Welcome!

- Files and Programme at: http://isabelle.in.tum.de/nominal/ijcar-09.html
- Have you already installed Nominal Isabelle?
- Can you step through Minimal.thy without getting an error message?

If yes, then very good.
If not, then please ask us now!

Nominal Isabelle

Stefan Berghofer and Christian Urban TU Munich

Quick overview: a formalisation of a CK machine:

A Quick and Dirty Overview of Nominal Isabelle

- Nominal Isabelle is a definitional extension of Isabelle/HOL (i.e. no additional axioms, only HOL),

A Quick and Dirty Overview of Nominal Isabelle

- Nominal Isabelle is a definitional extension of Isabelle/HOL (i.e. no additional axioms, only HOL),
- provides an infrastructure for reasoning about named binders,

A Quick and Dirty Overview of Nominal Isabelle

- Nominal Isabelle is a definitional extension of Isabelle/HOL (i.e. no additional axioms, only HOL),
- provides an infrastructure for reasoning about named binders,
- for example lets you define

```
nominal_datatype lam =
        Var "name"
        | App "lam" "lam"
| Lam "<name»lam" ("Lam [_]._")
```

- which give you named α-equivalence classes:

```
Lam [x].(Var x) = Lam [y].(Var y)
```

A Quick and Dirty Overview of Nominal Isabelle

- Nomi That means Nominal Isabelle is aimed at Isab، helping you with formalising results from: HOL)
- provi - programming language theory name - term-rewriting
- for e
- logic

- which give you named α-equivalence classes:
$\operatorname{Lam}[x] .(\operatorname{Var} x)=\operatorname{Lam}[y] .(\operatorname{Var} y)$

A Quick and Dirty Overview of Nominal Isabelle

- Nomi That means Nominal Isabelle is aimed at Isab، helping you with formalising results from: HOL)
- provi - programming language theory name - term-rewriting
- for e
- logic
nol
- ...
| ... not just the lambda-calculus!

- which give you named α-equivalence classes:

$$
\operatorname{Lam}[x] \cdot(\operatorname{Var} x)=\operatorname{Lam}[y] \cdot(\operatorname{Var} y)
$$

A Six-Slides
 Crash-Course on How to Use Isabelle

Proof General

Important buttons:

- Next and Undo advance / retract the processed part
- Goto jumps to the current cursor position, same as ctrl-c/ctrl-return

Feedback:

- warning messages are given in yellow
- error messages in red

X-Symbols

- ... provide a nice way to input non-ascii characters; for example:

$$
\forall, \exists, \Downarrow, \#, \wedge, \Gamma, \times, \neq, \in, \ldots
$$

- they need to be input via the combination \<name-of-x-symbol>

X-Symbols

- ...provide a nice way to input non-ascii characters; for example:

$$
\forall, \exists, \Downarrow, \#, \wedge, \Gamma, \times, \neq, \in, \ldots
$$

- they need to be input via the combination \<name-of-x-symbol>
- short-cuts for often used symbols

$$
\begin{array}{lllllllll}
{[} & \ldots & \llbracket \\
\mid] & \ldots & \rrbracket & => & \ldots & \Longrightarrow & \ldots & \Rightarrow & \backslash \\
& \ldots & \wedge \\
& \ldots & \vee
\end{array}
$$

Isabelle Proof-Scripts

- Every proof-script (theory) is of the form
theory Name imports $\mathrm{T}_{1} \ldots \mathrm{~T}_{n}$ begin
end

Isabelle Proof-Scripts

- Every proof-script (theory) is of the form

```
theory Name
    imports T1...T Tn
begin
end
```

- For Nominal Isabelle proof-scripts, T_{1} will normally be the theory Nominal.
- We use here the theory Lambda.thy, which contains the definition for lambda-terms and for capture-avoiding substitution.

Types

- Isabelle is typed, has polymorphism and overloading.
- Base types: nat, bool, string, lam, ...
- Type-formers: 'a list, 'a × 'b, 'c set, ...
- Type-variables: 'a, 'b, 'c, ...
- Isabelle is typed, has polymorphism and overloading.
- Base types: nat, bool, string, lam, ...
- Type-formers: 'a list, 'a \times 'b,'c set, ...
- Type-variables: 'a, 'b, 'c, ...
- Types can be queried in Isabelle using:
typ nat
typ bool
typ lam
typ "('a \times 'b)"
typ "'c set"
typ "nat \Rightarrow bool"

Terms

- The well-formedness of terms can be queried using:
term c
term "1::nat"
term 1
term "\{1, 2, 3::nat\}"
term "[1, 2, 3]"
term "Lam [x]. (Var x)"
term "App $\dagger_{1} \dagger_{2}$ "
- The well-formedness of terms can be queried using:
term c
term "1::nat"
term 1
term "\{1, 2, 3::nat\}"
term "[1, 2, 3]"
term "Lam $[x]$. (Var x)"
term "App $\dagger_{1} \dagger_{2}$ "
- Isabelle provides some useful colour feedback
term "True" gives "True" :: "bool"
term "true" gives "true" :: "a"
term " $\forall x . P \times$ " gives " $\forall x . P \times$ " :: "bool"

Formulae

- Every formula in Isabelle needs to be of type bool term "True"
term "True \wedge False"
term " $\{1,2,3\}=\{3,2,1\}$ "
term " $\forall x . P \times$ "
term " $A \longrightarrow B$ "

Formulae

- Every formula in Isabelle needs to be of type bool term "True"
term "True \wedge False"
term " $\{1,2,3\}=\{3,2,1\}$ "
term " $\forall x . P \times$ "
term " $A \longrightarrow B$ "
- When working with Isabelle, you are confronted with an objet logic (HOL) and a meta-logic (Pure)

$$
\begin{aligned}
& \text { term " } A \longrightarrow B \text { " ' }=\text { ' term " } A \Longrightarrow B^{\prime \prime} \\
& \text { term " } \forall x . P \times \text { " ' }=\text { ' term " } \wedge \times \text {. P x" }
\end{aligned}
$$

Formulae

- Every formula in Isabelle needs to be of type bool term "True"
term "True \wedge False"
term " $\{1,2,3\}=\{3,2,1\}$ "
term " $\forall x . P \times$ "
term " $A \longrightarrow B$ "
- When working with Isabelle, you are confronted with an objet logic (HOL) and a meta-logic (Pure)

$$
\begin{array}{rl}
\operatorname{term} " A & B \text { " } \\
\text { term " } \forall \times \text { ' } P \times \text { " } & \text { term " } A \Longrightarrow B " \\
\text { term " } \wedge \times . P \times "
\end{array}
$$

term " $A \Longrightarrow B \Longrightarrow C "=\operatorname{term} " \llbracket A ; B \rrbracket \Longrightarrow C "$

Definition for

the Evaluation Relation, Contexts and the CK Machine on Six Slides

Evaluation Relation

inductive

$$
\text { eval :: "lam } \Rightarrow \text { lam } \Rightarrow \text { bool" } \quad \text { ("_ } \Downarrow \text { _") }
$$

where
e_Lam: "Lam [x].t $\Downarrow \operatorname{Lam}[x] . t "$
| e_App: " $\llbracket \dagger_{1} \Downarrow \operatorname{Lam}[x] . \dagger^{\prime} \dagger_{2} \Downarrow v^{\prime} ; \dagger\left[x::=v^{\prime}\right] \Downarrow v \rrbracket \Longrightarrow A p p \dagger_{1} \dagger_{2} \Downarrow v "$

a name

indultive

$$
\text { eval :: "lam } \Rightarrow \text { lam } \Rightarrow \text { bool" ("_ } \downarrow \text { _") }
$$

where
e_Lam: "Lam [x].t $\Downarrow \operatorname{Lam}[x] . t "$
| e_App: " $\llbracket \dagger_{1} \Downarrow \operatorname{Lam}[x] . \dagger^{\prime} \dagger_{2} \Downarrow v^{\prime} ; \dagger\left[x::=v^{\prime}\right] \Downarrow v \rrbracket \Longrightarrow A p p \dagger_{1} \dagger_{2} \Downarrow v "$

Eyoluation Relation a type

inductive

$$
\text { eval :: "lam } \Rightarrow \text { lam } \Rightarrow \text { bool" ("_ } \downarrow \text { _") }
$$

where
e_Lam: "Lam [x].t $\Downarrow \operatorname{Lam}[x] . t "$
| e_App: " $\llbracket \dagger_{1} \Downarrow \operatorname{Lam}[x] . \dagger^{\prime} \dagger_{2} \Downarrow v^{\prime} ; \dagger\left[x::=v^{\prime}\right] \Downarrow v \rrbracket \Longrightarrow A p p \dagger_{1} \dagger_{2} \Downarrow v "$

Evalue $=$ =atation pretty syntax

inductive

$$
\text { eval :: "lam } \Rightarrow \text { lam } \Rightarrow \text { bool" ("_ } \downarrow \text { _") }
$$

where
e_Lam: "Lam [x].t $\Downarrow \operatorname{Lam}[x] . t "$
| e_App: " $\llbracket \dagger_{1} \Downarrow \operatorname{Lam}[x] . \dagger^{2} \dagger_{2} \Downarrow v^{\prime} ; \dagger\left[x::=v^{\prime}\right] \Downarrow v \rrbracket \Longrightarrow A p p \dagger_{1} \dagger_{2} \Downarrow v^{\prime}$

Evaluation Relation

inductive

$$
\text { eval :: "lam } \Rightarrow \text { lam } \Rightarrow \text { bool" } \quad\left(" _\Downarrow _\right. \text {") }
$$

where
e_Lam: "Lam [x].t $\Downarrow \operatorname{Lam}[x] . t "$ a clause
| e_App: " $\llbracket \dagger_{1} \Downarrow \operatorname{Lam}[x] . \dagger^{\prime} ; \dagger_{2} \Downarrow v^{\prime} ; \dagger\left[x::=v^{\prime}\right] \Downarrow v \rrbracket \Longrightarrow A p p \dagger_{1} \dagger_{2} \Downarrow v^{\prime}$

another clause

Evaluation Relation

inductive

$$
\text { eval :: "lam } \Rightarrow \text { lam } \Rightarrow \text { bool" ("_ } \downarrow \text { _") }
$$

where
e_Lam: "Lam [x].t $\Downarrow \operatorname{Lam}[x] . t "$
| e_App: " $\llbracket \dagger_{1} \Downarrow \operatorname{Lam}[x] . \dagger^{\prime} \dagger_{2} \Downarrow v^{\prime} ; \dagger\left[x::=v^{\prime}\right] \Downarrow v \rrbracket \Longrightarrow A p p \dagger_{1} \dagger_{2} \Downarrow v "$

Lam $[x] . \dagger \Downarrow \operatorname{Lam}[x] . \dagger$
$\dagger_{1} \Downarrow \operatorname{Lam}[x] . \dagger \quad \dagger_{2} \Downarrow v^{\prime} \quad \dagger\left[x::=v^{\prime}\right] \Downarrow v$
App $\dagger_{1} \dagger_{2} \Downarrow v$

Evaluation Relation

inductive

$$
\text { eval :: "lam } \Rightarrow \text { lam } \Rightarrow \text { bool" ("_ } \downarrow \text { _") }
$$

where
e_Lam: "Lam [x].t $\Downarrow \operatorname{Lam}[x] . t "$
| e_App: " $\llbracket \dagger_{1} \Downarrow \operatorname{Lam}[x] . \dagger^{\prime} \dagger_{2} \Downarrow v^{\prime} ; \dagger\left[x::=v^{\prime}\right] \Downarrow v \rrbracket \Longrightarrow A p p \dagger_{1} \dagger_{2} \Downarrow v^{\prime}$
optionally
a name

Evaluation Relation

inductive

$$
\text { eval :: "lam } \Rightarrow \text { lam } \Rightarrow \text { bool" ("_ } \downarrow \text { _") }
$$

where
e_Lam: "Lam [x].t $\Downarrow \operatorname{Lam}[x] . t "$
| e_App: " $\llbracket \dagger_{1} \Downarrow \operatorname{Lam}[x] . \dagger^{\prime} \dagger_{2} \Downarrow v^{\prime} ; \dagger\left[x::=v^{\prime}\right] \Downarrow v \rrbracket \Longrightarrow A p p \dagger_{1} \dagger_{2} \Downarrow v "$
inductive

$$
\text { val :: "lam } \Rightarrow \text { bool" }
$$

where
v_Lam[intro]: "val (Lam [x].t)"

Evaluation Relation

inductive

$$
\text { eval :: "lam } \Rightarrow \text { lam } \Rightarrow \text { bool" ("_ } \downarrow \text { _") }
$$

where
e_Lam: "Lam [x].t $\Downarrow \operatorname{Lam}[x] . t "$
| e_App: " $\llbracket \dagger_{1} \Downarrow \operatorname{Lam}[x] . \dagger^{\prime} ; \dagger_{2} \Downarrow v^{\prime} ; \dagger\left[x::=v^{\prime}\right] \Downarrow v \rrbracket \Longrightarrow A p p \dagger_{1} \dagger_{2} \Downarrow v "$
inductive

$$
\text { val :: "lam } \Rightarrow \text { bool" }
$$

where
v_Lam[intro]: "val (Lam [x].t)"

- The attribute [intro] adds the corresponding clause to the hint theorem base (later more).

Evaluation Relation

inductive

$$
\text { eval :: "lam } \Rightarrow \text { lam } \Rightarrow \text { bool" ("_ } \downarrow \text { _") }
$$

where

$$
\begin{aligned}
& \text { e_Lam: "Lam }[x] . \dagger \Downarrow \operatorname{Lam}[x] . \dagger^{\prime} \\
& \mid e_{-} A p p: " \llbracket t_{1} \Downarrow \operatorname{Lam}[x] .+; \dagger_{2} \Downarrow v^{\prime} ;+\left[x::=v^{\prime}\right] \Downarrow v \rrbracket \Longrightarrow A p p \dagger_{1} \dagger_{2} \Downarrow v "
\end{aligned}
$$

declare eval.intros[intro]
inductive

$$
\text { val :: "lam } \Rightarrow \text { bool" }
$$

where
v_Lam[intro]: "val (Lam [x].t)"

- The attribute [intro] adds the corresponding clause to the hint theorem base (later more).

Theorems

- Isabelle's theorem database can be querried using
thm e_Lam
thm e_App
thm conjI
thm conjunct1

Theorems

- Isabelle's theorem database can be querried using thm e_Lam
thm e_App
thm conjI
thm conjunct1

$$
\begin{aligned}
& \text { e_Lam: Lam }[? \times] \text {]? }+\Downarrow \operatorname{Lam}[? \times] \text { ?? } \dagger \\
& \text { e_App: [? } \left.\dagger_{1} \Downarrow \operatorname{Lam}[? x] \text { ? ? }+: ? \dagger_{2} \Downarrow ? v^{\prime} ; ?+\left[? x::=? v^{\prime}\right] \Downarrow ? v\right] \\
& \Longrightarrow A p p ? \dagger_{1} ? \dagger_{2} \Downarrow ? v \\
& \text { conjI: } \quad[? P ; ? Q] \Longrightarrow ? P \wedge ? Q \\
& \text { conjunct1: ?P } \wedge ? Q \Longrightarrow \text { ?P }
\end{aligned}
$$

Theorems

- Isabelle's theorem database can be querried using

thm e_Lam
thm e_App
thm conjI
thm conjunct1

schematic variables

$$
\begin{aligned}
\text { e_Lam: } & \text { Lam }[? x] . ?+\Downarrow \operatorname{Lam}[? x] \cdot ?+ \\
\text { e_App: } & {\left[?+_{1} \Downarrow \operatorname{Lam}[? x] ?++_{i} ? t_{2} \Downarrow ? v^{\prime} ; ?+\left[? x::=? v^{\prime}\right] \Downarrow ? v\right] } \\
& \xlongequal{\Longrightarrow} \text { App ? }+_{1} ?+_{2} \Downarrow ? v \\
\text { conjI: } & {[? P ; ? Q] \Longrightarrow ? P \wedge ? Q } \\
\text { conjunct1: } & ? P \wedge ? Q \Longrightarrow ? P
\end{aligned}
$$

Theorems

- Isabelle's theorem database can be querried using thm e_Lam[no_vars]
thm e_App[no_vars]
thm conjI[no_vars] thm conjunct1[no_vars]

attributes

$$
\begin{aligned}
\text { e_Lam: } & \operatorname{Lam}[x] . t \Downarrow \operatorname{Lam}[x] . t \\
\text { e_App: } & {\left[t_{1} \Downarrow \operatorname{Lam}[x] .+t_{2} \Downarrow v^{\prime} ;+\left[x::=v^{\prime}\right] \Downarrow v\right] \Longrightarrow } \\
& A p p t_{1} t_{2} \Downarrow v \\
\text { conjI: } & \llbracket P ; Q] \Longrightarrow P \wedge Q \\
\text { conjunct1: } & P \wedge Q \Longrightarrow P>P
\end{aligned}
$$

Generated Theorems

- Most definitions result in automatically generated theorems; for example
thm eval.intros[no_vars]
thm eval.induct[no_vars]

Generated Theorems

- Most definitions result in automatically generated theorems; for example
thm eval.intros[no_vars] thm eval.induct[no_vars]
intr's: Lam [x].t $\Downarrow \operatorname{Lam}[x] . \dagger$

$$
\llbracket \dagger_{1} \Downarrow \operatorname{Lam}[x] . \mathrm{t}_{;} \dagger_{2} \Downarrow \mathrm{v}^{\prime} ; \dagger\left[\mathrm{x}:::=\mathrm{v}^{\prime}\right] \Downarrow v \rrbracket \Longrightarrow A p p \dagger_{1} \dagger_{2} \Downarrow v
$$

ind'ct: $\llbracket x_{1} \Downarrow x_{2}$;

$$
\begin{aligned}
& \bigwedge x+. P \operatorname{Lam}[x] . t \operatorname{Lam}[x] . t ; \\
& \bigwedge t_{1} x+\dagger_{2} v^{\prime} v . \llbracket t_{1} \Downarrow \operatorname{Lam}[x] . t ; P t_{1} \operatorname{Lam}[x] . t_{;} t_{2} \Downarrow v^{\prime} ; P \\
& \left.t_{2} v^{\prime} ;+\left[x::=v^{\prime}\right] \Downarrow v: P+\left[x::=v^{\prime}\right] v\right] \Longrightarrow P\left(A p p t_{1} t_{2}\right) v: \rrbracket \\
& \Longrightarrow P x_{1} x_{2}
\end{aligned}
$$

Theorem / Lemma / Corollary

- ... they are of the form:

theorem theorem_name:

 fixes x::"type" assumes "assm1" and "assm2"shows "statement"

- Grey parts are optional.
- Assumptions and the (goal)statement must be of type bool. Assumptions can have labels.

Theorem / Lemma / Corollary

- ... they are of the form:

```
lemma alpha_equ: shows "Lam [x].Var \(x=\operatorname{Lam}[y] . V a r y "\)
```

lemma Lam_freshness:

```
assumes a: "x\not= y"
shows "y # Lam [x].t \Longrightarrow y # †"
```

lemma neutral_element:

- Grey parts fixes x::"nat"
- Assumptiol shows " $x+0=x$ " type bool.

Datatypes

- We define contexts with a single hole as the datatype:
datatype ctx = Hole (" \square ")
| CAppL "ctx" "lam"
| CAppR "Iam" "ctx"

Datatypes

- We define contoutc with a single hole as the datatype:
datatype ctx =
Hole (" \square ")
| CAppL "ctx" "lam"
| CAppR "Iam" "ctx"

Datatypes

- We define contexts with a single hole as the datatype:
datatype ctx =
$\begin{array}{ll}\text { constr's Hole (" } \square \text { ") } \\ \text { constr's } & \text { CAppL "ctx" "lam" } \\ \text { constr's } & \text { CAppR "lam" "ctx" }\end{array}$

Datatypes

- We define contexts with a single hole as the datatype:

```
datatype ctx =
    Hole ("\square")
    | CAppL "ctx" "lam"
    | CAppR "Iam" "ctx"
    arg type arg type
```


Datatypes

- We define contexts with a single hole as the datatype:
datatype ctx = Hole (" \square ") - pretty syntax
| CAppL "ctx" "lam"
| CAppR "Iam" "ctx"
- We define contexts with a single hole as the datatype:

datatype ctx = Hole (" \square ")
| CAppL "ctx" "lam"
| CAppR "Iam" "ctx"

- Isabelle now knows about:
typ ctx
term " \square "
term "CAppL"
term "CAppL $\square(\operatorname{Var} x)$ "
- We define contexts with a single hole as the datatype:

datatype ctx =
Hole (" \square ")
| CAppL "ctx" "lam"
| CAppR "Iam" "ctx"

- Isabelle now knows about:
typ ctx
term "口"
term "CAppL"
term "CAppL $\square(\operatorname{Var} x)$ "
types ctxs = "ctx list"
(a type abbreviation)

CK Machine

- A CK machine works on configurations 〈_,_〉 consisting of a lambda-term and a framestack.

inductive

machine :: "lam $\Rightarrow c \dagger \times s \Rightarrow \mid a m \Rightarrow c \dagger \times s \Rightarrow$ bool"
 where

```
m
m
m3: "val v \Longrightarrow <v,(CAppR (Lam [x].e) \square)#Es\rangle\mapsto\langlee[x::=v],Es\rangle"
```


CK Machine

- A CK machine works on configurations 〈_,_〉 consisting of a lambda-term and a framestack.

inductive

machine :: "lam $\Rightarrow c t \times s \Rightarrow \mid a m \Rightarrow c \dagger \times s \Rightarrow$ bool"
 where

$$
\begin{aligned}
& m_{1}: "\left\langle A p p e_{1} e_{2}, E s\right\rangle \mapsto\left\langle e_{1},\left(C A p p L \square e_{2}\right) \# E s\right\rangle " \\
& m_{2}: " v a l v \Longrightarrow\left\langle v,\left(C A p p L \square e_{2}\right) \# E s\right\rangle \mapsto\left\langle e_{2},(C A p p R v \square) \# E s\right\rangle " \\
& m_{3}: " v a l v \Longrightarrow\langle v,(C A p p R(L a m[x] . e) \square) \# E s\rangle \mapsto\langle e[x::=v], E s\rangle "
\end{aligned}
$$

Initial state of the CK machine:

$$
\langle\dagger,[]\rangle
$$

CK Machine

- A CK machine works on configurations 〈_,_〉 consisting of a lambda-term and a framestack.

inductive

machine :: "lam $\Rightarrow c t \times s \Rightarrow \mid a m \Rightarrow c \dagger \times s \Rightarrow$ bool"

where

$$
\begin{aligned}
& m_{1}: "\left\langle A p p e_{1} e_{2}, E s\right\rangle \mapsto\left\langle e_{1},\left(C A p p L \square e_{2}\right) \# E s\right\rangle " \\
& \mid m_{2}: " \mathrm{val} v \Longrightarrow\left\langle\mathrm{v},\left(\text { CAppL } \square e_{2}\right) \# E s\right\rangle \mapsto\left\langle e_{2},(C A p p R v \square) \# E s\right\rangle " \\
& \mid m_{3}: " \mathrm{val} v \Longrightarrow\langle\mathrm{v},(\text { CAppR }(\operatorname{Lam}[x] . e) \square) \# E s\rangle \mapsto\langle e[x::=\mathrm{v}], E s\rangle "
\end{aligned}
$$

inductive

machines :: "lam $\Rightarrow \mathrm{ct} \times \mathrm{s} \Rightarrow \mathrm{lam} \Rightarrow \mathrm{c} \mid x s \Rightarrow$ bool" $\left("\left\langle _,\right\rangle \mapsto^{*}\left\langle _,\right\rangle^{\prime}\right)$
where

$$
\begin{aligned}
m s_{1}: & "\langle e, E s\rangle \mapsto^{*}\langle e, E s\rangle^{\prime} \\
\mid m s_{2}: & " \llbracket\left\langle e_{1}, E s_{1}\right\rangle \mapsto\left\langle e_{2}, E s_{2}\right\rangle ;\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle \rrbracket \\
& \Longrightarrow\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle "
\end{aligned}
$$

An Isar Proof for Evaluation implying the CK Machine

An Isar Proof

- The Isar proof language has been conceived by Markus Wenzel, the main developer behind Isabelle.

