit

then have "P c (([]::name prm)�t)" by blast
then show "P c t" by simp

qed



Interesting Bit
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h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :
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Some Examples
x # � (x, T1)::� ` t : T2
� ` Lam [x].t : T1! T2

t 7! t’
Lam [x].t 7! t’

� `� A1 : Type (x, A1)::� `� M2 : A2 x # (� , A1)
� `� Lam [x:A1].M2 : �[x:A1].A2

(x, � 1)::� `� App M (Var x), App N (Var x) : � 2
x # (�, M, N)

� `� M, N : � 1! � 2
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Formalisation of LF
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nominal_datatype
kind = Type

j KPi "ty" "«name»kind"
and ty = TConst "id"

j TApp "ty" "trm"
j TPi "ty" "«name»ty"

and trm = Const "id"
j Var "name"
j App "trm" "trm"
j Lam "ty" "«name»trm"

abbreviation KPi_syn :: "name) ty) kind) kind" ("�[_:_]._")
where "�[x:A].K� KPi A x K"

abbreviation TPi_syn :: "name) ty) ty) ty" ("�[_:_]._")
where "�[x:A1].A2 � TPi A1 x A2"

abbreviation Lam_syn :: "name) ty) trm) trm" ("Lam [_:_]._")
where "Lam [x:A].M� Lam A x M"



Formalisation of LF
(joint work with Cheney and Berghofer)

1. Solution Proofdef
= Alg.

1st Solution Proofdef
=

+ex Alg.

2nd Solution Proofdef
= Alg.-ex

3rd Solution Proofdef
= Alg.
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In My PhD
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nominal_datatype trm =
Ax "name" "coname"
j Cut "«coname»trm" "«name»trm" ("Cut h_i._ (_)._")
j NotR "«name»trm" "coname" ("NotR (_)._ _")
j NotL "«coname»trm" "name" ("NotL h_i._ _")
j AndR "«coname»trm" "«coname»trm" "coname" ("AndR h_i._ h_i._ _")
j AndL1 "«name»trm" "name" ("AndL1 (_)._ _")
j AndL2 "«name»trm" "name" ("AndL2 (_)._ _")
j OrR1 "«coname»trm" "coname" ("OrR1 h_i._ _")
j OrR2 "«coname»trm" "coname" ("OrR2 h_i._ _")
j OrL "«name»trm" "«name»trm" "name" ("OrL (_)._ (_)._ _")
j ImpR "«name»(«coname»trm)" "coname" ("ImpR (_).h_i._ _")
j ImpL "«coname»trm" "«name»trm" "name" ("ImpL h_i._ (_)._ _")

A SN-result for cut-elimination in CL: reviewed by Henk
Barendregt and Andy Pitts, and reviewers of conference and
journal paper. Still, I found errors in central lemmas;
fortunately the main claim was correct :o)



Two Health Warnings ;o)
Theorem provers should come with two health
warnings:

Theorem provers are addictive!
(Xavier Leroy: “Building [proof] scripts is surprisingly
addictive, in a videogame kind of way...”)

Theorem provers cause you to lose faith in your
proofs done by hand!
(Michael Norrish, Mike Gordon, me, very possibly others)
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Conclusions
The Nominal Isabelle automatically derives the
strong structural induction principle for all
nominal datatypes (not just the lambda-calculus);
also for rule inductions (though they have to
satisfy a vc-condition).
They are easy to use: you just have to think
carefully what the variable convention should be.
We can explore the dark corners of the variable
convention: when and where it can actually be
used.

Main Point: Actually these proofs using the
variable convention are all trivial / obvious /
routine. . . provided you use Nominal Isabelle. ;o)
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Thank you very much!
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