An Isar Proof

- The Isar proof language has been conceived by Markus Wenzel, the main developer behind Isabelle.

An Isar Proof

- A Rough Schema of an Isar Proof:

have "assumption"
have "assumption"
have "statement"
have "statement"

show "statement"
qed

An Isar Proof

- A Rough Schema of an Isar Proof:
have n1: "assumption"
have n2: "assumption"
have n: "statement"
have m: "statement"
show "statement"
qed
- each have-statement can be given a label

An Isar Proof

- A Rough Schema of an Isar Proof:
have n1: "assumption" by justification have n2: "assumption" by justification
have n : "statement" by justification have m: "statement" by justification
show "statement" by justification qed
- each have-statement can be given a label
- obviously, everything needs to have a justifiation

Justifications

- Omitting proofs
sorry
- Assumptions
by fact
- Automated proofs
by simp simplification (equations, definitions)
by auto simplification \& proof search
(many goals)
by force simplification \& proof search (first goal)
by blast proof search

Justifications

- Omitting proofs sorry
- Assumptions
by fact
- Automated proofs
by simp Automatic justifications can also be:
by auto using ... by ...
by force
using ih by ...
using n 1 n 2 n 3 by ...
by blas \dagger
using lemma_name... by ...

First Exercise

- Lets try to prove a simple lemma. Remember we defined

Transitive Closure of the CK Machine:

$$
\begin{gathered}
\overline{\langle e, E s\rangle \mapsto^{*}\langle e, E s\rangle}{ }^{m s_{1}} \\
\frac{\left\langle e_{1}, E s_{1}\right\rangle \mapsto\left\langle e_{2}, E s_{2}\right\rangle\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle}{\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle} m s_{2}
\end{gathered}
$$

lemma

```
assumes a: " }\langle\mp@subsup{e}{1}{},E\mp@subsup{s}{1}{}\rangle\mp@subsup{\mapsto}{}{*}\langle\mp@subsup{e}{2}{},E\mp@subsup{E}{2}{}\rangle
```



```
shows " }\langle\mp@subsup{e}{1}{},\mp@subsup{\textrm{Es}}{1}{}\rangle\mp@subsup{\mapsto}{}{*}\langle\mp@subsup{e}{3}{},\mp@subsup{\textrm{Es}}{3}{}\rangle
```


First Exercise

- Lets try to prove a simple lemma. Remember we defined

$$
\begin{aligned}
& \text { Transitive Closure of the CK Machine: } \\
& \qquad \begin{array}{c}
\overline{\langle e, E s\rangle} \mapsto^{*}\langle e, E s\rangle \\
m s_{1}
\end{array} \\
& \frac{\left\langle e_{1}, E s_{1}\right\rangle \mapsto\left\langle e_{2}, E s_{2}\right\rangle\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle}{\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle} m s_{2}
\end{aligned}
$$

lemma
assumes a: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{2}, E s_{2}\right\rangle "$
and b: " $\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ "
shows " $\left\langle e_{1}, \mathrm{Es}_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, \mathrm{Es}_{3}\right\rangle^{\prime \prime}$
using $a b$
proof (induct)

Proofs by Induction

- Proofs by induction involve cases, which are of the form:
proof (induct)
case (Case-Name $\times \ldots$. $)$
have "assumption" by justification
have "statment" by justification
show "statment" by justification next
case (Another-Case-Name y...)

Your Turn

lemma

assumes a: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{2}, E s_{2}\right\rangle$ "
and b: " $\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle "$
shows " $\left\langle e_{1}, \mathrm{Es}_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, \mathrm{Es}_{3}\right\rangle$ "
using $a b$
proof (induct)
case ($m s_{1} e_{1} E s_{1}$)
have c : " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " sorry
next
case ($m s_{2} e_{1} E s_{1} e_{2} E s_{2} e_{2}{ }^{\prime} E s_{2}{ }^{\prime}$)
have ih: " $\left\langle e_{2}{ }^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle \Longrightarrow\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
have d1: " $\left\langle e_{2}^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
have d2: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto\left\langle e_{2}, E s_{2}\right\rangle$ " by fac \dagger
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " sorry qed

Your Turn

lemma

assumes a: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{2}, E s_{2}\right\rangle$ "
and b: " $\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle^{\prime \prime}$
shows " $\left\langle e_{1}, \mathrm{Es}_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, \mathrm{Es}_{3}\right\rangle$ "
using $a b$
proof (induct)
case ($m s_{1} e_{1} E s_{1}$)
have c : " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle^{\prime}$ " sorry
next

$$
\begin{gathered}
\overline{\langle e, E s\rangle \mapsto^{*}\langle e, E s\rangle} m s_{1} \\
\left\langle e_{1}, E s_{1}\right\rangle \mapsto\left\langle e_{2}, E s_{2}\right\rangle \\
\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle \\
\hline\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle
\end{gathered}
$$

case ($m s_{2} e_{1} E s_{1} e_{2} E s_{2} e_{2}{ }^{\prime} E s_{2}{ }^{\prime}$)
have ih: " $\left\langle e_{2}^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle \Longrightarrow\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle^{\prime}$ by fact have d1: " $\left\langle e_{2}^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact have d2: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto\left\langle e_{2}, E s_{2}\right\rangle$ " by fact
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " sorry qed

Your Turn

lemma

assumes a: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{2}, E s_{2}\right\rangle$ "
and b: " $\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle "$
shows " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, \mathrm{Es}_{3}\right\rangle$ "
using $a b$

$$
\begin{gathered}
\overline{\langle e, E s\rangle \mapsto{ }^{*}\left\langle e_{1}, E s\right\rangle}{ }^{m s_{1}} \\
\left\langle e_{1}, E s_{1}\right\rangle \mapsto\left\langle e_{2}, E_{s_{2}}\right\rangle \\
\frac{\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle}{\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle} m_{2}
\end{gathered}
$$

proof (induct)

case ($m s_{1} e_{1} E s_{1}$)

have c : " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " using c by simp
next
case ($m s_{2} e_{1} E s_{1} e_{2} E s_{2} e_{2}{ }^{\prime} E s_{2}{ }^{\prime}$)
have ih: " $\left\langle e_{2}{ }^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle \Longrightarrow\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
have d1: " $\left\langle e_{2}^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
have d2: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto\left\langle e_{2}, E s_{2}\right\rangle$ " by fac \dagger
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " sorry qed

Your Turn

lemma

assumes a: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{2}, E s_{2}\right\rangle$ "
and b: " $\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle "$
shows " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, \mathrm{Es}_{3}\right\rangle$ "
using $a b$

$$
\begin{gathered}
\overline{\langle e, E s\rangle \mapsto{ }^{*}\left\langle e_{1}, E s\right\rangle}{ }^{m s_{1}} \\
\left\langle e_{1}, E s_{1}\right\rangle \mapsto\left\langle e_{2}, E_{s_{2}}\right\rangle \\
\frac{\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle}{\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle} m_{2}
\end{gathered}
$$

proof (induct)

case ($m s_{1} e_{1} E s_{1}$)

have c : " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " using c by simp

next

case ($m s_{2} e_{1} E s_{1} e_{2} E s_{2} e_{2}{ }^{\prime} E s_{2}{ }^{\prime}$)
have ih: " $\left\langle e_{2}{ }_{2}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle \Longrightarrow\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle^{\prime}$ by fact
have d1: " $\left\langle e_{2}^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
have d2: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto\left\langle e_{2}, E s_{2}\right\rangle$ " by fact
have d3: " $\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " using in d1 by auto
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " sorry

Your Turn

lemma

assumes a: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{2}, E s_{2}\right\rangle$ "
and b: " $\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle "$
shows " $\left\langle e_{1}, \mathrm{Es}_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, \mathrm{Es}_{3}\right\rangle$ "
using $a b$

$$
\begin{gathered}
\overline{\langle e, E s\rangle \mapsto{ }^{*}\left\langle e_{1}, E s\right\rangle}{ }^{m s_{1}} \\
\left\langle e_{1}, E s_{1}\right\rangle \mapsto\left\langle e_{2}, E_{s_{2}}\right\rangle \\
\frac{\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle}{\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle} m_{2}
\end{gathered}
$$

proof (induct)
case ($m s_{1} e_{1} E s_{1}$)
have c : " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " using c by simp

next

case ($m s_{2} e_{1} E s_{1} e_{2} E s_{2} e_{2}{ }^{\prime} E s_{2}{ }^{\prime}$)
have ih: " $\left\langle e_{2}^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle \Longrightarrow\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle^{\prime}$ by fact
have d1: " $\left\langle e_{2}^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
have d2: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto\left\langle e_{2}, E s_{2}\right\rangle$ " by fact
have d3: " $\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " using in d1 by auto show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " using d2 d3 by auto qed

Your Turn

lemma

assumes a : " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{2}, E s_{2}\right\rangle^{\prime \prime}$
and $\quad b: "\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle "$
shows " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ "
using $a b$
proof (induct)
case ($m s_{1} e_{1} E s_{1}$)
have c: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " using c by simp
next
case (ms $\left.\mathrm{e}_{1} E s_{1} e_{2} E s_{2} e_{2}{ }^{\prime} E s_{2}{ }^{\prime}\right)$
have ih: " $\left\langle e_{2}{ }^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle \Longrightarrow\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle^{\prime}$ by fact
have d1: " $\left\langle e_{2}{ }^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
have d2: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto\left\langle e_{2}, E s_{2}\right\rangle$ " by fact
have d3: " $\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " using in d1 by auto
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto{ }^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " using d 2 d 3 by auto

Your Turn

lemma

assumes a: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{2}, E s_{2}\right\rangle$ "
and $\quad b: "\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle "$
shows " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ "
using $a b$
proof (induct)
case ($m s_{1} e_{1} E s_{1}$)
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
next
case (ms $\mathrm{e}_{1} E s_{1} e_{2} E s_{2} e_{2}{ }^{\prime} E s_{2}{ }^{\prime}$)
have ih: " $\left\langle e_{2}{ }^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle \Longrightarrow\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle^{\prime}$ by fact
have d1: " $\left\langle e_{2}{ }^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
have d2: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto\left\langle e_{2}, E s_{2}\right\rangle$ " by fact
have d3: " $\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " using ih d1 by auto
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " using d2 d3 by auto qed

Your Turn

lemma

assumes a: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{2}, E s_{2}\right\rangle$ "
and $\quad b: "\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle "$
shows " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ "
using $a b$
proof (induct)
case ($m s_{1} e_{1} E s_{1}$)
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
next
case (ms $\mathrm{e}_{1} E s_{1} e_{2} E s_{2} e_{2}{ }^{\prime} E s_{2}{ }^{\prime}$)
have ih: " $\left\langle e_{2}{ }^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle \Longrightarrow\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
have d2: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto\left\langle e_{2}, E s_{2}\right\rangle$ " by fact
have d1: " $\left\langle e_{2}{ }^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
have d3: " $\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle^{\prime \prime}$ using ih d1 by auto
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " using d2 d3 by auto qed

Your Turn

lemma

assumes a: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{2}, E s_{2}\right\rangle$ "
and $\quad b: "\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle "$
shows " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ "
using $a b$
proof (induct)
case ($m s_{1} e_{1} E s_{1}$)
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
next
case ($m s_{2} e_{1} E s_{1} e_{2} E s_{2} e_{2}{ }^{\prime} E s_{2}{ }^{\prime}$)
have ih: " $\left\langle e_{2}{ }^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle \Longrightarrow\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle^{\prime \prime}$ by fact
have d2: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto\left\langle e_{2}, E s_{2}\right\rangle$ " by fact
have " $\left\langle e_{2}{ }^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
then have d3: " $\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " using ih by auto
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " using d2 d3 by auto qed

A Chain of Facts

- Isar allows you to build a chain of facts as follows:
have n1: "..."
have n2: "..."
have ni: "..."
have "..." using n1 n2 ...ni
have "..."
moreover have "..."
moreover have "..."
ultimately have "..."
- also works for show

Your Turn

lemma

assumes a: " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{2}, E s_{2}\right\rangle$ "
and $\quad b: "\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle "$
shows " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ "
using $a b$
proof (induct)
case ($m s_{1} e_{1} E s_{1}$)
show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact
next
case ($m s_{2} e_{1} E s_{1} e_{2} E s_{2} e_{2}{ }^{\prime} E s_{2}{ }^{\prime}$)
have ih: " $\left\langle e_{2}{ }^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle \Longrightarrow\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by fact have " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto\left\langle e_{2}, E s_{2}\right\rangle$ " by fact
moreover
have " $\left\langle e_{2}{ }^{\prime}, E s_{2}{ }^{\prime}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle^{\prime}$ by fact
then have " $\left\langle e_{2}, E s_{2}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " using in by auto ultimately show " $\left\langle e_{1}, E s_{1}\right\rangle \mapsto^{*}\left\langle e_{3}, E s_{3}\right\rangle$ " by auto qed

Automatic Proofs

- Do not expect Isabelle to be able to solve automatically show "P=NP", but...
lemma

```
assumes a: " }\langle\mp@subsup{e}{1}{},E\mp@subsup{s}{1}{}\rangle\mapsto\mp@subsup{\mapsto}{}{*}\langle\mp@subsup{e}{2}{},E\mp@subsup{E}{2}{}\rangle
and b: " }\langle\mp@subsup{e}{2}{},E\mp@subsup{s}{2}{}\rangle\mp@subsup{\mapsto}{}{*}\langle\mp@subsup{e}{3}{},E\mp@subsup{s}{3}{}\rangle
shows " }\langle\mp@subsup{e}{1}{},E\mp@subsup{s}{1}{}\rangle\mp@subsup{\mapsto}{}{*}\langle\mp@subsup{e}{3}{},E\mp@subsup{s}{3}{}\rangle\mathrm{ "
using \(a b\)
by (induct) (auto)
```


Eval Implies CK

theorem
assumes a: " $\dagger \Downarrow \dagger^{\prime \prime \prime}$
shows " $\langle\uparrow,[]\rangle \mapsto^{*}\left\langle\dagger^{\prime},[]\right\rangle$ "

using a

proof (induct)
case (e_Lam $\times \dagger$)
show " $\langle\operatorname{Lam}[x] . t,[]\rangle \mapsto^{*}\langle\operatorname{Lam}[x] . t,[]\rangle$ " sorry
next
case ($e_{-} A p p t_{1} x \dagger t_{2} v^{\prime} v$)
have a1: " $\dagger_{1} \Downarrow \operatorname{Lam}[x] . \dagger$ " by fact
(all assumptions)
have ih1: " $\left\langle\dagger_{1},[]\right\rangle \mapsto^{*}\langle\operatorname{Lam}[x] . t,[]\rangle$ " by fact
have a2: " $\dagger_{2} \Downarrow v$ "" by fact
have ih2: " $\left\langle t_{2},[]\right\rangle \mapsto{ }^{*}\left\langle v^{\prime},[]\right\rangle$ " by fact
have a3: " $\dagger[x::=v$ ' $] \Downarrow v$ " by fact
have ih3: " $\left\langle\dagger\left[x::=v^{\prime}\right],[]\right\rangle \mapsto^{*}\langle v,[]\rangle$ " by fact
show " $\left\langle\right.$ App $\left.\dagger_{1} \dagger_{2},[]\right\rangle \mapsto^{*}\langle v,[]\rangle$ " sorry
qed

Eval Implies CK

theorem
assumes a: " $\dagger \Downarrow \dagger^{\prime \prime \prime}$
shows " $\langle\dagger,[]\rangle \mapsto^{*}\left\langle\dagger^{\prime},[]\right\rangle$ "

using a

proof (induct)
case (e_Lam $x t$)
(no assumption avail.)
show " $\langle\operatorname{Lam}[\mathrm{X}] . t,[]\rangle \mapsto^{*}\langle\operatorname{Lam}[\mathrm{x}] . \mathrm{t},[]\rangle$ " sorry
next
case ($e_{-} A p p t_{1} \times \dagger t_{2} v^{\prime} v$)
have a1: " $\dagger_{1} \Downarrow \operatorname{Lam}[x] . \dagger$ " by fact
(all assumptions)
have ih1: " $\left\langle\dagger_{1},[]\right\rangle \mapsto^{*}\langle\operatorname{Lam}[x] . t,[]\rangle$ " by fact
have a2: " $\dagger_{2} \Downarrow v$ "" by fact
have ih2: " $\left\langle t_{2},[]\right\rangle \mapsto^{*}\left\langle v^{\prime},[]\right\rangle$ " by fact
have a3: " $\dagger[x::=v$ ' $] \Downarrow v$ " by fact
have ih3: " $\left\langle\dagger\left[x::=v^{\prime}\right],[]\right\rangle \mapsto^{*}\langle v,[]\rangle$ " by fact
show " $\left\langle\right.$ App $\left.\dagger_{1} \dagger_{2},[]\right\rangle \mapsto^{*}\langle v,[]\rangle$ " sorry
qed

Eval Implies CK

theorem
assumes a: " $\dagger \Downarrow$ †""
shows " $\langle\dagger,[]\rangle \mapsto^{*}\left\langle\dagger^{\prime},[]\right\rangle$ "

using a

proof (induct)
case (e_Lam $x t$)
show " $\langle\operatorname{Lam}[x] . t,[]\rangle \mapsto^{*}\langle\operatorname{Lam}[x] . t,[]\rangle$ " sorry
next
case ($e_{-} A p p t_{1} x \dagger t_{2} v^{\prime} v$)
have a1: " $\dagger_{1} \Downarrow$ Lam [x].t" by fac \dagger
have ih1: " $\left\langle\dagger_{1},[]\right\rangle \mapsto^{*}\langle\operatorname{Lam}[x] . t,[]\rangle$ " by fact
have a2: " $t_{2} \Downarrow v$ "" by fact
have ih2: " $\left\langle t_{2},[]\right\rangle \mapsto^{*}\left\langle v^{\prime},[]\right\rangle$ " by fact
have a3: " $+[x::=v$ ' $] \Downarrow v$ " by fac \dagger
have ih3: " $\left\langle\dagger[x::=v\right.$ '],[] $\rangle \mapsto^{*}\langle v,[]\rangle$ " by fact
show " $\left\langle\right.$ App $\left.\dagger_{1} \dagger_{2},[]\right\rangle \mapsto^{*}\langle v,[]\rangle$ " sorry
qed

Proof Idea:

n--- Tmplies CK

$$
\begin{aligned}
&\left\langle\text { App } t_{1} \dagger_{2},[]\right\rangle \\
& \mapsto^{*}\left\langle\dagger_{1},\left[\text { CAppL } \square t_{2}\right]\right\rangle \\
& \mapsto^{*}\left\langle\operatorname{Lam}[x] .,\left[\text { CAppL } \square t_{2}\right]\right\rangle \\
& \mapsto^{*}\left.\left\langle t_{2},[\text { CAppR (Lam }[x] . t) \square\right]\right\rangle \\
&\left.\mapsto^{*}\left\langle v^{\prime},[\text { CAppR (Lam }[x] . t) \square\right]\right\rangle \\
& \mapsto^{*}\left.\left\langle\dagger\left[x::=v^{\prime}\right]\right][]\right\rangle \\
& \mapsto^{*}\langle v,[]\rangle
\end{aligned}
$$

(no assumption avail.)
Im [x].t,[])" sorry
next
case (e_App $\mathrm{t}_{1} \times \mathrm{t}_{\mathrm{t}} \mathrm{v}^{\prime} \mathrm{v}$)
have a1: " $\dagger_{1} \Downarrow$ Lam [x]. \dagger " by fac \dagger
have ih1: " $\left\langle\dagger_{1},[]\right\rangle \mapsto{ }^{*}\langle$ Lam [x].t,[] " by fact
have a2: " $\dagger_{2} \Downarrow v$ "" by fact
have ih2: " $\left\langle t_{2},[]\right\rangle \mapsto^{*}\left\langle v^{\prime},[]\right\rangle$ " by fact
have a3: " $+[x::=v$ ' $] \Downarrow v$ " by fac \dagger
have ih3: " $\left\langle\dagger\left[x::=v^{\prime}\right],[]\right\rangle \mapsto^{*}\langle v,[]\rangle$ " by fact
show " $\left\langle\right.$ App $\left.\dagger_{1} \dagger_{2},[]\right\rangle \mapsto^{*}\langle\mathrm{v},[]\rangle$ " sorry
qed

Eval Implies CK

theorem
assumes a: " $\dagger \Downarrow$ †""
shows " $\langle\dagger,[]\rangle \mapsto^{*}\left\langle\dagger^{\prime},[]\right\rangle$ "

using a

proof (induct)
case (e_Lam $x t$)
show " $\langle\operatorname{Lam}[x] . t,[]\rangle \mapsto^{*}\langle\operatorname{Lam}[x] . t,[]\rangle$ " sorry
next
case ($e_{-} A p p t_{1} x \dagger t_{2} v^{\prime} v$)
have a1: " $\dagger_{1} \Downarrow$ Lam [x].t" by fac \dagger
have ih1: " $\left\langle\dagger_{1},[]\right\rangle \mapsto^{*}\langle\operatorname{Lam}[x] . t,[]\rangle$ " by fact
have a2: " $t_{2} \Downarrow v$ "" by fact
have ih2: " $\left\langle t_{2},[]\right\rangle \mapsto^{*}\left\langle v^{\prime},[]\right\rangle$ " by fact
have a3: " $+[x::=v$ ' $] \Downarrow v$ " by fac \dagger
have ih3: " $\left\langle\dagger[x::=v\right.$ '],[] $\rangle \mapsto^{*}\langle v,[]\rangle$ " by fact
show " $\left\langle\right.$ App $\left.\dagger_{1} \dagger_{2},[]\right\rangle \mapsto^{*}\langle v,[]\rangle$ " sorry
qed

Eval Implies CK

theorem
assumes a: "† $\downarrow \dagger^{\prime \prime}$
shows " $\left\langle+\right.$ [[]) $\mapsto^{*}\left\langle\dagger^{[}[1)\right.$ "

using a

proof (induct)
case (e_Lam $\times \dagger$)
show " $\langle\operatorname{Lam}[x] . t,[]\rangle \mapsto^{*}\langle\operatorname{Lam}[x] . t,[]\rangle$ " sorry
next
case ($e_{-} A p p \dagger_{1} \times \dagger \dagger_{2} \mathrm{v}^{\prime} \mathrm{v}$)
have a1: " $\dagger_{1} \Downarrow \operatorname{Lam}[x] . \dagger$ " by fact
have ih1: " $\left\langle\dagger_{1},[]\right\rangle \mapsto \mapsto^{*}\langle\operatorname{Lam}[x] . t,[]\rangle$ " by fact
have a2: " $\dagger_{2} \Downarrow v$ "" by fact
have ih2: " $\left\langle\dagger_{2},[]\right\rangle \mapsto^{*}\left\langle v^{\prime},[]\right\rangle$ " by fact
have a3: " $+[x::=v$ ' $] \Downarrow v$ " by fact
have ih3: " $\left\langle\dagger\left[x::=v^{\prime}\right],[]\right\rangle \mapsto^{*}\langle v,[]\rangle$ " by fact
show " $\left\langle\right.$ App $\left.\dagger_{1} \dagger_{2},[]\right\rangle \mapsto^{*}\langle v,[]\rangle$ " sorry
qed

Eval Implies CK

theorem
assumes $a: " \downarrow \downarrow t^{\prime \prime}$ thm machine.intros
shows " $\langle\dagger, E s\rangle \mapsto^{*}\left\langle\dagger^{\prime}, E s\right\rangle$ "

using a

thm machines.intros thm eval_to_val
proof (induct arbitrary: Es)
case (e_Lam $\times \dagger$)
(no assumption avail.)
show " $\langle\operatorname{Lam}[x] . t, E s\rangle \mapsto^{*}\langle\operatorname{Lam}[x] . t, E s\rangle$ " sorry
next
case ($e_{-} A p p \dagger_{1} x \dagger \dagger_{2} v^{\prime} v$)
have a1: " $\dagger_{1} \Downarrow$ Lam $[x] . \dagger$ " by fact (all assumptions)
have ih1: " \bigwedge Es. $\left\langle\dagger_{1}\right.$, Es $\rangle \mapsto^{*}\langle\operatorname{Lam}[x] . t, E s\rangle$ " by fact
have a2: " $\dagger_{2} \Downarrow v$ "" by fact
have ih2: " \wedge Es. $\left\langle t_{2}, E s\right\rangle \mapsto{ }^{*}\langle v$ ' $E s\rangle$ " by fact
have a3: " $+[x::=v$ ' $] \Downarrow v$ " by fac \dagger
have ih3: " \wedge Es. $\left\langle\dagger\left[x::=v^{\prime}\right], E s\right\rangle \mapsto^{*}\langle v, E s\rangle$ " by fact
show " $\left\langle\right.$ App $\left.\dagger_{1} \dagger_{2}, E s\right\rangle \mapsto^{*}\langle v, E s\rangle$ " sorry
qed

Finally: Eval Implies CK

theorem eval_implies_machines_ctx:
assumes a: " $\dagger \Downarrow$ †""
shows " $\langle\dagger, E s\rangle \mapsto^{*}\left\langle\dagger^{\prime}, E s\right\rangle$ "
using a
proof (induct arbitrary: Es)
corollary eval_implies_machines:
assumes a: "† \downarrow †""
shows " $\langle\dagger,[]\rangle \mapsto^{*}\left\langle\dagger^{\prime},[]\right\rangle$ "
using a eval_implies_machines_ctx by auto

Finally: Eval Implies CK

theorem eval_implies_machines_ctx:
assumes a: " $\dagger \Downarrow$ †""
shows " $\langle\dagger, E s\rangle \mapsto^{*}\left\langle\dagger^{\prime}, E s\right\rangle$ "
using a
proof (induct arbitrary: Es)
corollary eval_implies_machines:
assumes a: "† \downarrow †"
shows " $\langle\dagger,[]\rangle \mapsto^{*}\left\langle\dagger^{\prime},[]\right\rangle$ "
using a eval_implies_machines_ctx by auto
thm eval_implies_machines_ctx gives
$? \dagger \Downarrow ? \dagger^{\prime} \Longrightarrow\langle ? \dagger, ? E s\rangle \mapsto^{*}\left\langle ? \dagger^{\prime}, ? E s\right\rangle$

Weakening Lemma (trivial / routine)

Definition of Types

nominal_datatype ty =
tVar "string"
| tArr "ty" "+y" ("_ \rightarrow _")

Definition of Types

$$
\begin{aligned}
& \text { nominal_datatype ty }= \\
& \text { tVar "string" } \\
& \text { | tArr "ty" "+y" ("_ } \rightarrow \text { _") } \\
& \frac{(x: T) \in \Gamma \text { valid } \Gamma}{\Gamma \vdash x: T} \quad \frac{\Gamma \vdash t_{1}: T_{1} \rightarrow T_{2} \quad \Gamma \vdash t_{2}: T_{1}}{\Gamma \vdash t_{1} t_{2}: T_{2}} \\
& \frac{x \# \Gamma\left(x: T_{1}\right):: \Gamma \vdash t: T_{2}}{\Gamma \vdash \lambda x . t: T_{1} \rightarrow T_{2}} \\
& \boldsymbol{x} \# \boldsymbol{\Gamma} \text { valid } \boldsymbol{\Gamma} \\
& \text { valid [] valid }(x: T):: \Gamma
\end{aligned}
$$

Typing Judgements

types ty_ctx = "(name \times ty $)$ list"
inductive
valid :: "†y_c†x \Rightarrow bool"
where
v_{1} : "valid []"
$\mid \mathrm{v}_{2}: " \llbracket \operatorname{valid} \Gamma ; x \# \Gamma \rrbracket \Longrightarrow \operatorname{valid}((x, T) \# \Gamma) "$
inductive
typing :: "†y_c†x \Rightarrow lam \Rightarrow ty \Rightarrow bool" ("_ト_ : _")
where
t_Var: " $\llbracket \operatorname{valid} \Gamma ;(x, T) \in \operatorname{set} \Gamma \rrbracket \Longrightarrow \Gamma \vdash \operatorname{Var} \times:$ T"
$\mid \dagger^{\prime} _A p p: " \llbracket \Gamma \vdash \dagger_{1}: T_{1} \rightarrow T_{2} ; \Gamma \vdash \dagger_{2}: T_{1} \rrbracket \Longrightarrow \Gamma \vdash A p p \dagger_{1} \dagger_{2}: T_{2} "$
\mid t_Lam: " $\llbracket x \# \Gamma ;\left(x, T_{1}\right) \# \Gamma \vdash \dagger: T_{2} \rrbracket \Longrightarrow \Gamma \vdash \operatorname{Lam}[x] . \dagger: T_{1} \rightarrow T_{2} "$

Typing Judgements

types ty_ctx = "(name \times ty $)$ list"
inductive
\#: list cons
\#: freshness
(\<sharp>)
valid :: "†y_c†x \Rightarrow bool"
where
$\mathrm{v}_{1}:$ "valid []"
$\mid \mathrm{v}_{2}:$ "【valid $\left.\Gamma: x \# \Gamma \Longrightarrow \operatorname{valid}(x, T) \# \Gamma\right)$)
inductive
typing :: "†y_ctx \Rightarrow lam \Rightarrow ty \Rightarrow bool" ("_ \vdash^{\prime} : _")
where
t_Var: " $\llbracket \operatorname{valid} \Gamma ;(x, T) \in \operatorname{set} \Gamma \rrbracket \Longrightarrow \Gamma \vdash \operatorname{Var} \times:$ T"
| \dagger _App: " $\Gamma \vdash \pm: T_{1} \longrightarrow T_{2} ; \Gamma \vdash \dagger_{2}: T_{1} \rrbracket \Longrightarrow \Gamma \vdash A p p \dagger_{1} \dagger_{2}: T_{2} "$
$\left.\mid+_L a m: ~ "\lfloor x \# \Gamma)\left(x, T_{1}\right) \# \Gamma \vdash+: T_{2}\right] \Longrightarrow \Gamma \vdash \operatorname{Lam}[x] . \dagger: T_{1} \rightarrow T_{2} "$

Freshness

- Freshness is a concept automatically defined in Nominal Isabelle; it corresponds roughly to the notion of "not-free-in".

lemma

fixes x::"name"
shows "x\#Lam [x].t"
and $" x \# t_{1} \wedge x \# t_{2} \Longrightarrow x \# A p p t_{1} \dagger_{2}$ "
and " $x \#(\operatorname{Var} y) \Longrightarrow x \# y$ "
and $" \llbracket x \# \dagger_{1} ; x \# \dagger_{2} \rrbracket \Longrightarrow x \#\left(\dagger_{1}, \dagger_{2}\right)$ "
and $" \llbracket x \# I_{1} ;\left.x \#\right|_{2} \rrbracket \Longrightarrow x \#\left(I_{1} @ I_{2}\right)$ "
and " $x \# y \Longrightarrow x \neq y$ "
by (simp_all add: abs_fresh fresh_list_append fresh_atm)

Freshness

- Freshness is a concept automatically defined in Nominal Isabelle; it corresponds roughly to the notion of "not-free-in".
lemma ty_fresh:
fixes x ::"name"
and $\mathrm{T}:$:"+y"
shows "x\#T"
by (induct T rule: ty.induct)
(simp_all add: fresh_string)

Freshness

- Freshness is a concept automatically defined in Nominal Isabelle; it corresponds roughly to the notion of "not-free-in".
lemma ty_fresh:
fixes x ::"name"
and T::"+y"
shows "x\#T"
by (induct T rule: ty.induct)
(simp_all add: fresh_string)

> nominal_datatype ty = +Var "string"
> | tarr "ty" "ty" ("_ \rightarrow " ")

The Weakening Lemma

- We can overload \subseteq for typing contexts, but this means we have to give explicit type-annotations.
abbreviation

$$
\text { "sub_ty_ctx" :: "ty_c†x } \Rightarrow \text { ty_ctx } \Rightarrow \text { bool" ("_ } \subseteq \text { _") }
$$

where

$$
" \Gamma_{1} \subseteq \Gamma_{2} \equiv \forall x . x \in \operatorname{set} \Gamma_{1} \longrightarrow x \in \operatorname{set} \Gamma_{2} "
$$

lemma weakening:

```
    fixes }\mp@subsup{\boldsymbol{\Gamma}}{\mathbf{1}}{}\mp@subsup{\boldsymbol{\Gamma}}{2}{}::"(name\timesty)list"
```

 assumes a: " \(\Gamma_{1} \vdash \dagger:\) T"
 and b: "valid \(\Gamma_{2}\) "
 and \(\quad \mathrm{c}: ~ " ~ \Gamma_{1} \subseteq \Gamma_{2}\) "
 shows " \(\Gamma_{2} \vdash\) †: T"
 using $a b c$
proof (induct arbitrary: $\boldsymbol{\Gamma}_{2}$)

Your Turn: Variable Case

lemma
fixes $\boldsymbol{\Gamma}_{\mathbf{1}} \boldsymbol{\Gamma}_{\mathbf{2}}$::"†y_c†х"
assumes a: " $\Gamma_{1} \vdash \dagger$: Т"
and b: "valid Γ_{2} "
and $\quad \mathrm{c}: ~ " \Gamma_{1} \subseteq \Gamma_{2} "$
shows " $\Gamma_{2} \vdash \dagger:$ T"
using abc
proof (induct arbitrary: $\boldsymbol{\Gamma}_{2}$)
case (t_Var $\boldsymbol{\Gamma}_{1} \times \mathrm{T}$)
have a1: "valid Γ_{1} " by fact
have a2: " $(x, T) \in \operatorname{set} \Gamma_{1}$ " by fact
have a3: "valid Γ_{2} " by fact
have a4: " $\Gamma_{1} \subseteq \Gamma_{2}$ " by fact
show " $\Gamma_{2} \vdash \operatorname{Var} \times$: T" sorry

lemma
fixes $\Gamma_{1} \Gamma_{2}$::"†y_c†х"
assumes a: " $\Gamma_{1} \vdash+$: T"
and b: "valid Γ_{2} "
and $\quad \mathrm{c}: ~ " \Gamma_{1} \subseteq \Gamma_{2}{ }^{\prime \prime}$
shows " $\Gamma_{2} \vdash$ †: T"
using $a b c$
proof (induct arbitrary: $\boldsymbol{\Gamma}_{\mathbf{2}}$)
case (t_Var $\boldsymbol{\Gamma}_{\mathbf{1}} \times \mathrm{T}$)
have " $\Gamma_{1} \subseteq \Gamma_{2}$ " by fact
moreover
have "valid Γ_{2} " by fact
moreover
have " $(x, T) \in \operatorname{set} \Gamma_{1}$ " by fact
ultimately show " $\Gamma_{2} \vdash \operatorname{Var} x$: T" by auto

Induction Principle for Typing

- The induction principle that comes with the typing definition is as follows:
$\forall \Gamma x T .(x: T) \in \Gamma \wedge \operatorname{valid} \Gamma \Rightarrow P \Gamma(x) T$
$\forall \Gamma t_{1} t_{2} T_{1} T_{2}$.
$P \Gamma t_{1}\left(T_{1} \rightarrow T_{2}\right) \wedge P \Gamma t_{2} T_{1} \Rightarrow P \Gamma\left(t_{1} t_{2}\right) T_{2}$
$\forall \Gamma x t T_{1} T_{2}$.
$x \# \Gamma \wedge P\left(\left(x: T_{1}\right):: \Gamma\right) t T_{2} \Rightarrow P \Gamma(\lambda x . t)\left(T_{1} \rightarrow T_{2}\right)$

$$
\Gamma \vdash t: T \Rightarrow P \Gamma t T
$$

Note the quantifiers!

Proof Idea for the Lambda Cs.

$$
\frac{x \# \Gamma\left(x: T_{1}\right):: \Gamma \vdash t: T_{2}}{\Gamma \vdash \lambda x . t: T_{1} \rightarrow T_{2}}
$$

- If $\Gamma_{1} \vdash t: T_{1}$ then $\forall \Gamma_{2}$. valid $\Gamma_{2} \wedge \Gamma_{1} \subseteq \Gamma_{2} \Rightarrow \Gamma_{2} \vdash t: T_{2}$

Proof Idea for the Lambda Cs.

$$
\frac{x \# \Gamma\left(x: T_{1}\right):: \Gamma \vdash t: T_{2}}{\Gamma \vdash \lambda x . t: T_{1} \rightarrow T_{2}}
$$

- If $\Gamma_{1} \vdash t: T_{1}$ then $\forall \Gamma_{2}$. valid $\Gamma_{2} \wedge \Gamma_{1} \subseteq \Gamma_{2} \Rightarrow \Gamma_{2} \vdash t: T_{2}$

For all Γ_{1}, x, t, T_{1} and T_{2} :

- We know:
$\forall \Gamma_{3}$. valid $\Gamma_{3} \wedge\left(x: T_{1}\right):: \Gamma_{1} \subseteq \Gamma_{3} \Rightarrow \Gamma_{3} \vdash t: T_{1}$
$x \# \Gamma_{1}$
valid Γ_{2}
$\Gamma_{1} \subseteq \Gamma_{2}$
- We have to show:
$\Gamma_{2} \vdash \lambda x . t: T_{1} \rightarrow T_{2}$

Proof Idea for the Lambda Cs.

$$
\frac{x \# \Gamma\left(x: T_{1}\right):: \Gamma \vdash t: T_{2}}{\Gamma \vdash \lambda x . t: T_{1} \rightarrow T_{2}}
$$

- If $\Gamma_{1} \vdash t: T_{1}$ then $\forall \Gamma_{2}$. valid $\Gamma_{2} \wedge \Gamma_{1} \subseteq \Gamma_{2} \Rightarrow \Gamma_{2} \vdash t: T_{2}$

For all Γ_{1}, x, t, T_{1} and T_{2} :

- We know:
$\forall \Gamma_{3}$. valid $\Gamma_{3} \wedge\left(x: T_{1}\right):: \Gamma_{1} \subseteq \Gamma_{3} \Rightarrow \Gamma_{3} \vdash t: T_{1}$
$x \# \Gamma_{1}$
valid Γ_{2}
$\Gamma_{1} \subseteq \Gamma_{2}$
- We have to show:
$\Gamma_{2} \vdash \lambda x . t: T_{1} \rightarrow T_{2}$

Proof Idea for the Lambda Cs.

$$
\frac{x \# \Gamma\left(x: T_{1}\right):: \Gamma \vdash t: T_{2}}{\Gamma \vdash \lambda x . t: T_{1} \rightarrow T_{2}}
$$

- If $\Gamma_{1} \vdash t: T_{1}$ then $\forall \Gamma_{2}$. valid $\Gamma_{2} \wedge \Gamma_{1} \subseteq \Gamma_{2} \Rightarrow \Gamma_{2} \vdash t: T_{2}$

For all Γ_{1}, x, t, T_{1} and T_{2} :

- We know:

$$
\Gamma_{3} \mapsto\left(x: T_{1}\right):: \Gamma_{2}
$$

$\forall \Gamma_{3}$. valid $\Gamma_{3} \wedge\left(x: T_{1}\right):: \Gamma_{1} \subseteq \Gamma_{3} \Rightarrow \Gamma_{3} \vdash t: T_{1}$
$x \# \Gamma_{1}$
valid Γ_{2}
$\Gamma_{1} \subseteq \Gamma_{2}$

- We have to show:
$\Gamma_{2} \vdash \lambda x . t: T_{1} \rightarrow T_{2}$

Your Turn: Lambda Case

lemma
fixes $\boldsymbol{\Gamma}_{1} \boldsymbol{\Gamma}_{2}$::"†y_c†х"
assumes a: " $\Gamma_{1} \vdash+:$ T"
and b: "valid $\Gamma_{2} "$
and $\quad c: " \Gamma_{1} \subseteq \Gamma_{2}$ "
shows " $\Gamma_{2} \vdash$ †: T"
using abc
proof (induct arbitrary: $\boldsymbol{\Gamma}_{2}$)
case (\dagger _Lam $\times \Gamma_{1} \mathrm{~T}_{1} \dagger \mathrm{~T}_{2}$)
have ih: " $\bigwedge \Gamma_{3}$. $\left[\right.$ valid $\Gamma_{3} ;\left(\times, T_{1}\right) \# \Gamma_{1} \subseteq \Gamma_{3} \rrbracket \Longrightarrow \Gamma_{3} \vdash \dagger: T_{2}$ " by fact
have a0: "x\# Γ_{1} " by fact
have a1: "valid Γ_{2} " by fact
have a2: " $\Gamma_{1} \subseteq \Gamma_{2}$ " by fact
show " $\Gamma_{2} \vdash \operatorname{Lam}[\mathrm{x}] . \dagger: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$ " sorry

Strong Induction Principle

$\forall \Gamma x T .(x: T) \in \Gamma \wedge \operatorname{valid} \Gamma \Rightarrow P \Gamma(x) T$
$\forall \Gamma t_{1} t_{2} T_{1} T_{2}$.
$P \Gamma t_{1}\left(T_{1} \rightarrow T_{2}\right) \wedge P \Gamma t_{2} T_{1}$

$$
\Rightarrow P \Gamma\left(t_{1} t_{2}\right) T_{2}
$$

$\forall \Gamma x t T_{1} T_{2}$.
$\boldsymbol{x} \# \boldsymbol{\Gamma} \wedge$

$$
P\left(\left(x: T_{1}\right):: \Gamma\right) t T_{2} \Rightarrow P \Gamma(\lambda x . t)\left(T_{1} \rightarrow T_{2}\right)
$$

$$
\Gamma \vdash t: T \Rightarrow P \Gamma t T
$$

- Instead we are going to use the strong induction principle and set up the induction so that the binder "avoids" Γ_{2}.

2nd Attempt

lemma
fixes $\boldsymbol{\Gamma}_{1} \Gamma_{2}:$:"†у_c†х"
assumes a: " $\Gamma_{1} \vdash+:$ T"
and b: "valid Γ_{2} "
and $\quad c: ~ " \Gamma_{1} \subseteq \Gamma_{2} "$
shows " $\Gamma_{2} \vdash$ †: T"
using abc
proof (induct arbitrary: $\boldsymbol{\Gamma}_{2}$)
case (\dagger _Lam $\times \Gamma_{1} \mathrm{~T}_{1} \dagger \mathrm{~T}_{2}$)
have ih: " $\bigwedge \Gamma_{3}$. $\llbracket \operatorname{valid} \Gamma_{3} ;\left(x, T_{1}\right) \# \Gamma_{1} \subseteq \Gamma_{3} \rrbracket \Longrightarrow \Gamma_{3} \vdash$ t: T_{2} " by fact
have a0: "x\# Γ_{1} " by fact
have a1: "valid Γ_{2} " by fact
have a2: " $\Gamma_{1} \subseteq \Gamma_{2}$ " by fact
show " $\Gamma_{2} \vdash \operatorname{Lam}[\times] . \dagger: T_{1} \rightarrow T_{2}$ " sorry

2nd Attempt

lemma

fixes $\Gamma_{1} \Gamma_{2}:$ "†у_ctх"
assumes a: " $\Gamma_{1} \vdash+:$ T"
and b: "valid Γ_{2} "
and $\quad \mathrm{c}: ~ " \Gamma_{1} \subseteq \Gamma_{2} "$
shows " $\Gamma_{2} \vdash$ †: T"
using $a b c$
proof (nominal_induct avoiding: $\boldsymbol{\Gamma}_{2}$ rule: typing.strong_induct) case (\dagger _Lam $\times \Gamma_{1} \mathrm{~T}_{1} \dagger \mathrm{~T}_{2}$)
have vc: "x\# Γ_{2} " by fact
have ih: " $\bigwedge \Gamma_{3}$. $\llbracket \operatorname{valid} \Gamma_{3} ;\left(x, T_{1}\right) \# \Gamma_{1} \subseteq \Gamma_{3} \rrbracket \Longrightarrow \Gamma_{3} \vdash \dagger: T_{2}$ " by fact have a0: "x\# Γ_{1} " by fact
have a1: "valid Γ_{2} " by fact
have a2: " $\Gamma_{1} \subseteq \Gamma_{2}$ " by fact
show " $\Gamma_{2} \vdash \operatorname{Lam}[\times] . \dagger: T_{1} \rightarrow T_{2}$ " sorry
lemma weakening:
fixes $\Gamma_{1} \Gamma_{2}$: "††у_c†х"
assumes a: " $\Gamma_{1} \vdash \dagger$: T" and b: "valid Γ_{2} " and c: " $\Gamma_{1} \subseteq \Gamma_{2}$ "
shows " $\Gamma_{2} \vdash$ †: T"
using $a b c$
proof (nominal_induct avoiding: $\boldsymbol{\Gamma}_{2}$ rule: typing.strong_induct)
case (\dagger _Lam $\times \Gamma_{1} T_{1} \dagger T_{2}$)
have vc: "x\# Γ_{2} " by fact
have ih: " $\llbracket \operatorname{valid}\left(\left(x, T_{1}\right) \# \Gamma_{2}\right) ;\left(x, T_{1}\right) \# \Gamma_{1} \subseteq\left(x, T_{1}\right) \# \Gamma_{2} \rrbracket$
$\Longrightarrow\left(x, T_{1}\right) \# \Gamma_{2} \vdash t: T_{2}$ by fact
have " $\Gamma_{1} \subseteq \Gamma_{2}$ " by fact
then have " $\left(x, T_{1}\right) \# \Gamma_{1} \subseteq\left(x, T_{1}\right) \# \Gamma_{2}$ " by simp

moreover

have "valid Γ_{2} " by fact
then have "valid $\left(\left(x, T_{1}\right) \# \Gamma_{2}\right)$ " using vc by auto
ultimately have " $\left(x, T_{1}\right) \# \Gamma_{2} \vdash t: T_{2}$ " using ih by simp
then show " $\Gamma_{2} \vdash \operatorname{Lam}[x] . \dagger: T_{1} \rightarrow T_{2}$ " using vc by auto qed (auto)
lemma weakening:
fixes $\Gamma_{1} \Gamma_{2}$::"†у_ctх"
assumes a: " $\Gamma_{1} \vdash \dagger$: T" and b: "valid Γ_{2} " and c: " $\Gamma_{1} \subseteq \Gamma_{2}$ " shows " $\Gamma_{2} \vdash$ †: T"
using abc
by (nominal_induct avoiding: $\boldsymbol{\Gamma}_{2}$ rule: typing.strong_induct) (auto)
lemma weakening:
fixes $\Gamma_{1} \Gamma_{2}:$:"ty_ctx"
assumes a: " $\Gamma_{1} \vdash \dagger:$ T" and b: "valid Γ_{2} " and $\mathrm{c}: ~ " \Gamma_{1} \subseteq \Gamma_{2}$ " shows " $\Gamma_{2} \vdash+$: T"
using $a b c$
by (nominal_induct avoiding: $\boldsymbol{\Gamma}_{2}$ rule: †yping.strong_induct) (auto)

- Perhaps the weakening lemma is after all trivial / routine / obvious ;o)
- We shall late see that the work we put into the stronger induction principle needs a bit of thinking. For you, of course, it is provided automatially.

Function Definitions and the Simplifier

Function Definitions

- Later on we will need a few functions about contexts:
fun
filling :: "ctx \Rightarrow lam \Rightarrow lam" ("_[_]")
where

$$
\begin{aligned}
& \text { " } \square \llbracket \dagger]=\dagger^{\prime \prime} \\
& \left|=\left(C A p p L E \dagger^{\prime}\right)[\dagger]=\operatorname{App}(E[\dagger]) \dagger^{\prime \prime \prime}\right| \\
& \mid "\left(C A p p R \dagger^{\prime} E\right)[\dagger]=\operatorname{App} \dagger^{\prime}(E[\dagger]) "
\end{aligned}
$$

Function Definitions

- Later on we will need a few functions about contoun.
a name
fun
filling :: "ctx $\Rightarrow \operatorname{lam} \Rightarrow \operatorname{lam} "\left(" _\left[_\right]\right.$" $)$
where

$$
\begin{aligned}
& \text { " } \square \llbracket \dagger]=\dagger^{\prime \prime} \\
& \left|=\left(C A p p L E \dagger^{\prime}\right)[\dagger]=\operatorname{App}(E[\dagger]) \dagger^{\prime \prime \prime}\right| \\
& \mid "\left(C A p p R \dagger^{\prime} E\right)[\dagger]=\operatorname{App} \dagger^{\prime}(E[\dagger]) "
\end{aligned}
$$

Function Definitions

- Later on we will need a few functions about contexts:
fun
filling :: "c†x \Rightarrow lam \Rightarrow lam" ("_[_]")
where

$$
\begin{aligned}
& \text { " } \square \llbracket \dagger]=\dagger^{\prime \prime} \\
& \left|=\left(C A p p L E \dagger^{\prime}\right)[\dagger]=\operatorname{App}(E[\dagger]) \dagger^{\prime \prime \prime}\right| \\
& \mid "\left(C A p p R \dagger^{\prime} E\right)[\dagger]=\operatorname{App} \dagger^{\prime}(E[\dagger]) "
\end{aligned}
$$

Function Definitions

- Later on we will need a few functions about contexts:

```
pretty syntax
```

fun
filling :: "ctx \Rightarrow lam \Rightarrow lam" ("_[_]")
where

$$
\begin{aligned}
& \text { " } \square \llbracket \dagger \rrbracket=\dagger^{\prime \prime} \\
& \mid "\left(C A p p L E \dagger^{\prime}\right)[\dagger]=\operatorname{App}\left(E[\dagger \rrbracket) \dagger^{\prime \prime \prime} \mid\right. \\
& \mid "\left(C A p p R \dagger^{\prime} E\right)[\dagger]=\operatorname{App} \dagger^{\prime}(E[\dagger]) "
\end{aligned}
$$

Function Definitions

- Later on we will need a few functions about contexts:
fun
filling :: "ctx \Rightarrow lam \Rightarrow lam" ("_[_]")
where

$$
\begin{aligned}
& \text { " } \square\left[\dagger \rrbracket=\dagger^{\prime \prime}\right. \\
& \mid "\left(C A p p L E \dagger^{\prime}\right)[\dagger]=\operatorname{App}\left(E[\dagger \rrbracket) \dagger^{\prime \prime \prime}\right. \\
& \left.\mid "\left(C A p p R \dagger^{\prime} E\right)[\dagger]=\operatorname{App} \dagger^{\prime}(E \llbracket \dagger]\right) "
\end{aligned}
$$

Function Definitions

- Later on we will need a few functions about contexts:

fun

$$
\text { filling :: "ctx } \Rightarrow \text { lam } \Rightarrow \text { lam" ("_[_]") }
$$

where

$$
\begin{aligned}
& \text { " } \square\left[\dagger \rrbracket=\dagger^{\prime \prime}\right. \\
& \left|"\left(C A p p L E \dagger^{\prime}\right)[\dagger]=\operatorname{App}(E[\dagger]) \dagger^{\prime \prime \prime}\right| \\
& \mid "\left(C A p p R \dagger^{\prime} E\right)[\dagger]=\operatorname{App} \dagger^{\prime}(E[\dagger]) "
\end{aligned}
$$

- Once a function is defined, the simplifier will be able to solve equations like
lemma
shows "(CAppL $\square(\operatorname{Var} x))[\operatorname{Var} y]=\operatorname{App}(\operatorname{Var} y)(\operatorname{Var} x)$ " by simp

Context Composition

fun
$c \dagger x _c o m p o s e ~:: ~ " c \dagger x \Rightarrow c \dagger x \Rightarrow c t x "\left(" _\circ\right.$ _" $\left.[101,100] 100\right)$
where

$$
\begin{aligned}
& " \square \circ E^{\prime}=E^{\prime \prime \prime} \\
& \mid=\left(C A p p L E \dagger^{\prime}\right) \circ E^{\prime}=\operatorname{CAppL}\left(E \circ E^{\prime}\right) \dagger^{\prime \prime \prime} \\
& \mid "\left(C A p p R \dagger^{\prime} E\right) \circ E^{\prime}=\operatorname{CAppR} \dagger^{\prime}\left(E \circ E^{\prime}\right) "
\end{aligned}
$$

fun
$c \dagger x _c o m p o s e s ~:: ~ " c \dagger x s \Rightarrow c \dagger x "\left(" _\downarrow "\right.$ [110] 110)
where

$$
\begin{aligned}
& "[] \downarrow=\square " \\
& "(E \# E s) \downarrow=(E s \downarrow) \circ E "
\end{aligned}
$$

Context Composition

fun
$c \dagger x _c o m p o s e ~:: ~ " c \dagger x \Rightarrow c \dagger x \Rightarrow c t x "\left(" _\circ\right.$ _" $\left.[101,100] 100\right)$ where

$$
" \square \circ E^{\prime}=E^{\prime \prime}
$$

$\mid "\left(C A p p L E t^{\prime}\right) \circ E^{\prime}=\operatorname{CAppL}\left(E \circ E^{\prime}\right) t^{\prime \prime \prime}$
$\mid "\left(C A p p R \dagger^{\prime} E\right) \circ E^{\prime}=C A p p R \dagger^{\prime}\left(E \circ E^{\prime}\right) "$
fun
$c \dagger x _c o m p o s e s ~:: ~ " c \dagger x s \Rightarrow c \dagger x "\left(" _\downarrow "\right.$ [110] 110)
where

$$
\begin{aligned}
& "[] \downarrow=\square " \\
& \mid "(E \# E s) \downarrow=(E s \downarrow) \circ E "
\end{aligned}
$$

precedence

- Explicit preedences are given in order to enforce the notation:

$$
\left(E_{1} \circ E_{2}\right) \circ E_{3} \quad\left(E_{1} \circ E_{2}\right) \downarrow
$$

Context Composition

fun
$c \dagger x _c o m p o s e ~:: ~ " c \dagger x \Rightarrow c \dagger x \Rightarrow c t x "\left(" _\circ\right.$ _" $\left.[101,100] 100\right)$ where

$$
" \square \circ E^{\prime}=E^{\prime \prime}
$$

$\mid "\left(C A p p L E t^{\prime}\right) \circ E^{\prime}=\operatorname{CAppL}\left(E \circ E^{\prime}\right) t^{\prime \prime \prime}$
$\mid "\left(C A p p R \dagger^{\prime} E\right) \circ E^{\prime}=C A p p R \dagger^{\prime}\left(E \circ E^{\prime}\right) "$
fun
$c \dagger x _c o m p o s e s ~:: ~ " c \dagger x s \Rightarrow c \dagger x "\left(" _\downarrow "\right.$ [110] 110)
where

$$
\begin{aligned}
& "[] \downarrow=\square " \\
& \mid "(E \# E s) \downarrow=(E s \downarrow) \circ E "
\end{aligned}
$$

precedence

- Explicit preedences are given in order to enforce the notation:

$$
\left(E_{1} \circ E_{2}\right) \circ E_{3} \quad\left(E_{1} \circ E_{2}\right) \downarrow
$$

lemma ctx_compose:
shows " $\left.\left(E_{1} \circ E_{2}\right) \llbracket \dagger \rrbracket=E_{1} \llbracket E_{2} \llbracket \dagger \rrbracket\right] "$
proof (induct E_{1})
case Hole
show " $\left.\left.\square \circ \mathrm{E}_{2} \llbracket \dagger\right\rceil=\square \llbracket \mathrm{E}_{2}[\dagger\rceil\right]$ " sorry
next
case (CAppL $E_{1} \dagger^{\prime}$)
have ih: " $\left.\left(\mathrm{E}_{1} \circ \mathrm{E}_{2}\right) \llbracket \dagger \rrbracket=\mathrm{E}_{1} \llbracket \mathrm{E}_{2} \llbracket \dagger \rrbracket\right]$ " by fact
show " $\left(\left(C A p p L E_{1} \dagger^{\prime}\right) \circ E_{2}\right) \llbracket \dagger \rrbracket=\left(\right.$ CAppL $\left.\left.E_{1} \dagger^{\prime}\right)\left[E_{2} \llbracket \dagger\right]\right]$ " sorry

next

case (CAppR $\dagger^{\prime} E_{1}$)
have ih: " $\left.\left(\mathrm{E}_{1} \circ \mathrm{E}_{2}\right) \llbracket \dagger \rrbracket=\mathrm{E}_{1} \llbracket \mathrm{E}_{2} \llbracket \dagger \rrbracket\right]$ " by fact
show " $\left.\left(\left(C A p p R \dagger^{\prime} E_{1}\right) \circ E_{2}\right) \llbracket \dagger \rrbracket=\left(C A p p R \dagger^{\prime} E_{1}\right) \llbracket E_{2} \llbracket \dagger \rrbracket\right]$ " sorry qed
lemma ctx_compose:
shows " $\left.\left(E_{1} \circ E_{2}\right) \llbracket \dagger \rrbracket=E_{1} \llbracket E_{2} \llbracket \dagger \rrbracket\right] "$
proof (induct E_{1})
datatype ctx = Hole
| CAppL "ctx" "lam"
| CAppR "lam" "ctx"
case Hole
show " $\left.\left.\square \circ \mathrm{E}_{2} \llbracket \dagger\right]=\square \llbracket \mathrm{E}_{2}[\dagger\rceil\right]$ " sorry

next

case (CAppL $E_{1} \dagger^{\prime}$)
have ih: " $\left.\left(\mathrm{E}_{1} \circ \mathrm{E}_{2}\right) \llbracket \dagger \rrbracket=\mathrm{E}_{1} \llbracket \mathrm{E}_{2} \llbracket \dagger \rrbracket\right]$ " by fact
show " $\left(\left(\operatorname{CAppL} E_{1} \dagger^{\prime}\right) \circ E_{2}\right) \llbracket \dagger \rrbracket=\left(\right.$ CAppL $\left.E_{1} \dagger^{\prime}\right)\left[E_{2} \llbracket \dagger \rrbracket\right]$ " sorry

next

case (CAppR $\dagger^{\prime} \mathrm{E}_{1}$)
have ih: " $\left.\left(E_{1} \circ E_{2}\right) \llbracket \dagger \rrbracket=E_{1} \llbracket E_{2} \llbracket \dagger \rrbracket\right]$ " by fact
show " $\left.\left(\left(C A p p R \dagger^{\prime} E_{1}\right) \circ E_{2}\right) \llbracket \dagger \rrbracket=\left(C A p p R \dagger^{\prime} E_{1}\right) \llbracket E_{2} \llbracket \dagger \rrbracket\right]$ " sorry qed
thm filling.simps[no_vars]
thm ctx_compose.simps[no_vars]

Your Turn Again

- Assuming:
lemma neut_hole: shows " $\mathrm{E} \circ \square=\mathrm{E}$ "
lemma circ_assoc: shows " $\left(E_{1} \circ E_{2}\right) \circ E_{3}=E_{1} \circ\left(E_{2} \circ E_{3}\right)$ "
- Prove
lemma shows " $\left(E s_{1}\right.$ @ $\left.E s_{2}\right) \downarrow=\left(E s_{2} \downarrow\right) \circ\left(E s_{1} \downarrow\right)$ "
proof (induct Es ${ }_{1}$)
case Nil
show "([] @ Es 2$) \downarrow=E s_{2} \downarrow \circ[] \downarrow$ " sorry
next
case (Cons E Es ${ }_{1}$)
have ih: " $E s_{1}$ @ $\left.E s_{2}\right) \downarrow=E s_{2} \downarrow \circ E s_{1} \downarrow$ " by fact
show "((E\#Es $\left.\left.s_{1}\right) @ E s_{2}\right) \downarrow=E s_{2} \downarrow \circ\left(E \# E s_{1}\right) \downarrow$ " sorry qed

Your Turn Again

- Assuming:
lemma neut_hole: shows " $\mathrm{E} \circ \square=\mathrm{E}$ "
lemma circ_assoc: shows " $\left(E_{1} \circ E_{2}\right) \circ E_{3}=E_{1} \circ\left(E_{2} \circ E_{3}\right)$ "
- Prove
lemma shows " $E s_{1}$ @ $\left.E s_{2}\right) \downarrow=\left(E s_{2} \downarrow\right) \circ\left(E s_{1} \downarrow\right)$ "
proof (induct Es ${ }_{1}$)

case Nil

show "([] @ Es 2$) \downarrow=E s_{2} \downarrow \circ[] \downarrow$ " sorry
next
case (Cons E Es ${ }_{1}$)
have ih: " $E s_{1}$ @ $\left.E s_{2}\right) \downarrow=E s_{2} \downarrow \circ E s_{1} \downarrow$ " by fact
show "((E\#Es $\left.\left.s_{1}\right) @ E s_{2}\right) \downarrow=E s_{2} \downarrow \circ\left(E \# E s_{1}\right) \downarrow$ " sorry qed

My Solution

lemma

shows " $\left(E s_{1} @ E s_{2}\right) \downarrow=\left(E s_{2} \downarrow\right) \circ\left(E s_{1} \downarrow\right)$ "
proof (induct Es ${ }_{1}$)
case Nil
show "([]@Es 2$) \downarrow=E s_{2} \downarrow \circ[] \downarrow$ " using neut_hole by simp

next

case (Cons E Es ${ }_{1}$)
have ih: " $E s_{1}$ @ Es $\left.s_{2}\right) \downarrow=E s_{2} \downarrow \circ E s_{1} \downarrow$ " by fact
have Ihs: "((E\#Es $)$ @ Es $\left.s_{2}\right) \downarrow=\left(E s_{1} @ E s_{2}\right) \downarrow \circ E "$ by simp have Ihs': " $E s_{1}$ @ Es $\left.s_{2}\right) \downarrow \circ E=\left(E s_{2} \downarrow \circ E s_{1} \downarrow\right) \circ E$ " using ih by simp have rhs: "Es $s_{2} \downarrow \circ\left(E \# E s_{1}\right) \downarrow=E s_{2} \downarrow \circ\left(E s_{1} \downarrow \circ E\right)$ " by simp show "((E\#Es $\left.s_{1}\right)$ @ Es $\left.s_{2}\right) \downarrow=E s_{2} \downarrow \circ\left(E \# E s_{1}\right) \downarrow$ "
using lhs lhs' rhs circ_assoc by simp
qed

Equational Reasoning in Isar

- One frequently wants to prove an equation $t_{1}=t_{n}$ by means of a chain of equations, like

$$
t_{1}=t_{2}=t_{3}=t_{4}=\ldots=t_{n}
$$

Equational Reasoning in Isar

- One frequently wants to prove an equation $t_{1}=t_{n}$ by means of a chain of equations, like

$$
t_{1}=t_{2}=t_{3}=t_{4}=\ldots=t_{n}
$$

- This kind of reasoning is supported in Isar as:
have " $\dagger_{1}=\dagger_{2}$ " by just.
also have "... $=\dagger_{3}$ " by just.
also have "... = \dagger_{4} " by just.
also have "... = \dagger_{n} " by just.
finally have " $\dagger_{1}=\dagger_{n}$ " by simp

A Readable Solution

lemma
shows " $\left(E s_{1} @ E s_{2}\right) \downarrow=\left(E s_{2} \downarrow\right) \circ\left(E s_{1} \downarrow\right)$ "
proof (induct Es s_{1})
case Nil
show "([]@Es 2$) \downarrow=E s_{2} \downarrow \circ[] \downarrow$ " using neut_hole by simp

next

case (Cons E Es ${ }_{1}$)
have ih: "(Es s_{1} @ Es $\left.s_{2}\right) \downarrow=E s_{2} \downarrow \circ E s_{1} \downarrow$ " by fact
have "((E\#Ess $)$ @ Es $\left.s_{2}\right) \downarrow=\left(E s_{1} @ E s_{2}\right) \downarrow \circ E "$ by simp
also have "... $=\left(E s_{2} \downarrow \circ E s_{1} \downarrow\right) \circ E^{\prime \prime}$ using ih by simp
also have "... =Es $s_{2} \downarrow \circ$ ($E s_{1} \downarrow \circ E$)" using circ_assoc by simp
also have "... $=E s_{2} \downarrow \circ\left(E \# E s_{1}\right) \downarrow$ " by simp
finally show "((E\#Es $\left.\left.s_{1}\right) @ E s_{2}\right) \downarrow=E s_{2} \downarrow \circ\left(E \# E s_{1}\right) \downarrow$ " by simp
qed

Capture-Avoiding Substitution and the Substitution Lemma

Capture-Avoiding Subst.

- Lambda.thy contains a definition of captureavoiding substitution with the characteristic equations:
"(Var $x)[y::=s]=($ if $x=y$ then s else $(\operatorname{Var} x)) "$
"(App $\left.\dagger_{1} \dagger_{2}\right)[y::=s]=\operatorname{App}\left(\dagger_{1}[y::=s]\right)\left(\dagger_{2}[y::=s]\right) "$
$" x \#(y, s) \Longrightarrow(\operatorname{Lam}[x] . t)[y::=s]=\operatorname{Lam}[x] .(+[y::=s]) "$

Capture-Avoiding Subst.

- Lambda.thy contains a definition of captureavoiding substitution with the characteristic equations:
" $(\operatorname{Var} x)[y::=s]=($ if $x=y$ then s else $(\operatorname{Var} x))$ "
" $\left(A p p \dagger_{1} \dagger_{2}\right)[y::=s]=\operatorname{App}\left(\dagger_{1}[y::=s]\right)\left(\dagger_{2}[y::=s]\right) "$
$" x \#(y, s) \Longrightarrow(\operatorname{Lam}[x] . t)[y::=s]=\operatorname{Lam}[x] .(+[y::=s]) "$
- Despite its looks, this is a total function!

Substitution Lemma: If $x \not \equiv y$ and $x \notin f v(L)$, then

$$
M[x:=N][y:=L] \equiv M[y:=L][x:=N[y:=L]]
$$

Proof: By induction on the structure of M.

- Case 1: M is a variable.

Case 1.1. $M \equiv x$. Then both sides equal $N[y:=L]$ since $x \not \equiv y$.
Case 1.2. $M \equiv \boldsymbol{y}$. Then both sides equal \boldsymbol{L}, for $\boldsymbol{x} \notin \mathrm{fv}(\boldsymbol{L})$ implies $L[x:=\ldots] \equiv L$.
Case 1.3. $M \equiv z \not \equiv x, y$. Then both sides equal z.

- Case 2: $M \equiv \lambda z . M_{1}$. By the variable convention we may assume that $z \not \equiv x, y$ and z is not free in N, L.

$$
\begin{aligned}
\left(\lambda z \cdot M_{1}\right)[x:=N][y:=L] & \equiv \lambda z \cdot\left(M_{1}[x:=N][y:=L]\right) \\
& \equiv \lambda z \cdot\left(M_{1}[y:=L][x:=N[y:=L]]\right) \\
& \equiv\left(\lambda z \cdot M_{1}\right)[y:=L][x:=N[y:=L]] .
\end{aligned}
$$

- Case 3: $M \equiv M_{1} M_{2}$. The statement follows again from the induction hypothesis.

Substitution Lemma: If $x \not \equiv y$ and $x \notin f v(L)$, then

$$
M[x:=N][y:=L] \equiv M[y:=L][x:=N[y:=L]]
$$

Proof: By induction on the structure of M.

- Case 1: M is a variable.

Case 1.1. $M \equiv x$. Then both sides equal $N[y:=L]$ since $x \not \equiv y$.
Case 1.2. $M \equiv y$. Then both sides equal L, for $x \notin f v(L)$ implies $L[x:=\ldots] \equiv L$.
Case 1.3. $M \equiv z \not \equiv x, y$. Then both sides equal z.

- Case 2: $M \equiv \lambda z \cdot M_{1}$. By the variable convention we may assume that $z \not \equiv x, y$ and z is not free in N, L.

$$
\begin{aligned}
\left(\lambda z \cdot M_{1}\right)[x:=N][y:=L] & \equiv \lambda z \cdot\left(M_{1}[x:=N][y:=L]\right) \\
& \equiv \lambda z \cdot\left(M_{1}[y:=L][x:=N[y:=L]]\right) \\
& \equiv\left(\lambda z \cdot M_{1}\right)[y:=L][x:=N[y:=L]] .
\end{aligned}
$$

- Case 3: $M \equiv M_{1} M_{2}$. The statement follows again from the induction hypothesis.

Substitution Lemma: If $x \not \equiv y$ and $x \notin f v(L)$, then

$$
M[x:=N][y:=L] \equiv M[y:=L][x:=N[y:=L]]
$$

Proof: By induction on the structure of M.

- Case 1: M is a variable.

Case 1.1. $M \equiv x$. Then both sides equal $N[y:=L]$ since $x \not \equiv y$.
Case 1.2. $M \equiv \boldsymbol{y}$. Then both sides equal \boldsymbol{L}, for $\boldsymbol{x} \notin \mathrm{fv}(\boldsymbol{L})$ implies $L[x:=\ldots] \equiv L$.
Case 1.3. $M \equiv z \not \equiv x, y$. Then both sides equal z.

- Case 2: $M \equiv \lambda z \cdot M_{1}$. By the variable convention we may assume that $z \not \equiv x, y$ and z is not free in N, L.

$$
\begin{aligned}
\left(\lambda z \cdot M_{1}\right)[x:=N][y:=L] & \equiv \lambda z .\left(M_{1}[x:=N][y:=L]\right) \\
& \equiv \lambda z \cdot\left(M_{1}[y:=L][x:=N[y:=L]]\right) \\
& \equiv\left(\lambda z \cdot M_{1}\right)[y:=L][x:=N[y:=L]] .
\end{aligned}
$$

- Case 3: $M \equiv M_{1} M_{2}$. The statement follows again from the induction hypothesis.

Substitution Lemma: If $x \not \equiv y$ and $x \notin f v(L)$, then

$$
M[x:=N][y:=L] \equiv M[y:=L][x:=N[y:=L]]
$$

Proof: By induction on the structure of M.

- Case 1: M is a variable.

Case 1.1. $M \equiv x$. Then both sides equal $N[y:=L]$ since $x \not \equiv y$.
Case 1.2. $M \equiv \boldsymbol{y}$. Then both sides equal \boldsymbol{L}, for $\boldsymbol{x} \notin \mathrm{fv}(\boldsymbol{L})$ implies $L[x:=\ldots] \equiv L$.
Case 1.3. $M \equiv z \not \equiv x, y$. Then both sides equal z.

- Case 2: $M \equiv \lambda z \cdot M_{1}$. By the variable convention we may assume that $z \not \equiv x, y$ and z is not free in N, L.

$$
\begin{aligned}
\left(\lambda z \cdot M_{1}\right)[x:=N][y:=L] & \equiv \lambda z \cdot\left(M_{1}[x:=N][y:=L]\right) \\
& \equiv \lambda z \cdot\left(M_{1}[y:=L][x:=N[y:=L]]\right) \\
& \equiv\left(\lambda z \cdot M_{1}\right)[y:=L][x:=N[y:=L]] .
\end{aligned}
$$

- Case 3: $M \equiv M_{1} M_{2}$. The statement follows again from the induction hypothesis.

Substitution Lemma: If $x \not \equiv y$ and $x \notin f v(L)$, then

$$
M[x:=N][y:=L] \equiv M[y:=L][x:=N[y:=L]]
$$

Proof: By induction on the structure of M.

- Case 1: N Remember only if $y \neq x$ and $x \notin \mathrm{fv}(N)$ then Case 1.1. n

$$
(\lambda y \cdot M)[x:=N]=\lambda y \cdot(M[x:=N])
$$

\[

\]

- Case 3: $M \equiv M_{1} M_{2}$. The statement follows again from the induction hypothesis.

Substitution Lemma: If $x \not \equiv y$ and $x \notin f v(L)$, then

$$
M[x:=N][y:=L] \equiv M[y:=L][x:=N[y:=L]]
$$

Proof: By induction on the structure of M.

- Case 1: M is a variable.

Case 1.1. $M \equiv x$. Then both sides equal $N[y:=L]$ since $x \not \equiv y$.
Case 1.2. $M \equiv \boldsymbol{y}$. Then both sides equal \boldsymbol{L}, for $\boldsymbol{x} \notin \mathrm{fv}(\boldsymbol{L})$ implies $L[x:=\ldots] \equiv L$.
Case 1.3. $M \equiv z \not \equiv x, y$. Then both sides equal z.

- Case 2: $M \equiv \lambda z . M_{1}$. By the variable convention we may assume that $z \not \equiv x, y$ and z is not free in N, L.

$$
\begin{aligned}
\left(\lambda z \cdot M_{1}\right)[x:=N][y:=L] & \equiv \lambda z \cdot\left(M_{1}[x:=N][y:=L]\right) \\
& \equiv \lambda z \cdot\left(M_{1}[y:=L][x:=N[y:=L]]\right) \\
& \equiv\left(\lambda z \cdot M_{1}\right)[y:=L][x:=N[y:=L]] .
\end{aligned}
$$

- Case 3: $M \equiv M_{1} M_{2}$. The statement follows again from the induction hypothesis.

Case Distintions

- Assuming $P_{1} \vee P_{2} \vee P_{3}$ is true then:
\{ assume " P_{1} "
have "something" ...\}
moreover
\{ assume " P_{2} "
have "something" ...\}
moreover
\{ assume " P_{3} "
have "something" ...\}
ultimately have "something" by blast

Case Distintions

- Assuming $P_{1} \vee P_{2} \vee P_{3}$ is true then:
\{ assume " P_{1} "
have "something" ...\}
moreover
\{ assume " P_{2} "
have "something" ...\}
moreover
\{ assume " P_{3} "

$$
\begin{aligned}
& P_{1} \mapsto(z=x) \\
& P_{2} \mapsto(z=y) \wedge(z \neq x) \\
& P_{3} \mapsto(z \neq y) \wedge(z \neq x)
\end{aligned}
$$

Case Distintions

- Assuming $P_{1} \vee P_{2} \vee P_{3}$ is true then:
\{ assume " P_{1} "
have "something" ...\}
moreover
\{ assume " P_{2} "

$$
\begin{gathered}
P_{1} \Longrightarrow s m+h \\
P_{2} \Longrightarrow s m+h \\
P_{3} \Longrightarrow s m+h \\
\text { smth }
\end{gathered}
$$

have "something" ...\}
moreover
\{ assume " P_{3} "
have "something" ...\}
ultimately have "something" by blast
lemma substitution_lemma:

$$
\begin{aligned}
& \text { assumes } a: \text { "x申y" "x \# L" } \\
& \text { shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]" }
\end{aligned}
$$

using a proof (nominal_induct M avoiding: x y $N L$ rule: lam.strong_induct)

case (Var z)

have a1: " $x \neq y$ " by fac \dagger
have a2: "x\#L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
\{ assume c1: " $z=x$ "
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp \}

moreover

\{ assume c2: " $z=y$ " " $z \neq x$ "
have "? $\mathrm{LHS}=$? RHS" sorry \}
moreover
\{ assume c3: " $z \neq x^{\prime \prime}{ }^{\prime \prime} z \neq y$ "
have "?LHS = ?RHS" sorry \}
ultimately show "?LHS = ?RHS" by blast
lemma substitution_lemma:

$$
\begin{aligned}
& \text { assumes } a: \text { "x申y" "x \# L" } \\
& \text { shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]" }
\end{aligned}
$$

using a proof (nominal_induct M avoiding: x y NL rule: lam.strong_induct)

case (Var z)

have a1: " $x \neq y$ " by fac \dagger
have a2: "x\#L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
\{ assume c1: " $z=x$ "
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp \}
moreover
\{ assume c2: " $z=y$ " " $z \neq x$ "
have "? $\mathrm{LHS}=$? RHS" sorry \}
moreover
\{ assume c3: " $z \neq x^{\prime \prime}{ }^{\prime \prime} z \neq y$ "
have "?LHS = ?RHS" sorry \}
ultimately show "?LHS = ?RHS" by blast
lemma substitution_lemma:

$$
\begin{aligned}
& \text { assumes } a: \text { " } x \neq y \text { " "x\# L" } \\
& \text { shows "M[x::=N][y:::=L] = M[y:::=L][x::=N[y::=L]]" } \\
& \text { using a proof (nominal_induct M avoiding: } x \text { y NL rule: lam.strong_induct) } \\
& \text { case (Var } z \text {) }
\end{aligned}
$$

```
have a1: " }x\not=y\mathrm{ " by fac†
have a2: "x#L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is"?LHS = ?RHS")
```

proof -
\{ assume c1: " $z=x$ "
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 al by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp \}

moreover

\{ assume c2: " $z=y$ " " $z \neq x$ "
have "? LHS = ?RHS" sorry \}
moreover
\{ assume c3: " $z \neq x^{\prime \prime}$ " $z \neq y^{\prime \prime}$
have "?LHS = ?RHS" sorry \}
ultimately show "?LHS = ?RHS" by blast
lemma substitution_lemma:

```
assumes a: "x\not=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
```

using a proof (nominal_induct M avoiding: x y $N L$ rule: lam.strong_induct) case (Var z)
have a1: " $x \neq y$ " by fact
have a2: "x\#L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
\{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp \}
moreover
\{ assume c2: "z=y" " $z \neq x$ "
have "?LHS = ?RHS" sorry \}
moreover
\{ assume c3: " $z \neq x$ " " $z \neq y^{\prime \prime}$
have "?LHS = ?RHS" sorry \}
ultimately show "?LHS = ?RHS" by blast
lemma substitution_lemma:

```
assumes a: "x\not=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
```

using a proof (nominal_induct M avoiding: x y $N L$ rule: lam.strong_induct) case (Var z)
have a1: " $x \neq y$ " by fact
have a2: "x\#L" by fact
show "Var $z[x::=N][y::=L]=\operatorname{Var} z[y::=L][x::=N[y::=L]]$ " (is "?LHS = ?RHS") proof -

```
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }
moreover
{ assume c2: "z=y" "z\not=x"
have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z\not=\mp@subsup{x}{}{\prime\prime}"z\not=\mp@subsup{y}{}{\prime\prime}
have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast
```

lemma substitution_lemma:

```
assumes a: "x\not=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x\not=y" by fact
have a2: "x#L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
    { assume c1: "z=x"
```

have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp \}
moreover
\{ assume c2: " $z=y$ " " $z \neq x$ "
have "?LHS = ?RHS" sorry \}
moreover
\{ assume c3: " $z \neq x$ " " $z \neq y$ "
have "?LHS = ?RHS" sorry \}
ultimately show "?LHS = ?RHS" by blast
qed
lemma substitution_lemma:

```
assumes a: "x\not=y" "x # L"
```

shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using a proof (nominal_induct M avoiding: x y $N L$ rule: lam.strong_induct) case (Var z)
have a1: " $x \neq y$ " by fact
have a2: "x\#L" by fact
show "Var $z[x::=N][y::=L]=\operatorname{Var} z[y::=L][x::=N[y::=L]]$ " (is "?LHS = ?RHS")
proof-
\{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp have "?LHS = ?RHS" using "(1)" "(2)" by simp \}
moreover
\{ assume c2: " $z=y$ " " $z \neq x$ "

```
have "?LHS = ?RHS" sorry }
```

moreover
\{ assume c3: " $z \neq x$ " " $z \neq y$ "
have "?LHS = ?RHS" sorry \}
ultimately show "?LHS = ?RHS" by blast
qed
lemma substitution_lemma:

$$
\begin{aligned}
& \text { assumes } a: \text { " } x \neq y \text { " " } x \neq L \text { " } \\
& \text { shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]" }
\end{aligned}
$$

thm forget:
$x \# L \Longrightarrow L[x::=P]=L$
using a proof (nominal_induct M avoiding: x y $N L$ rule: lam.strong_induct) case (Var z)
have a1: " $x \neq y$ " by fact
have a2: "x\#L" by fact
show "Var $z[x::=N][y::=L]=\operatorname{Var} z[y::=L][x::=N[y::=L]]$ " (is "?LHS = ?RHS")
proof -
\{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp have "?LHS = ?RHS" using "(1)" "(2)" by simp \}

moreover

\{ assume c2: " $z=y$ " " $z \neq x$ "

```
have "?LHS = ?RHS" sorry }
```

moreover
\{ assume c3: " $z \neq x$ " " $z \neq y$ "

```
have "?LHS = ?RHS" sorry }
```

ultimately show "?LHS = ?RHS" by blast
lemma substitution_lemma:

$$
\begin{aligned}
& \text { assumes a: "x }=\mathrm{y} \text { " "x \# L" } \\
& \text { shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]" } \\
& \text { using a proof (nominal_induct } M \text { avoiding: } x \text { y } N L \text { rule: lam.strong_induct) }
\end{aligned}
$$

have ih: "[x $x \neq y ; x \# L] \Longrightarrow M_{1}[x::=N][y::=L]=M_{1}[y::=L][x::=N[y::=L]]$ by fact have " $x \neq y$ " by fact
have "x\#L" by fact

have "?LHS = ..." sorry
lemma substitution_lemma:

$$
\begin{aligned}
& \text { assumes a: " } x \neq y \text { " "x \# L" } \\
& \text { shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]" } \\
& \text { using a proof (nominal_induct } M \text { avoiding: xy } N L \text { rule: lam.strong_induct) }
\end{aligned}
$$

case (Lam z M_{1})

have ih: "[x $x \neq y ; x \# L] \Longrightarrow M_{1}[x::=N][y::=L]=M_{1}[y::=L][x::=N[y::=L]]$ by fact
have " $x \neq y$ " by fact
have "x\#L" by fact
have vc: "z\#x" "z\#y" "z\#N" "z\#L" by fact+
then have "z\#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
have "?LHS = ..." sorry
also have " $\ldots=$? RHS" sorry
finally show "?LHS = ?RHS" by simp
qed
lemma substitution_lemma:

$$
\begin{aligned}
& \text { assumes } a: \text { " } x \neq y \text { " " } x \text { \# L" } \\
& \text { shows "M[x:::N][y:::L] = M[y:::=L][x::=N[y::=L]]"} \\
& \text { using a proof (nominal_induct } M \text { avoiding: } x \text { y N L rule: lam.strong_induct) }
\end{aligned}
$$

case (Lam z M_{1})

have ih: "[x $x \neq y ; x \# L] \Longrightarrow M_{1}[x::=N][y::=L]=M_{1}[y::=L][x::=N[y::=L]]$ by fact
have " $x \neq y$ " by fact
have "x\#L" by fact
have vc: "z\#x" "z\#y" "z\#N" "z\#L" by fact+ then have "z\#N[y::=L]" by (simp add: fresh_fact)

have "? LHS = ..." sorry
also have "... = ?RHS" sorry
finally show "?LHS = ?RHS" by simp
lemma substitution_lemma:

$$
\begin{aligned}
& \text { assumes } a: \text { " } x \neq y \text { " "x\# } x \text { " } \\
& \text { shows "M[x::=N][y::=L] = M[y:::L][x::=N[y::=L]]" } \\
& \text { using a proof (nominal_induct M avoiding: } x \text { y NL rule: lam.strong_induct) }
\end{aligned}
$$

case (Lam z M_{1})

have ih: "[x $x \neq y ; x \# L] \Longrightarrow M_{1}[x::=N][y::=L]=M_{1}[y::=L][x::=N[y::=L]]$ by fact
have " $x \neq y$ " by fact
have "x\#L" by fact
have vc: "z\#x" "z\#y" "z\#N" "z\#L" by fact+
then have "z\#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M M_{1} [x:::N][y::=L]=(Lam [z].M $)$ [y:::L][x::=N[y:::L]]" (is "?LHS=?RHS")
have "?LHS = ..." sorry
also have "... = ?RHS" sorry
finally show "?LHS = ?RHS" by simp
lemma substitution_lemma:

$$
\begin{aligned}
& \text { assumes } a: \text { " } x \neq y \text { " " } x \text { \# L" } \\
& \text { shows "M[x::=N][y::=L] = M[y:::=L][x::=N[y::=L]]"} \\
& \text { using a proof (nominal_induct M avoiding: } x \text { y N L rule: lam.strong_induct) }
\end{aligned}
$$

case (Lam z M_{1})

have ih: "[x $x \neq y ; x \# L] \Longrightarrow M_{1}[x::=N][y::=L]=M_{1}[y::=L][x::=N[y::=L]]$ by fact
have " $x \neq y$ " by fact
have "x\#L" by fact
have vc: "z\#x" "z\#y" "z\#N" "z\#L" by fact+
then have "z\#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M M_{1} [x::=N][y::=L]=(Lam [z].M $)[y::=L][x::=N[y::=L]]$ " (is "?LHS=?RHS") proof -
have "?LHS = ..." sorry
also have "... = ?RHS" sorry
4
finally show "?LHS = ?RHS" by simp
qed
next

Substitution Lemma: If $x \not \equiv y$ and $x \notin f v(L)$, then

$$
M[x:=N][y:=L] \equiv M[y:=L][x:=N[y:=L]]
$$

Proof: By induction on the structure of M.

- Case 1: M is a variable.

Case 1.1. $M \equiv x$. Then both sides equal $N[y:=L]$ since $x \not \equiv y$.
Case 1.2. $M \equiv \boldsymbol{y}$. Then both sides equal \boldsymbol{L}, for $\boldsymbol{x} \notin \mathrm{fv}(\boldsymbol{L})$ implies $L[x:=\ldots] \equiv L$.
Case 1.3. $M \equiv z \not \equiv x, y$. Then both sides equal z.

- Case 2: $M \equiv \lambda z . M_{1}$. By the variable convention we may assume that $z \not \equiv x, y$ and z is not free in N, L.

$$
\begin{aligned}
\left(\lambda z \cdot M_{1}\right)[x:=N][y:=L] & \equiv \lambda z \cdot\left(M_{1}[x:=N][y:=L]\right) \\
& \equiv \lambda z \cdot\left(M_{1}[y:=L][x:=N[y:=L]]\right) \\
& \equiv\left(\lambda z \cdot M_{1}\right)[y:=L][x:=N[y:=L]] .
\end{aligned}
$$

- Case 3: $M \equiv M_{1} M_{2}$. The statement follows again from the induction hypothesis.

Substitution Lemma

- The strong structural induction principle for lambda-terms allowed us to follow Barendregt's proof quite closely. It also enables Isabelle to find this proof automatically:
lemma substitution_lemma:
assumes asm: " $x \neq y$ " " $x \#$ L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using asm
by (nominal_induct M avoiding: x y $N L$ rule: lam.strong_induct) (auto simp add: fresh_fact forget)

How To Prove False Using the Variable Convention (on Paper)

So Far So Good

- A Faulty Lemma with the Variable Convention?

Variable Convention:
If M_{1}, \ldots, M_{n} occur in a certain mathematical context \dagger
(e.g. definition, proof), then in these terms all bound variables are chosen to be different from the free variables.

Barendregt in "The Lambda-Calculus: Its Syntax and Semantics"
Inductive Definitions: Rule Inductions:
prem $_{1} \ldots$ prem $_{n}$ scs concl
1.) Assume the property for the premises. Assume the side-conditions.
2.) Show the property for the conclusion.

Faulty Reasoning

- Consider the two-place relation foo:

$$
\overline{x \mapsto x} \quad \overline{t_{1} t_{2} \mapsto t_{1} t_{2}} \quad \frac{t \mapsto t^{\prime}}{\lambda x . t \mapsto t^{\prime}}
$$

Faulty Reasoning

- Consider the two-place relation foo:

- The lemma we going to prove:

Let $t \mapsto t^{\prime}$. If $\boldsymbol{y} \# t$ then $\boldsymbol{y} \# \boldsymbol{t}^{\prime}$.

Faulty Reasoning

- Consider the two-place relation foo:

- The lemma we going to prove:

$$
\text { Let } t \mapsto t^{\prime} \text {. If } y \# t \text { then } y \# t^{\prime} \text {. }
$$

- Cases 1 and 2 are trivial:
- If $\boldsymbol{y} \# \boldsymbol{x}$ then $\boldsymbol{y} \# \boldsymbol{x}$.
- If $y \# t_{1} t_{2}$ then $y \# t_{1} t_{2}$.

Faulty Reasoning

- Consider the two-place relation foo:

- The lemma we going to prove:

$$
\text { Let } t \mapsto t^{\prime} \text {. If } y \# t \text { then } y \# t^{\prime} \text {. }
$$

- Case 3:
- We know $\boldsymbol{y} \# \lambda \boldsymbol{x} . t$. We have to show $\boldsymbol{y} \# \boldsymbol{t}^{\prime}$.
- The IH says: if $\boldsymbol{y} \# t$ then $\boldsymbol{y} \# \boldsymbol{t}^{\prime}$.

Variable Convention:

If M_{1}, \ldots, M_{n} occur in a certain mathematical context (e.g. definition, proof), then in these terms all bound variables are chosen to be different from the free variables.

In our case:

The free variables are \boldsymbol{y} and \boldsymbol{t}^{\prime}; the bound one is \boldsymbol{x}. By the variable convention we conclude that $\boldsymbol{x} \neq \boldsymbol{y}$.

$$
\text { Let } t \mapsto t^{\prime} \text {. If } y \# t \text { then } y \# t^{\prime} \text {. }
$$

- Case 3:
- We know $\boldsymbol{y} \# \lambda \boldsymbol{x} . t$. We have to show $\boldsymbol{y} \# \boldsymbol{t}^{\prime}$.
- The IH says: if $\boldsymbol{y} \# t$ then $\boldsymbol{y} \# \boldsymbol{t}^{\prime}$.

Variable Convention:

If M_{1}, \ldots, M_{n} occur in a certain mathematical context (e.g. definition, proof), then in these terms all bound variables are chosen to be different from the free variables.

In our case:

The free variables are \boldsymbol{y} and t^{\prime}; the bound one is \boldsymbol{x}. By the variable convention we conclude that $\boldsymbol{x} \neq \boldsymbol{y}$.

$$
y \notin \mathrm{fv}(\lambda x . t) \Longleftrightarrow y \notin \mathrm{fv}(t)-\{x\} \stackrel{x \neq y}{\Longleftrightarrow} y \notin \mathrm{fv}(t)
$$

- Case 3:
- We know $\boldsymbol{y} \# \lambda \boldsymbol{x} . t$. We have to show $\boldsymbol{y} \# \boldsymbol{t}^{\prime}$.
- The IH says: if $\boldsymbol{y} \# \boldsymbol{t}$ then $\boldsymbol{y} \# \boldsymbol{t}^{\prime}$.

Variable Convention:

If M_{1}, \ldots, M_{n} occur in a certain mathematical context (e.g. definition, proof), then in these terms all bound variables are chosen to be different from the free variables.

In our case:

The free variables are y and t^{\prime}; the bound one is \boldsymbol{x}. By the variable convention we conclude that $\boldsymbol{x} \neq \boldsymbol{y}$.

$$
y \notin \mathrm{fv}(\lambda x . t) \Longleftrightarrow y \notin \mathrm{fv}(t)-\{x\} \stackrel{x}{\Longleftrightarrow x \neq y} y \notin \mathrm{fv}(t)
$$

- Case 3:
- We know $\boldsymbol{y} \# \lambda \boldsymbol{x} . \mathrm{t}$. We have to show $\boldsymbol{y} \# \boldsymbol{t}^{\prime}$.
- The IH says: if $\boldsymbol{y} \# t$ then $\boldsymbol{y} \# \boldsymbol{t}^{\prime}$.
- So we have $y \# t$. Hence $y \# t^{\prime}$ by IH. Done!

Faulty Reasoning

- Consider the two-place relation foo:

- The lemma we going to prove:

$$
\text { Let } t \mapsto t^{\prime} \text {. If } y \# t \text { then } y \# t^{\prime} \text {. }
$$

- Case 3:
- We know $\boldsymbol{y} \# \lambda \boldsymbol{x} . \mathrm{t}$. We have to show $\boldsymbol{y} \# \boldsymbol{t}^{\prime}$.
- The IH says: if $\boldsymbol{y} \# \boldsymbol{t}$ then $\boldsymbol{y} \# \boldsymbol{t}^{\prime}$.
- So we have $y \# t$. Hence $y \# t^{\prime}$ by IH. Done!
- We introduced two conditions that make the VC safe to use in rule inductions:
- the relation needs to be equivariant, and
- the binder is not allowed to occur in the support of the conclusion (not free in the conclusion)

VC-Compatibility

- We introduced two conditions that make the VC safe to use in rule inductions:
- the relation needs to be equivariant, and - the binder is not allowed to occur in the

A relation R is equivariant iff

$$
\begin{aligned}
& \forall \pi t_{1} \ldots t_{n} \\
& \quad R t_{1} \ldots t_{n} \Rightarrow R\left(\pi \cdot t_{1}\right) \ldots\left(\pi \cdot t_{n}\right)
\end{aligned}
$$

This means the relation has to be invariant under permutative renaming of variables.

- We introduced two conditions that make the VC safe to use in rule inductions:
- the relation needs to be equivariant, and
- the binder is not allowed to occur in the support of the conclusion (not free in the conclusion)

Typing Judgements (2)

inductive

$$
\text { typing :: "†y_c†x } \Rightarrow \text { lam } \Rightarrow \text { ty } \Rightarrow \text { bool" ("_†_ : _") }
$$

where
t_Var: " $\llbracket \operatorname{valid} \Gamma ;(x, T) \in \operatorname{set} \Gamma \rrbracket \Longrightarrow \Gamma \vdash \operatorname{Var} \times:$ T"
$\mid \dagger _A p p: " \llbracket \Gamma \vdash \dagger_{1}: T_{1} \rightarrow T_{2} ; \Gamma \vdash \dagger_{2}: T_{1} \rrbracket \Longrightarrow \Gamma \vdash A p p \dagger_{1} \dagger_{2}: T_{2} "$
| t_Lam: " $\llbracket x \# \Gamma ;\left(x, T_{1}\right) \# \Gamma \vdash \dagger: T_{2} \rrbracket \Longrightarrow \Gamma \vdash \operatorname{Lam}[x] . \dagger: T_{1} \rightarrow T_{2} "$
equivariance typing
nominal_inductive typing

Typing Judgements (2)

inductive
typing :: "†y_c†x \Rightarrow lam \Rightarrow ty \Rightarrow bool" ("_ト_ : _")
where
t_Var: " $\llbracket \operatorname{valid} \Gamma ;(x, T) \in \operatorname{set} \Gamma \rrbracket \Longrightarrow \Gamma \vdash \operatorname{Var} \times:$ T"
$\mid \dagger _A p p: " \llbracket \Gamma \vdash \dagger_{1}: T_{1} \rightarrow T_{2} ; \Gamma \vdash \dagger_{2}: T_{1} \rrbracket \Longrightarrow \Gamma \vdash A p p \dagger_{1} \dagger_{2}: T_{2} "$
$\mid+_$Lam: " $\llbracket x \# \Gamma ;\left(x, T_{1}\right) \# \Gamma \vdash+: T_{2} \rrbracket \Longrightarrow \Gamma \vdash \operatorname{Lam}[x] . \dagger: T_{1} \rightarrow T_{2} "$
equivariance typing
nominal_inductive typing

Subgoals

1. $\wedge \times \Gamma \mathrm{T}_{1} \dagger \mathrm{~T}_{2} . \llbracket \times \# \Gamma ;\left(x, \mathrm{~T}_{1}\right):: \Gamma \vdash \dagger: \mathrm{T}_{2} \rrbracket \Longrightarrow x \# \Gamma$
2. $\Lambda \times \Gamma \mathrm{T}_{1}+\mathrm{T}_{2} .\left[x \# \Gamma ;\left(x, \mathrm{~T}_{1}\right):: \Gamma \vdash+: \mathrm{T}_{2}\right] \Longrightarrow x \# \operatorname{Lam}[x] . \dagger$
3. $\Lambda \times \Gamma \mathrm{T}_{1}+\mathrm{T}_{2} \cdot\left[\times \# \Gamma ;\left(x, \mathrm{~T}_{1}\right):: \Gamma \vdash+: \mathrm{T}_{2}\right] \Longrightarrow x \# \mathrm{~T}_{1} \rightarrow \mathrm{~T}_{2}$

Typing Judgements (2)

inductive
typing :: "†y_c†x \Rightarrow lam \Rightarrow ty \Rightarrow bool" ("_ト _ : _")
where
t_Var: " $\llbracket \operatorname{valid} \Gamma ;(x, T) \in \operatorname{set} \Gamma \rrbracket \Longrightarrow \Gamma \vdash \operatorname{Var} \times:$ T"
$\mid \dagger _A p p: " \llbracket \Gamma \vdash \dagger_{1}: T_{1} \rightarrow T_{2} ; \Gamma \vdash \dagger_{2}: T_{1} \rrbracket \Longrightarrow \Gamma \vdash A p p \dagger_{1} \dagger_{2}: T_{2} "$
$\mid+_$Lam: " $\llbracket x \# \Gamma ;\left(x, T_{1}\right) \# \Gamma \vdash+: T_{2} \rrbracket \Longrightarrow \Gamma \vdash \operatorname{Lam}[x] . \dagger: T_{1} \rightarrow T_{2} "$
equivariance typing
nominal_inductive typing
by (simp_all add: abs_fresh ty_fresh)

Subgoals

1. $\wedge \times \Gamma \mathrm{T}_{1} \dagger \mathrm{~T}_{2} . \llbracket \times \# \Gamma ;\left(x, \mathrm{~T}_{1}\right):: \Gamma \vdash \dagger: \mathrm{T}_{2} \rrbracket \Longrightarrow x \# \Gamma$
2. $\Lambda \times \Gamma \mathrm{T}_{1}+\mathrm{T}_{2} .\left[x \# \Gamma ;\left(x, \mathrm{~T}_{1}\right):: \Gamma \vdash+: \mathrm{T}_{2}\right] \Longrightarrow x \# \operatorname{Lam}[x] . \dagger$
3. $\Lambda \times \Gamma \mathrm{T}_{1}+\mathrm{T}_{2} \cdot\left[\times \# \Gamma ;\left(x, \mathrm{~T}_{1}\right):: \Gamma \vdash+: \mathrm{T}_{2}\right] \Longrightarrow x \# \mathrm{~T}_{1} \rightarrow \mathrm{~T}_{2}$

CK Machine Implies the Evaluation Relation (Via A Small-Step Reduction)

A Direct Attempt

- The statement for the other direction is as follows:
lemma machines_implies_eval:
assumes $a: ~ "\langle\dagger,[]\rangle \mapsto^{*}\langle v,[]\rangle "$
and b: "val v"
shows " $\dagger \Downarrow v$ "

A Direct Attempt

- The statement for the other direction is as follows:
lemma machines_implies_eval:
assumes $a: ~ "\langle\dagger,[]\rangle \mapsto^{*}\langle v,[]\rangle "$
and b: "val v"
shows " $\dagger \Downarrow v$ "
oops

A Direct Attempt

- The statement for the other direction is as follows:
lemma machines_implies_eval:
assumes a: " $\langle\dagger,[]\rangle \mapsto^{*}\langle\mathrm{v},[]\rangle "$
and b: "val v"
shows " $\dagger \Downarrow v$ "
oops
- We can prove this direction by introducing a small-step reduction relation.

CBV-Reduction

inductive

$$
\text { cbv :: "lam } \left.\Rightarrow \text { lam } \Rightarrow \text { bool" ("_ } \longrightarrow c b v _"\right) ~
$$

where

$$
\begin{aligned}
& \mathrm{cbv}_{1}: \text { "val } v \Longrightarrow \text { App (Lam [x].t) v } \longrightarrow \mathrm{cbv} \dagger[\mathrm{x}::=\mathrm{v}] \text { " } \\
& \mid \mathrm{cbv}_{2}: ~ " \dagger \longrightarrow \mathrm{cbv} \dagger^{\prime} \Longrightarrow A p p \dagger \dagger_{2} \longrightarrow \mathrm{cbv} \text { App } \dagger^{\prime} \dagger_{2}{ }^{\prime \prime}
\end{aligned}
$$

- Later on we like to use the strong induction principle for this relation.

CBV-Reduction

inductive

$$
\text { cbv :: "lam } \Rightarrow \text { lam } \Rightarrow \text { bool" ("_ } \longrightarrow \text { cbv__") }
$$

where

$$
\begin{aligned}
& \mathrm{cbv}_{1}: \text { "val } v \Longrightarrow \text { App (Lam [x].t) v } \longrightarrow \mathrm{cbv} \dagger[\mathrm{x}::=\mathrm{v}] \text { " } \\
& \mid \mathrm{cbv}_{2}: ~ " \dagger \longrightarrow \mathrm{cbv} \dagger^{\prime} \Longrightarrow A p p \dagger \dagger_{2} \longrightarrow \mathrm{cbv} \text { App } \dagger^{\prime} \dagger_{2}{ }^{\prime \prime}
\end{aligned}
$$

- Later on we like to use the strong induction principle for this relation.

Conditions:

1. $\Lambda v \times \dagger$. val $v \Longrightarrow x \#$ App Lam $[x] . \dagger v$
2. $\Lambda v \times \dagger$. val $v \Longrightarrow x \#+[x::=v]$

CBV-Reduction

inductive

$$
\text { cbv :: "lam } \left.\Rightarrow \text { lam } \Rightarrow \text { bool" ("_ } \longrightarrow c b v _"\right) ~
$$

where
$c b v_{1}: " \llbracket \mathrm{val} \mathrm{v} ; \mathrm{x} \# \mathrm{v} \rrbracket \Longrightarrow \operatorname{App}(\operatorname{Lam}[x] . t) v \longrightarrow c b v+[x::=\mathrm{v}] "$
| cbv_{2} [intro]: " $\dagger \longrightarrow \mathrm{cbv} \dagger^{\prime} \Longrightarrow$ App $\dagger \dagger_{2} \longrightarrow \mathrm{cbv}$ App $\dagger^{\prime} \dagger_{2}$ "

- The conditions that give us automatically the strong induction principle require us to add the assumption $\times \#$ v. This makes this rule less useful.

Better Introduction Rule

lemma better_cbv_[intro]: assumes a: "val v"
shows "App (Lam [x].t) v $\longrightarrow c b v+[x::=v]$ "
proof -
obtain y ::"name" where fs: "y\#(x, t, v)"
by (rule exists_fresh) (auto simp add: fs_name1)
have "App (Lam [x].t) v = App (Lam [y].([(y,x)]•†)) v" using fs
by (auto simp add: lam.inject alpha' fresh_prod fresh_atm)
also have "... $\longrightarrow c b v([(y, x)] \bullet \dagger)[y::=v]$ " using $f s$ a
by (auto simp add: cbv ${ }_{1}$ fresh_prod)
also have "... = †[x::=v]" using fs
by (simp add: subst_rename[symmetric] fresh_prod)
finally show "App (Lam [x].t) v $\longrightarrow \mathrm{cbv} \dagger[\mathrm{x}::=\mathrm{v}]$ " by simp qed

Better Introduction Rule

lemma better_cbv_[intro]: assumes a: "val v"
shows "App (Lam [x].t) v $\longrightarrow \mathrm{cbv}+[\mathrm{x}::=\mathrm{=}]$ "
proof -
obtain y::"name" where fs: "y\#(x,t,v)"
by (rule exists_fresh) (auto simp add: fs_name1)
have "App (Lam [x].t) v=App (Lam [y].([(y,x)]・ナ)) v" using fs
by (auto simp add: lam.inject alpha' fresh_prod fresh_atm)
also have "... $\longrightarrow \mathrm{cbv}([(y, x)] \cdot+)[y::=v]$ " using fs a
by (auto simp add: cbv l_{1} fresh_prod)
also have "... = $\dagger[x::=v]$ " using fs
by (simp add: subst_rename[symmetric] fresh_prod)
finally show "App (Lam [x].t) $v \longrightarrow c b v+[x::=v]$ " by simp qed

Better Introduction Rule

lemma better_cbv_[intro]:
assumes a: "val v"
shows "App (Lam [x].t) v $\longrightarrow \mathrm{cbv}+[\mathrm{x}::=\mathrm{=}]$ "
proof -
obtain y ::"name" where fs: " $y \#(x, t, v)$ "
by (rule exists_fresh) (auto simp add: fs_name1)
by (auto simp add: lam.inject alpha' fresh_prod fresh_atm)
also have "... $\longrightarrow c b v([(y, x)] \bullet \dagger)[y::=v]$ " using $f s$ a
by (auto simp add: cbv ${ }_{1}$ fresh_prod)
also have "... = †[x::=v]" using fs
by (simp add: subst_rename[symmetric] fresh_prod)
finally show "App (Lam [x$]. \dagger$) $v \longrightarrow \mathrm{cbv} \dagger[\mathrm{x}::=\mathrm{v}]$ " by simp qed

Better Introduction Rule

lemma better_cbv_[intro]:
assumes a: "val v"
shows "App (Lam [x].t) v $\longrightarrow \mathrm{cbv}+[\mathrm{x}::=\mathrm{=}]$ "
proof -
obtain y::"name" where fs: "y\#(x,t,v)"
by (rule exists_fresh) (auto simp add: fs_name1)
have "App (Lam [x].t) v = App (Lam [y].([(y,x)]•t)) v" using fs by (auto simp add: lam.inject alpha' fresh_prod fresh_atm)
\square
by (auto simp add: cbv l_{1} fresh_prod)
by (simp add: subst_rename[symmetric] fresh_prod) finally show "App (Lam [x].t) $v \longrightarrow c b v+[x::=v]$ " by simp qed

Better Introduction Rule

lemma better_cbv_[intro]:
assumes a: "val v"
shows "App (Lam [x].t) v $\longrightarrow \mathrm{cbv}+[\mathrm{x}::=\mathrm{v}]$ "
proof -
obtain $y:: " n a m e "$ where $f s: ~ " y \#(x, t, v) "$
by (rule exists_fresh) (auto simp add: fs_name1)
have "App (Lam [x].t) v = App (Lam [y].([(y,x)]•t)) v" using fs
by (auto simp add: lam.inject alpha' fresh_prod fresh_atm)
also have "... $\longrightarrow c b v([(y, x)] \bullet+)[y::=v]$ " using fs a
by (auto simp add: cbv ${ }_{1}$ fresh_prod)
by (simp add: subst_rename[symmetric] fresh_prod)
finally show "App (Lam [x].t) $\vee \longrightarrow \mathrm{cbv}+[\mathrm{x}::=\mathrm{v}]$ " by simp

Better Introduction Rule

lemma better_cbv_[intro]:
assumes a: "val v"
shows "App (Lam [x].t) v $\longrightarrow \mathrm{cbv}+[\mathrm{x}::=\mathrm{v}]$ "
proof -
obtain $y:: " n a m e "$ where $f s: ~ " y \#(x, t, v) "$
by (rule exists_fresh) (auto simp add: fs_name1)
have "App (Lam [x].t) v = App (Lam [y].([(y,x)]•t)) v" using fs
by (auto simp add: lam.inject alpha' fresh_prod fresh_atm)
also have "... $\longrightarrow c b v([(y, x)] \bullet+)[y::=v]$ " using fs a
by (auto simp add: cbv ${ }_{1}$ fresh_prod)
also have "... = $\dagger[x::=v]$ " using fs
by (simp add: subst_rename[symmetric] fresh_prod)

Better Introduction Rule

lemma better_cbv_[intro]:
assumes a: "val v"
shows "App (Lam [x].t) v $\longrightarrow \mathrm{cbv}+[\mathrm{x}::=\mathrm{=}]$ "
proof -
obtain $y:: " n a m e "$ where $f s: ~ " y \#(x, t, v) "$
by (rule exists_fresh) (auto simp add: fs_name1)
have "App (Lam [x].t) v = App (Lam [y].([(y,x)]•t)) v" using fs
by (auto simp add: lam.inject alpha' fresh_prod fresh_atm)
also have "... $\longrightarrow c b v([(y, x)] \bullet+)[y::=v]$ " using fs a
by (auto simp add: cbv ${ }_{1}$ fresh_prod)
also have "... = $\dagger[x::=v]$ " using fs
by (simp add: subst_rename[symmetric] fresh_prod)
finally show "App (Lam $[x] . t) v \longrightarrow c b v+[x::=v]$ " by simp qed

CBV-Reduction^

inductive
"cbvs" :: "lam \Rightarrow lam \Rightarrow bool" (" _ $\longrightarrow c^{\prime} b^{*}$ _")
where
cbvs $_{1}$ [intro]: " $e \longrightarrow \mathrm{cbv}^{*} e^{\text {" }}$
| cbvs $_{2}$ [intro]: " $\left[e_{1} \longrightarrow\right.$ cbv $_{2} ; e_{2} \longrightarrow$ cbv $^{\star} e_{3} \rrbracket \Longrightarrow e_{1} \longrightarrow c b v^{*} e_{3} "$
lemma cbvs $_{3}$ [intro]:
assumes a: " $e_{1} \longrightarrow c b v^{*} e_{2}$ " " $e_{2} \longrightarrow c b v^{*} e_{3}$ "
shows " $e_{1} \longrightarrow c b v^{*} e_{3}$ "
using a by (induct) (auto)

CBV-Reduction^

inductive
"cbvs" :: "lam \Rightarrow lam \Rightarrow bool" (" _ $\left.\longrightarrow c b v * ~ _"\right) ~$
where

| cbvs $_{2}$ [intro]: " $\left[e_{1} \longrightarrow c b v e_{2} ; e_{2} \longrightarrow\right.$ cbv $^{*} e_{3} \rrbracket \Longrightarrow e_{1} \longrightarrow c b v^{*} e_{3} "$
lemma cbvs $_{3}$ [intro]:

shows " $e_{1} \longrightarrow c b v^{*} e_{3}$ "
using a by (induct) (auto)
lemma cbv_in_ctx:
assumes a: " $\dagger \longrightarrow c b v \dagger$ " " shows " $E \llbracket \dagger \rrbracket \longrightarrow c b v E \llbracket \dagger^{\dagger} \rrbracket "$

Is another such exercise needed?
using a by (induct E) (auto)

CK Machine Implies CBV ${ }^{\star}$

lemma machines_implies_cbvs: assumes a: " $\langle e,[]\rangle \mapsto^{*}\left\langle e^{\prime},[]\right\rangle "$ shows " $e \longrightarrow c b v^{*} e^{\prime \prime}$
using a by (auto dest: machines_implies_cbvs_ctx)

CK Machine Implies CBV ${ }^{\star}$

lemma machine_implies_cbvs_ctx:
assumes a: " $\langle e, E s\rangle \mapsto\left\langle e^{\prime}, E s^{\prime}\right\rangle "$ shows "(Es $\downarrow)[e] \longrightarrow \mathrm{cbv}^{*}\left(E s^{\prime} \downarrow\right)\left[e^{\prime}\right]$ "
using a by (induct) (auto simp add: ctx_compose intro: cbv_in_ctx)
lemma machines_implies_cbvs: assumes a: " $\langle e,[]\rangle \mapsto^{*}\left\langle e^{\prime},[]\right\rangle$ " shows "e $\longrightarrow \mathrm{cbv}^{*} e^{\prime "}$
using a by (auto dest: machines_implies_cbvs_ctx)
lemma machine_implies_cbvs_c†x:
assumes a: " $\langle e, E s\rangle \mapsto\left\langle e^{\prime}, E s^{\prime}\right\rangle$ "
shows "(Es $\left.\downarrow) \llbracket e \rrbracket \longrightarrow c b v^{*}\left(E s^{\prime} \downarrow\right) \llbracket e^{\prime}\right] "$
using a by (induct) (auto simp add: ctx_compose intro: cbv_in_ctx)
If we had not derived the better cbv-rule, then we would have to do an explicit renaming here.
lemma machines_implies_cbvs: assumes a: " $\langle e,[]\rangle \mapsto^{*}\left\langle e^{\prime},[]\right\rangle "$ shows "e $\longrightarrow c b v^{*} e^{\prime \prime}$
using a by (auto dest: machines_implies_cbvs_c†x)

CK Machine Implies CBV ${ }^{\star}$

lemma machine_implies_cbvs_ctx:
assumes a: " $\langle e, E s\rangle \mapsto\left\langle e^{\prime}, E s^{\prime}\right\rangle "$
shows "(Es $\downarrow)[e] \longrightarrow \mathrm{cbv}^{*}\left(E s^{\prime} \downarrow\right)\left[e^{\prime}\right]$ "
using a by (induct) (auto simp add: ctx_compose intro: cbv_in_ctx)
lemma machines_implies_cbvs_ctx:
assumes a: " $\langle e, E s\rangle \mapsto^{*}\left\langle e^{\prime}, E s^{\prime}\right\rangle$ "
shows "(Es $\downarrow)[e] \longrightarrow c b v^{*}\left(E s^{\prime} \downarrow\right)\left[e^{\prime}\right] "$
using a by (induct) (auto dest: machine_implies_cbvs_ctx)
lemma machines_implies_cbvs:
assumes a: " $\langle e,[]\rangle \mapsto^{*}\left\langle e^{\prime},[]\right\rangle$ "
shows "e $\longrightarrow \mathrm{cbv}^{*} e^{\prime "}$
using a by (auto dest: machines_implies_cbvs_ctx)

Your Turn

lemma machine_implies_cbvs_ctx:
assumes a: " $\langle e, E s\rangle \mapsto\left\langle e^{\prime}, E s^{\prime}\right\rangle$ "
shows "(Es $\left.\downarrow)[e] \longrightarrow c b v^{*}\left(E s^{\prime} \downarrow\right) \llbracket e^{\prime}\right]$ "
using a proof (induct)
case ($\left.m_{1} \dagger_{1} t_{2} E s\right)$
show "Es $\downarrow \llbracket A p p \dagger_{1} \dagger_{2} \rrbracket \longrightarrow$ cbv* $\left.^{*}\left(C A p p L \square \dagger_{2} \# E s\right) \downarrow \llbracket \dagger_{1}\right]$ " sorry

next

case ($m_{2} \vee t_{2}$ Es)
have "val v" by fact
show "(CAppL $\left.\square \dagger_{2} \# E s\right) \downarrow \llbracket v \rrbracket \longrightarrow c b v^{*}(C A p p R v \square \# E s) \downarrow \llbracket \dagger_{2} \rrbracket$ " sorry next
case ($m_{3} \vee x \dagger$ Es)
have "val v" by fact
show "(CAppR Lam $[x] . \dagger \square \# E s) \downarrow\left[v \rrbracket \longrightarrow c b v^{*}(E s \downarrow) \llbracket \dagger[x::=v]\right]$ " sorry qed

CBV^ Implies Evaluation

- We need the following auxiliary lemmas in order to show that cbv-reduction implies evaluation.
lemma eval_val:
assumes a: "val †"
shows "† \downarrow †"
using a by (induct) (auto)
lemma e_App_elim:
assumes a: "App $\dagger_{1} \dagger_{2} \Downarrow v$ " shows " $\exists x+v^{\prime} . \dagger_{1} \Downarrow \operatorname{Lam}[x] . \dagger \wedge \dagger_{2} \Downarrow v^{\prime} \wedge \dagger\left[x::=v^{\prime}\right] \Downarrow v^{\prime \prime}$
using a by (cases) (auto simp add: lam.inject)
lemma cbv_eval:
assumes $\mathrm{a}: ~ " \dagger_{1} \longrightarrow \mathrm{cbv} \dagger_{2}{ }^{\prime \prime}{ }^{\prime} \dagger_{2} \Downarrow \dagger_{3}$ " shows " $\dagger_{1} \Downarrow \dagger_{3}$ "
using a proof(induct arbitrary: \dagger_{3})
case $\left(\mathrm{cbv}_{1} \vee \times \mathrm{t}_{3}\right)$
have a1: "val v" by fact
have a2: "+[$x::=\mathrm{v}] \Downarrow \dagger_{3}$ " by fact
show "App Lam [x].t $v \Downarrow \dagger_{3}$ " sorry

next

case (cbv $\left.{ }_{2} \dagger \dagger^{\prime} \dagger_{2} \dagger_{3}\right)$
have in: " $\wedge t_{3} . \dagger^{\prime} \Downarrow t_{3} \Longrightarrow \dagger \Downarrow t_{3}$ " by fact
have "App $\dagger^{\prime} \dagger_{2} \Downarrow \dagger_{3}$ " by fact
then obtain $x \dagger^{\prime \prime} v^{\prime}$
where a1: " \dagger ' $\Downarrow \operatorname{Lam}[x] . \dagger^{\prime "}$
and a : " $\dagger_{2} \Downarrow v \mathrm{v}^{\prime \prime}$
and a3: " \dagger " $[x::=v$ ' $] \Downarrow \dagger_{3}$ " using e_App_elim by blas \dagger
have " $\dagger \Downarrow$ Lam [x]. $t^{\prime \prime \prime}$ using ih a1 by auto
then show "App $\dagger \dagger_{2} \Downarrow \dagger_{3}$ " using a2 a3 by auto
qed (auto dest!: e_App_elim)
lemma cbv_eval:
assumes a: " $\dagger_{1} \longrightarrow c b v t_{2}$ " ${ }^{2} \dagger_{2} \Downarrow \dagger_{3}$ " shows " $\dagger_{1} \Downarrow \dagger_{3}$ "
using a proof(induct arbitrary: t_{3})
case $\left(\mathrm{cbv}_{1} \vee \times \mathrm{t}_{3}\right)$
have a1: "val v" by fact
have a2: " $\dagger[x::=v] \Downarrow \dagger_{3}$ " by fact
show "App Lam [x]. $\downarrow v \Downarrow \dagger_{3}$ " using eval_val a1 a2 by auto next
case $\left(\mathrm{cbv}_{2}+\mathrm{t}^{\prime} \mathrm{t}_{2} \dagger_{3}\right)$
have ih: " $\wedge \dagger_{3} . \dagger^{\prime} \Downarrow \dagger_{3} \Longrightarrow+\Downarrow \dagger_{3}$ " by fact have "App $\dagger^{\prime} \dagger_{2} \Downarrow \dagger_{3}$ " by fact
then obtain $\times \dagger^{\prime \prime} \mathrm{v}^{\prime}$
where a1: " $\dagger^{\prime} \Downarrow$ Lam [x].t'"
and a3: " \dagger " $\left[x::=v^{\prime}\right] \Downarrow \dagger_{3}$ " using e_App_elim by blas \dagger
have " $\dagger \Downarrow$ Lam $[x] .+$ "" using ih a1 by auto
then show "App $\dagger \dagger_{2} \Downarrow \dagger_{3}$ " using a2 a3 by auto
qed (auto dest!: e_App_elim)
lemma cbv_eval:
 shows " $\dagger_{1} \Downarrow \dagger_{3}$ "
using a proof(induct arbitrary: \dagger_{3})
case $\left(\mathrm{cbv}_{1} \vee \times \mathrm{t}_{3}\right)$
have a1: "val v" by fact
have a2: "+[x::=v] \| \dagger_{3} " by fact
show "App Lam [x]. $\dagger v \Downarrow \dagger_{3}$ " using eval_val a1 a2 by auto next
case ($\mathrm{cbv}_{2} \dagger \mathrm{t}^{\prime} \mathrm{t}_{2} \dagger_{3}$)
have ih: " $\wedge \dagger_{3} . \dagger^{\prime} \Downarrow \dagger_{3} \Longrightarrow \dagger \Downarrow \dagger_{3}$ " by fact
have "App $\dagger^{\prime} \dagger_{2} \Downarrow \dagger_{3}$ " by fact

lemma cbv_eval:
assumes $a: " \dagger_{1} \longrightarrow-h ッ+" 1+\|+"$ shows " $\dagger_{1} \Downarrow \dagger_{3}$ " lemma e_App_elim:
using a proof(induct assumes a: "App $\dagger_{1} \dagger_{2} \Downarrow v v^{\prime}$
case ($c b v_{1} \vee \times \dagger \dagger_{3}{ }^{\text {j }}$
have a1: "val v" by fact
have a2: " $+[x::=v] \Downarrow t_{3}$ " by fact
show "App Lam [x]. $\downarrow v \dagger_{3}$ " using eval_val a1 a2 by auto next
case $\left(\mathrm{cbv}_{2} \dagger \dagger^{\prime} \dagger_{2} \dagger_{3}\right)$
have in: " $\wedge t_{3} . \dagger^{\prime} \Downarrow t_{3} \Longrightarrow \dagger \Downarrow t_{3}$ " by fact
have "App $\dagger^{\prime} t_{2} \Downarrow \dagger_{3}$ " by fact

lemma cbv_eval:
assumes a : " $\dagger_{1} \longrightarrow$-hı + " "+ $11+$ " shows " $\dagger_{1} \Downarrow \dagger_{3}$ " lemma e_App_elim:
using a proof(induct assumes a: "App $\dagger_{1} \dagger_{2} \Downarrow v$ "
case ($\mathrm{cbv}_{1} \vee \times \dagger \dagger_{3}$)
have a1: "val v" by fact
have a2: " $+[x::=v] \Downarrow t_{3}$ " by fact
show "App Lam [x].t v $\Downarrow \dagger_{3}$ " using eval_val a1 a2 by auto next
case $\left(\mathrm{cbv}_{2} \dagger \dagger^{\prime} \mathrm{t}_{2} \mathrm{t}_{3}\right)$
have ih: " $\wedge t_{3} . \dagger^{\prime} \Downarrow t_{3} \Longrightarrow \dagger \Downarrow t_{3}$ " by fact
have "App $\dagger^{\prime} t_{2} \Downarrow \dagger_{3}$ " by fact
then obtain $\times \dagger^{\prime \prime} v^{\prime}$
where a1: " \dagger ' $\Downarrow \operatorname{Lam}[x] . \dagger^{\prime \prime \prime}$
and a : " $\dagger_{2} \Downarrow \mathrm{v}^{\prime \prime}$
and a3: " \dagger " $[x::=v$ ' $] \Downarrow \dagger_{3}$ " using e_App_elim by blas \dagger
lemma cbv_eval:
assumes $\mathrm{a}: ~ " \dagger_{1} \longrightarrow \mathrm{cbv} \dagger_{2}{ }^{\prime \prime}{ }^{\prime} \dagger_{2} \Downarrow \dagger_{3}$ " shows " $\dagger_{1} \Downarrow \dagger_{3}$ "
using a proof(induct arbitrary: \dagger_{3})
case $\left(\mathrm{cbv}_{1} \vee \times \dagger \dagger_{3}\right)$
have a1: "val v" by fact
have a2: "+[$x::=\mathrm{v}] \Downarrow \dagger_{3}$ " by fact
show "App Lam [x]. $\dagger v \Downarrow \dagger_{3}$ " using eval_val a1 a2 by auto next
case $\left(\mathrm{cbv}_{2} \dagger \mathrm{t}^{\prime} \mathrm{t}_{2} \dagger_{3}\right)$
have ih: " $\wedge \dagger_{3} . \dagger^{\dagger} \Downarrow \dagger_{3} \Longrightarrow \dagger \Downarrow \dagger_{3}$ " by fact
have "App $\dagger^{\prime} \dagger_{2} \Downarrow \dagger_{3}$ " by fact
then obtain $\times \dagger^{\prime \prime} v^{\prime}$
where a1: " \dagger ' \Downarrow Lam [x]. $\mathrm{t}^{\prime \prime \prime}$
and a2: " $\dagger_{2} \Downarrow \mathrm{v}^{\prime \prime \prime}$
and a3: " + " $\left[x::=\mathrm{v}\right.$ '] $\Downarrow \dagger_{3}$ " using e_App_elim by blas \dagger have " $\dagger \Downarrow$ Lam [x]. \dagger "" using ih a1 by auto
lemma cbv_eval:
assumes $\mathrm{a}: ~ " \dagger_{1} \longrightarrow \mathrm{cbv} \dagger_{2}{ }^{\prime \prime}{ }^{\prime} \dagger_{2} \Downarrow \dagger_{3}$ " shows " $\dagger_{1} \Downarrow \dagger_{3}$ "
using a proof(induct arbitrary: \dagger_{3})
case $\left(\mathrm{cbv}_{1} \vee \times \mathrm{t}_{3}\right)$
have a1: "val v" by fact
have a2: "+[$x::=\mathrm{v}] \Downarrow \dagger_{3}$ " by fact
show "App Lam [x]. $\dagger v \Downarrow \dagger_{3}$ " using eval_val a1 a2 by auto next
case $\left(\mathrm{cbv}_{2} \dagger \mathrm{t}^{\prime} \mathrm{t}_{2} \dagger_{3}\right)$
have ih: " $\wedge \dagger_{3} . \dagger^{\prime} \Downarrow \dagger_{3} \Longrightarrow \dagger \Downarrow \dagger_{3}$ " by fact
have "App $\dagger^{\prime} \dagger_{2} \Downarrow \dagger_{3}$ " by fact
then obtain $\times \dagger^{\prime \prime} v^{\prime}$
where a1: " \dagger ' \Downarrow Lam [x]. $\mathrm{t}^{\prime \prime \prime}$
and a2: " $t_{2} \Downarrow \mathrm{v}^{\prime \prime \prime}$
and a3: " $\dagger^{+}\left[x::=\mathrm{v}\right.$ '] $\Downarrow \dagger_{3}$ " using e_App_elim by blas \dagger
have " $\dagger \Downarrow$ Lam [x]. \dagger "" using ih a1 by auto
then show "App $\dagger \dagger_{2} \Downarrow \dagger_{3}$ " using a2 a3 by auto
lemma cbv_eval:
assumes $\mathrm{a}: ~ " \dagger_{1} \longrightarrow \mathrm{cbv} \dagger_{2}{ }^{\prime \prime}{ }^{\prime} \dagger_{2} \Downarrow \dagger_{3}$ " shows " $\dagger_{1} \Downarrow \dagger_{3}$ "
using a proof(induct arbitrary: \dagger_{3})
case $\left(\mathrm{cbv}_{1} \vee \times \mathrm{t}_{3}\right)$
have a1: "val v" by fact
have a2: " $\dagger[x::=v] \Downarrow \dagger_{3}$ " by fact
show "App Lam [x]. $\dagger v \Downarrow \dagger_{3}$ " using eval_val a1 a2 by auto next
case $\left(\mathrm{cbv}_{2} \dagger \mathrm{t}^{\prime} \mathrm{t}_{2} \dagger_{3}\right)$
have ih: " $\wedge \dagger_{3} . \dagger^{\dagger} \Downarrow \dagger_{3} \Longrightarrow \dagger \Downarrow \dagger_{3}$ " by fact
have "App $\dagger^{\prime} \dagger_{2} \Downarrow \dagger_{3}$ " by fact
then obtain $\times \dagger^{\prime \prime} v^{\prime}$
where a1: " \dagger ' \Downarrow Lam [x]. $\mathrm{t}^{\prime \prime \prime}$
and a2: " $\dagger_{2} \Downarrow \mathrm{v}^{\prime \prime \prime}$
and a3: " + " $\left[x::=\mathrm{v}\right.$ '] $\Downarrow \dagger_{3}$ " using e_App_elim by blas \dagger
have " $\dagger \Downarrow$ Lam [x]. \dagger "" using ih a1 by auto
then show "App $\dagger \dagger_{2} \Downarrow \dagger_{3}$ " using a2 a3 by auto
qed (auto dest!! e_App_elim)

Nothing Interesting

lemma cbvs_eval:
assumes a: " $\dagger_{1} \longrightarrow \mathrm{cbv}^{\star} \dagger_{2}$ " " $\dagger_{2} \Downarrow \dagger_{3}$ "
shows " $\dagger_{1} \Downarrow \dagger_{3}$ "
using a by (induct) (auto intro: cbv_eval)
lemma cbvs_implies_eval:
assumes $a: ~ " \dagger \longrightarrow c b v * v " ~ " v a l ~ v " ~$ shows "† \downarrow "
using a by (induct) (auto intro: eval_val cbvs_eval)
theorem machines_implies_eval:
assumes a : " $\left\langle t_{1},[]\right\rangle \mapsto^{*}\left\langle t_{2},[]\right\rangle$ " and b : "val t_{2} " shows " $\dagger_{1} \Downarrow \dagger_{2}$ "
proof -
have " $\dagger_{1} \longrightarrow$ cbv* $^{\star} \dagger_{2}$ " using a by (simp add: machines_implies_cbvs)
then show " $\dagger_{1} \Downarrow \dagger_{2}$ " using b by (simp add: cbvs_implies_eval)
qed

Extensions

- With only minimal modifications the proofs can be extended to the language given by:
nominal_datatype lam =
Var "name"
App "lam" "lam"
Lam "«name»lam" ("Lam [_]._")
Num "nat"
Minus "lam" "lam" ("_ -- _")
Plus "lam" "lam" ("_++ _")
TRUE
FALSE
IF "lam" "lam" "lam"
Fix "《name»lam" ("Fix [_]._")
Zet "lam"
Eqi "lam" "lam"

Honest Toil, No Theft!

- The sacred principle of HOL:
"The method of 'postulating' what we want has many advantages; they are the same as the advantages of theft over honest toil."
B. Russell, Introduction of Mathematical Philosophy
- I will show next that the weak structural induction principle implies the strong structural induction principle.
(I am only going to show the lambda-case.)

Permutations

A permutation acts on variable names as follows:

$$
\begin{aligned}
{[] \cdot a } & \stackrel{\text { def }}{=} a \\
\left(\left(a_{1} a_{2}\right):: \pi\right) \cdot a & \stackrel{\text { def }}{=} \begin{cases}a_{1} & \text { if } \pi \cdot a=a_{2} \\
a_{2} & \text { if } \pi \cdot a=a_{1} \\
\pi \cdot a & \text { otherwise }\end{cases}
\end{aligned}
$$

- [] stands for the empty list (the identity permutation), and
- $\left(a_{1} a_{2}\right):: \pi$ stands for the permutation π followed by the swapping ($a_{1} a_{2}$).

Permutations on Lambda-Terms

- Permutations act on lambda-terms as follows:
$\boldsymbol{\pi} \cdot \boldsymbol{x} \stackrel{\text { def }}{=}$ "action on variables"

$$
\begin{array}{ll}
\pi \cdot\left(t_{1} t_{2}\right) & \stackrel{\text { def }}{=}\left(\pi \cdot t_{1}\right)\left(\pi \cdot t_{2}\right) \\
\pi \cdot(\boldsymbol{\lambda} x . t) & \stackrel{\text { def }}{=} \lambda(\pi \cdot \boldsymbol{x}) \cdot(\pi \cdot t)
\end{array}
$$

- Alpha-equivalence can be defined as:

\[

\]

Permutations on Lambda-Terms

- Permutations act on lambda-terms as follows:
$\boldsymbol{\pi} \cdot \boldsymbol{x} \stackrel{\text { def }}{=}$ "action on variables"

$$
\begin{array}{ll}
\pi \cdot\left(t_{1} t_{2}\right) & \stackrel{\text { def }}{=}\left(\pi \cdot t_{1}\right)\left(\pi \cdot t_{2}\right) \\
\pi \cdot(\boldsymbol{\lambda x} \cdot t) & \stackrel{\text { def }}{=} \lambda(\pi \cdot \boldsymbol{x}) \cdot(\pi \cdot t)
\end{array}
$$

- Alpha-equivalence can be defined as:

\[

\]

My Claim

$$
\begin{aligned}
& \forall x . P x \\
& \forall t_{1} t_{2} . P t_{1} \wedge P t_{2} \Rightarrow P\left(t_{1} t_{2}\right) \\
& \forall x t . P t \Rightarrow P(\lambda x . t) \\
& P \text { t }
\end{aligned}
$$

implies

$\forall x c . P c x$
$\forall t_{1} t_{2} c .\left(\forall d . P d t_{1}\right) \wedge\left(\forall d . P d t_{2}\right) \Rightarrow P c\left(t_{1} t_{2}\right)$
$\forall x t c . x \# c \wedge(\forall d . P d t) \Rightarrow P c(\lambda x . t)$
Pct

Proof for the Strong Induction Principle

- We prove Pct by induction on t.

Proof for the Strong Induction Principle

- We prove $\forall \pi c . \operatorname{Pc}(\pi \cdot t)$ by induction on t.

Proof for the Strong Induction Principle

- We prove $\forall \pi c . \operatorname{Pc}(\pi \cdot t)$ by induction on t.
- I.e., we have to show Pc $(\pi \cdot(\lambda x . t))$.

Proof for the Strong Induction Principle

- We prove $\forall \pi c . \operatorname{Pc}(\pi \cdot t)$ by induction on t.
- I.e., we have to show $\operatorname{Pc} \boldsymbol{\lambda}(\pi \cdot x) \cdot(\pi \cdot t)$.

Proof for the Strong Induction Principle

- We prove $\forall \pi c . \operatorname{Pc}(\pi \cdot t)$ by induction on t.
- I.e., we have to show $\operatorname{Pc\lambda } \boldsymbol{\lambda}(\pi \cdot x) .(\pi \cdot t)$.
- We have $\forall \pi c . P c(\pi \cdot t)$ by induction.

Proof for the Strong Induction Principle

- We prove $\forall \pi c . \operatorname{Pc}(\pi \cdot t)$ by induction on t.
- I.e., we have to show $P c \lambda(\pi \cdot x) .(\pi \cdot t)$.
- We have $\forall \pi c . P c(\pi \cdot t)$ by induction.
- Our weaker precondition says that:

$$
\forall x t c . x \# c \wedge(\forall c . P c t) \Rightarrow P c(\lambda x . t)
$$

Proof for the Strong Induction Principle

- We prove $\forall \pi c . \operatorname{Pc}(\pi \cdot t)$ by induction on t.
- I.e., we have to show $P c \lambda(\pi \cdot x) .(\pi \cdot t)$.
- We have $\forall \pi c . P c(\pi \cdot t)$ by induction.
- Our weaker precondition says that:

$$
\forall x t c . x \# c \wedge(\forall c . P c t) \Rightarrow P c(\lambda x . t)
$$

- We choose a fresh y such that $y \#(\pi \cdot x, \pi \cdot t, c)$.

Proof for the Strong Induction Principle

- We prove $\forall \pi c . \operatorname{Pc}(\pi \cdot t)$ by induction on t.
- I.e., we have to show $P c \lambda(\pi \cdot x) .(\pi \cdot t)$.
- We have $\forall \pi c . \operatorname{Pc}(\pi \cdot t)$ by induction.
- Our weaker precondition says that:

$$
\forall x t c . x \# c \wedge(\forall c . P c t) \Rightarrow P c(\lambda x . t)
$$

- We choose a fresh y such that $y \#(\pi \cdot x, \pi \cdot t, c)$.
- Now we can use $\forall c . \operatorname{Pc}(((y \pi \cdot x):: \pi) \cdot t)$

Proof for the Strong Induction Principle

- We prove $\forall \pi c . \operatorname{Pc}(\pi \cdot t)$ by induction on t.
- I.e., we have to show $P c \lambda(\pi \cdot x) .(\pi \cdot t)$.
- We have $\forall \pi c . P c(\pi \cdot t)$ by induction.
- Our weaker precondition says that:

$$
\forall x t c . x \# c \wedge(\forall c . P c t) \Rightarrow P c(\lambda x . t)
$$

- We choose a fresh y such that $y \#(\pi \cdot x, \pi \cdot t, c)$.
- Now we can use $\forall c . \operatorname{Pc}((y \pi \cdot x) \cdot \pi \cdot t)$

Proof for the Strong Induction Principle

- We prove $\forall \pi c . \operatorname{Pc}(\pi \cdot t)$ by induction on t.
- I.e., we have to show $\operatorname{Pc\lambda } \lambda(\pi \cdot x) .(\pi \cdot t)$.
- We have $\forall \pi c . P c(\pi \cdot t)$ by induction.
- Our weaker precondition says that:

$$
\forall x t c . x \# c \wedge(\forall c . P c t) \Rightarrow P c(\lambda x . t)
$$

- We choose a fresh y such that $y \#(\pi \cdot x, \pi \cdot t, c)$.
- Now we can use $\forall c . \operatorname{Pc}((y \pi \cdot x) \cdot \pi \cdot t)$ to infer

$$
P c \lambda y \cdot((y \pi \cdot x) \cdot \pi \cdot t)
$$

Proof for the Strong Induction Principle

- We prove $\forall \pi c . \operatorname{Pc}(\pi \cdot t)$ by induction on t.
- I.e., we have to show $P c \lambda(\pi \cdot x) .(\pi \cdot t)$.
- We have $\forall \pi c . P c(\pi \cdot t)$ by induction.
- Our wear $\quad x \neq y \quad t_{1}=(x y) \cdot t_{2} \quad y \# t_{2}$

$$
\begin{equation*}
\forall x t \xrightarrow[\lambda y \cdot t_{1}=\lambda x \cdot t_{2}]{ } \tag{t}
\end{equation*}
$$

- We choose a fresh y such that $y \#(\pi \cdot x, \pi \cdot t, c)$.
- Now we can use $\forall c . \operatorname{Pc}((y \pi \cdot x) \cdot \pi \cdot t)$ to infer

$$
P c \lambda y \cdot((y \pi \cdot x) \cdot \pi \cdot t)
$$

- However

$$
\lambda y \cdot((y \pi \cdot x) \cdot \pi \cdot t)=\lambda(\pi \cdot x) \cdot(\pi \cdot t)
$$

Proof for the Strong Induction Principle

- We prove $\forall \pi c . P c(\pi \cdot t)$ by induction on t.
- I.e., we have to show $\operatorname{Pc\lambda } \boldsymbol{\lambda}(\pi \cdot x) .(\pi \cdot t)$.
- We have $\forall \pi c . P c(\pi \cdot t)$ by induction.
- Our weaker precondition says that:

$$
\forall x t c . x \# c \wedge(\forall c . P c t) \Rightarrow P c(\lambda x . t)
$$

- We choose a fresh y such that $y \#(\pi \cdot x, \pi \cdot t, c)$.
- Now we can use $\forall c . \operatorname{Pc}((y \pi \cdot x) \cdot \pi \cdot t)$ to infer

$$
P c \lambda y \cdot((y \pi \cdot x) \cdot \pi \cdot t)
$$

- However

$$
\lambda y \cdot((y \pi \cdot x) \cdot \pi \cdot t)=\lambda(\pi \cdot x) \cdot(\pi \cdot t)
$$

- Therefore $P c \lambda(\pi \cdot x) .(\pi \cdot t)$ and we are done.

This Proof in Isabelle

lemma lam_strong_induct:
fixes c::"'a::fs_name" assumes $h_{1}: ~ " \Lambda x c . P c(\operatorname{Var} x)$ "
and $\quad h_{2}: " \Lambda t_{1} \dagger_{2} c .\left[\forall d . P d t_{1} ; \forall d . P d t_{2}\right] \Longrightarrow P c\left(A p p t_{1} \dagger_{2}\right) "$
and $\quad h_{3}: " \wedge x+c . \llbracket x \# c ; \forall d . P d+\rrbracket \Longrightarrow P c(\operatorname{Lam}[x] . t) "$
shows "P c †"
proof -
have " $\forall(\pi$:: name prm) c. P c $(\pi \bullet \bullet)$ " . . then have "P c (([]::name prm) \dagger)" by blas \dagger then show "P c †" by simp
qed

Interesting Bit

have " \forall (π ::name prm) c. P c ($\pi^{\bullet} \dagger$)"
proof (induct \dagger rule: lam.induct)

case (Lam $\times \dagger$)

have ih: " \forall (π ::name prm) c. P c $\left(\pi^{\bullet} \dagger\right)$ " by fact

obtain y ::"name" where $f c:$ "y\# $\left(\pi^{\bullet} \times, \pi^{\bullet} \dagger, c\right)$ "
by (rule exists_fresh) (auto simp add: fs_name1)
from ih have " \forall c. P c $\left(\left(\left[\left(y, \pi^{\bullet} \times\right)\right] @ \pi\right) \bullet \dagger\right)$ " by simp then have " \forall c. P c $\left(\left[\left(y, \pi^{\bullet} x\right)\right]^{\bullet}\left(\pi^{\bullet} \dagger\right)\right)^{\prime \prime}$ by (auto simp only: pt_name2) with h_{3} have "P c (Lam [y].[(y, $\left.\left.\left.\pi^{\bullet} \times\right)\right] \bullet\left(\pi^{\bullet} \dagger\right)\right)$ " using fc by (simp add: fresh_prod) moreover
have "Lam [y].[(y, $\left.\left.\pi^{\bullet} \times\right)\right] \bullet\left(\pi^{\bullet} \dagger\right)=\operatorname{Lam}\left[\left(\pi^{\bullet} \times\right)\right] .\left(\pi^{\bullet} \dagger\right) "$
using $f c$ by (simp add: lam.inject alpha fresh_atm fresh_prod) ultimately have "P c (Lam [($\left.\left.\left.\pi^{\bullet} \times\right)\right] .\left(\pi^{\bullet} \dagger\right)\right)$ " by simp
\}
then have " $\forall\left(\pi::\right.$ name prm) c. P c (Lam $\left.\left[\left(\pi^{\bullet} x\right)\right] .\left(\pi^{\bullet} \dagger\right)\right)$ " by simp
then show " $\forall(\pi::$ name prm $)$ c. P c $(\pi \bullet(\operatorname{Lam}[x] . t))$ " by simp qed (auto intro: $h_{1} h_{2}$)

Interesting Bit

have " $\forall(\pi::$ name prm) c. P c ($\pi \bullet \dagger$)"
proof (induct \dagger rule: lam.induct)
case (Lam x t)
have ih: " $\forall\left(\pi\right.$::name prm) c. P c $\left(\pi^{\bullet} \dagger\right)$ " by fact
\{ fix π ::"name prm" and c::"'a::fs_name"
obtain y ::"name" where fc : " $\mathrm{y} \#\left(\pi^{\bullet} \times, \pi^{\bullet} \dagger, c\right)$ "
by (rule exists_fresh) (auto simp add: fs_name1)
from ih have " \forall c. P c $\left.\left(C\left[\left(y, \pi \cdot{ }^{\bullet} x\right)\right] @ \pi\right)^{\bullet}+\right)^{\prime}$ by simp
then have " $\forall c$. P c $c\left(\left[\left(y, \pi^{\bullet} \times\right)\right]^{\bullet}\left(\pi^{\bullet} \dagger\right)\right)$ " by (auto simp only: pt_name2)
with h_{3} have "Pc (Lam $\left.[y] .\left[\left(y, \pi^{\bullet} x\right)\right]^{\bullet}\left(\pi^{\bullet} \dagger\right)\right)^{\prime \prime}$ using fc by (simp add: fresh_prod)

moreover

have "Lam $[y] \cdot\left[\left(y, \pi^{\bullet} \times\right)\right]^{\bullet}\left(\pi^{\bullet} \dagger\right)=\operatorname{Lam}\left[\left(\pi^{\bullet} \times\right)\right] \cdot\left(\pi^{\bullet} \dagger\right)^{\prime \prime}$
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod) ultimately have "P c (Lam [($\left.\left.\left.\pi^{\bullet} \times\right)\right] .\left(\pi^{\bullet} \dagger\right)\right)$ " by simp \}
then have " $\forall(\pi:: n a m e ~ p r m) c . P c\left(\operatorname{Lam}\left[\left(\pi^{\bullet} x\right)\right] .\left(\pi^{\bullet} \dagger\right)\right)^{\prime \prime}$ by simp
then show " $\forall\left(\pi::\right.$ name prm) c. P c $\left(\pi^{\bullet}(\operatorname{Lam}[x] . t)\right)^{\text {b }}$ by simp qed (auto intro: $h_{1} h_{2}$)

Interesting Bit

```
have "\forall (\pi::name prm)c. P c ( }\mp@subsup{\pi}{}{\bullet\dagger)"
proof (induct t rule: lam.induct)
    case (Lam }\timest\mathrm{ )
    have ih: "\forall ( }\pi\mathrm{ ::name prm) c. P c ( }\pi\bullet\bullet)" by fact
    { fix \pi::"name prm" and c::"a::fs_name"
            obtain y::"name" where fc: "y#( }\mp@subsup{\pi}{}{\bullet\times}\times,\mp@subsup{\pi}{}{\bullet}\dagger,c)
            by (rule exists_fresh) (auto simp add: fs_name1)
            from ih have " }\forall\textrm{c}.\textrm{P c (([(y, \pi\bullet x)]@\pi)\bullet†)" by simp
```



```
            with }\mp@subsup{h}{3}{}\mathrm{ have "Pc (Lam [y].[(y, 片 x)]` ( }\mp@subsup{\pi}{}{\bullet}\dagger))\mathrm{ " using fc by (simp add: fresh_prod)
            moreover
```



```
            using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)
            ultimately have "P c (Lam [( }\mp@subsup{\pi}{}{\bullet}\times)].(\mp@subsup{\pi}{}{\bullet}+))" by sim
    }
    then have "\forall (\pi::name prm) c. P c (Lam [( }\mp@subsup{\pi}{}{\bullet}\times)].(\mp@subsup{\pi}{}{\bullet\dagger}))" by sim
    then show "\forall (\pi::name prm) c. P c ( }\pi\bullet\bullet(\operatorname{Lam [x].t))" by simp
qed (auto intro: h1 h2)
```


Interesting Bit

```
have "\forall (\pi::name prm) c. P c ( }\mp@subsup{\pi}{}{\bullet\dagger)"
proof (induct t rule: lam.induct)
    case (Lam }\timest\mathrm{ )
    have ih: "\forall ( }\pi\mathrm{ ::name prm) c. P c ( }\pi\bullet\bullet)" by fact
    { fix \pi::"name prm" and c::"'a::fs_name"
        obtain y::"name" where fc: "y#( }\mp@subsup{\pi}{}{\bullet}\times,\mp@subsup{\pi}{}{\bullet}\dagger,c)
            by (rule exists_fresh) (auto simp add: fs_name1)
                from ih have "\forallc.P Pc (([(y,\pi\mp@subsup{|}{}{\bullet}x)]@\pi)\bullet\dagger)" by simp 
        moreover
```



```
            using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)
        ultimately have "P c (Lam [( }\mp@subsup{\pi}{}{\bullet}\times)].(\mp@subsup{\pi}{}{\bullet\dagger}))" by sim
    }
    then have "\forall (\pi::name prm) c. P c (Lam [( }\mp@subsup{\pi}{}{\bullet}\times)].(\mp@subsup{\pi}{}{\bullet}+))" by sim
    then show "\forall (\pi::name prm) c. P c ( }\pi\bullet\bullet(\operatorname{Lam [x].t))" by simp
qed (auto intro: h1 h2)
```


Interesting Bit

```
have "\forall (\pi::name prm)c. P c ( }\mp@subsup{\pi}{}{\bullet\dagger)"
proof (induct t rule: lam.induct)
    case (Lam }\timest\mathrm{ )
    have ih: " }\forall\mathrm{ ( }\pi\mathrm{ ::name prm) c. P c ( }\pi\bullet\dagger)" by fact
    { fix \pi::"name prm" and c::"'a::fs_name"
            obtain y::"name" where fc: "y#( }\mp@subsup{\pi}{}{\bullet}\times,\mp@subsup{\pi}{}{\bullet}\dagger,c)
            by (rule exists_fresh) (auto simp add: fs_name1)
                from ih have " }\forall\mathrm{ c. P c (([(y, 片 x)]@ }\pi)\bullett)" by simp
```



```
                with h3 have "P c (Lam [y].[(y, 片 x)]\bullet ( }\mp@subsup{\pi}{}{\bullet}\dagger))" using fc by (simp add: fresh_prod
                moreover
                have "Lam [y].[(y, (*`x)]}\mp@subsup{]}{}{\bullet}(\mp@subsup{\pi}{}{\bullet}\dagger)=\operatorname{Lam [( }\mp@subsup{\pi}{}{\bullet}\times)].(\mp@subsup{\pi}{}{\bullet}\dagger)
            using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)
        ultimately have "P c (Lam [( }\mp@subsup{\pi}{}{\bullet}\times)].(\mp@subsup{\pi}{}{\bullet\dagger}))" by sim
    }
    then have "\forall (\pi::name prm) c. P c (Lam [( }\mp@subsup{\pi}{}{\bullet}\times)].(\mp@subsup{\pi}{}{\bullet}+))" by sim
    then show "\forall (\pi::name prm) c. P c ( }\pi\bullet\bullet(\operatorname{Lam [x].t))" by simp
qed (auto intro: }\mp@subsup{h}{1}{}\mp@subsup{h}{2}{}\mathrm{ )
```


Interesting Bit

have " $\forall(\pi::$ name prm $)$ c. P c $\left(\pi^{\bullet} \dagger\right)$ "
proof (induct t rule: lam.induct)
case (Lam $\times \dagger$)
have ih: " \forall (π ::name prm) c. P c $(\pi \bullet \dagger)$ " by fact
 obtain y ::"name" where $f c:$ "y\# $\left(\pi^{\bullet} \times, \pi^{\bullet} \dagger, c\right)$ "
by (rule exists_fresh) (auto simp add: fs_name1) from ih have " \forall c. P c $\left(\left(\left[\left(y, \pi^{\bullet} \times\right)\right] @ \pi\right) \bullet \dagger\right)$ " by simp then have " \forall c. P c $\left(\left[\left(y, \pi^{\bullet} x\right)\right]^{\bullet}\left(\pi^{\bullet} \dagger\right)\right)$ " by (auto simp only: pt_name2) with h_{3} have "Pc (Lam [y].[(y, $\left.\left.\left.\pi^{\bullet} \times\right)\right]^{\bullet}\left(\pi^{\bullet} \dagger\right)\right)^{\prime \prime}$ using fc by (simp add: fresh_prod)

```
moreover
```



```
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)
ultimately have "P c (Lam [( }\mp@subsup{\pi}{}{\bullet}\times)].(\mp@subsup{\pi}{}{\bullet\dagger}))" by sim
    }
    then have "\forall ( }\pi::\mathrm{ name prm) c. P c (Lam [( }\mp@subsup{\pi}{}{\bullet}\times)].(\mp@subsup{\pi}{}{\bullet}+))" by sim
    then show "\forall (\pi::name prm) c. P c ( }\pi\bullet\bullet(\operatorname{Lam [x].t))" by simp
qed (auto intro: h1 h2)
```


Interesting Bit

have " $\forall\left(\pi::\right.$ name prm c. P c $\left(\pi^{\bullet} \dagger\right)$ "
proof (induct t rule: lam.induct)

case (Lam $\times \dagger$)

have ih: " \forall (π ::name prm) c. P c $\left(\pi^{\bullet} \dagger\right)$ " by fact
 obtain y ::"name" where $f c:$ "y\# $\left(\pi^{\bullet} \times, \pi^{\bullet} \dagger, c\right)$ "
by (rule exists_fresh) (auto simp add: fs_name1) from ih have " \forall c. P c $\left(\left(\left[\left(y, \pi^{\bullet} \times\right)\right] @ \pi\right) \bullet \dagger\right)$ " by simp then have " \forall c. P c $\left(\left[\left(y, \pi^{\bullet} x\right)\right]^{\bullet}\left(\pi^{\bullet} \dagger\right)\right)^{\prime \prime}$ by (auto simp only: pt_name2) with h_{3} have "P c (Lam [y].[(y, $\left.\left.\left.\pi \bullet x\right)\right] \bullet(\pi \bullet \dagger)\right)$ " using fc by (simp add: fresh_prod)
moreover
have "Lam $[y] \cdot\left[\left(y, \pi^{\bullet} \times\right)\right]^{\bullet}\left(\pi^{\bullet} \dagger\right)=\operatorname{Lam}\left[\left(\pi^{\bullet} \times\right)\right] \cdot(\pi \bullet \dagger)$ "
using $f c$ by (simp add: lam.inject alpha fresh atm fresh_prod) ultimately have "P c (Lam $\left.\left[\left(\pi^{\bullet} \times\right)\right] \cdot\left(\pi^{\bullet} \dagger\right)\right)^{\text {b }}$ by simp
\}
then have " $\forall(\pi:: n a m e ~ p r m) c . P c\left(\operatorname{Lam}\left[\left(\pi^{\bullet} \times\right)\right] .\left(\pi^{\bullet} \dagger\right)\right)^{\prime}$ by simp
then show " $\forall(\pi::$ name prm $)$ c. P c $\left(\pi^{\bullet}(\operatorname{Lam}[x] . t)\right)$ " by simp qed (auto intro: $h_{1} h_{2}$) $\quad h_{3}: " \wedge x+c . \llbracket x \# c ; \forall d . P d \dagger \rrbracket \Longrightarrow P c \operatorname{Lam}[x] . \dagger "$

Interesting Bit

have " $\forall\left(\pi::\right.$ name prm c. P c $\left(\pi^{\bullet} \dagger\right)$ "
proof (induct t rule: lam.induct)
case (Lam $\times \dagger$)
have ih: " \forall (π ::name prm) c. P c $\left(\pi^{\bullet} \dagger\right)$ " by fact

obtain y ::"name" where $f c:$ "y\# $\left(\pi^{\bullet} \times, \pi^{\bullet} \dagger, c\right)$ "
by (rule exists_fresh) (auto simp add: fs_name1)
from ih have " \forall c. P c $\left(\left(\left[\left(y, \pi^{\bullet} \times\right)\right] @ \pi\right) \bullet \dagger\right)$ " by simp
then have " \forall c. P c $\left(\left[\left(y, \pi^{\bullet} x\right)\right]^{\bullet}\left(\pi^{\bullet} \dagger\right)\right)^{\prime \prime}$ by (auto simp only: pt_name2)
with h_{3} have "P c (Lam [y].[(y, $\left.\left.\left.\pi^{\bullet} \times\right)\right] \bullet\left(\pi^{\bullet} \dagger\right)\right)$ " using fc by (simp add: fresh_prod)
moreover
have "Lam $[y] .\left[\left(y, \pi^{\bullet} x\right)\right]^{\bullet}\left(\pi^{\bullet} \dagger\right)=\operatorname{Lam}\left[\left(\pi^{\bullet} x\right)\right] .\left(\pi^{\bullet} \dagger\right) "$
using $f c$ by (simp add: lam.inject alpha fresh_atm fresh_prod)
\}
then have " $\forall\left(\pi::\right.$ name prm) c. P c (Lam $\left.\left[\left(\pi^{\bullet} \times\right)\right] .\left(\pi^{\bullet} \dagger\right)\right)$ " by simp
then show " $\forall(\pi::$ name prm $)$ c. P c $\left(\pi^{\bullet}(\operatorname{Lam}[x] . t)\right)$ " by simp qed (auto intro: $h_{1} h_{2}$)

Interesting Bit

have " \forall (π ::name prm) c. P c ($\pi^{\bullet} \dagger$)"
proof (induct t rule: lam.induct)
case (Lam $\times \dagger$)
have ih: " \forall (π ::name prm) c. P c $\left(\pi^{\bullet} \dagger\right)$ " by fact

obtain y ::"name" where $f c:$ "y\# $\left(\pi^{\bullet} \times, \pi^{\bullet} \dagger, c\right)$ "
by (rule exists_fresh) (auto simp add: fs_name1)
from ih have " \forall c. P c $(([(y, \pi \bullet x)] @ \pi) \bullet t)$ " by simp then have " $\forall c$. P c $\left(\left[\left(y, \pi^{\bullet} \times\right)\right]^{\bullet}\left(\pi^{\bullet} \dagger\right)\right)^{\prime \prime}$ by (auto simp only: pt_name2) with h_{3} have "P c (Lam [y].[(y, $\left.\left.\left.\pi^{\bullet} \times\right)\right] \bullet\left(\pi^{\bullet} \dagger\right)\right)$ " using fc by (simp add: fresh_prod) moreover
have "Lam $[y] .\left[\left(y, \pi^{\bullet} x\right)\right]^{\bullet}\left(\pi^{\bullet} \dagger\right)=\operatorname{Lam}\left[\left(\pi^{\bullet} x\right)\right] .\left(\pi^{\bullet} \dagger\right) "$
using $f c$ by (simp add: lam.inject alpha fresh_atm fresh_prod)
ultimately have "P c (Lam [($\left.\left.\left.\pi^{\bullet} \times\right)\right] .\left(\pi^{\bullet} \dagger\right)\right)$ " by simp
\}
then have " $\forall\left(\pi:\right.$ name prm) c. P c (Lam $\left.\left[\left(\pi^{\bullet} \times\right)\right] .\left(\pi^{\bullet} \dagger\right)\right)$ " by simp
then show " $\forall(\pi::$ name prm $)$ c. P c $\left(\pi^{\bullet}(\operatorname{Lam}[x] . t)\right)$ " by simp qed (auto intro: $h_{1} h_{2}$)

Interesting Bit

have " \forall (π ::name prm) c. P c ($\pi^{\bullet} \dagger$)"
proof (induct \dagger rule: lam.induct)

case (Lam $\times \dagger$)

have ih: " \forall (π ::name prm) c. P c $\left(\pi^{\bullet} \dagger\right)$ " by fact

obtain y ::"name" where $f c:$ "y\# $\left(\pi^{\bullet} \times, \pi^{\bullet} \dagger, c\right)$ "
by (rule exists_fresh) (auto simp add: fs_name1)
from ih have " \forall c. P c $\left(\left(\left[\left(y, \pi^{\bullet} \times\right)\right] @ \pi\right) \bullet \dagger\right)$ " by simp then have " \forall c. P c $\left(\left[\left(y, \pi^{\bullet} x\right)\right]^{\bullet}\left(\pi^{\bullet} \dagger\right)\right)^{\prime \prime}$ by (auto simp only: pt_name2) with h_{3} have "P c (Lam [y].[(y, $\left.\left.\left.\pi^{\bullet} \times\right)\right] \bullet\left(\pi^{\bullet} \dagger\right)\right)$ " using fc by (simp add: fresh_prod) moreover
have "Lam [y].[(y, $\left.\left.\pi^{\bullet} \times\right)\right] \bullet\left(\pi^{\bullet} \dagger\right)=\operatorname{Lam}\left[\left(\pi^{\bullet} \times\right)\right] .\left(\pi^{\bullet} \dagger\right) "$
using $f c$ by (simp add: lam.inject alpha fresh_atm fresh_prod) ultimately have "P c (Lam [($\left.\left.\left.\pi^{\bullet} \times\right)\right] .\left(\pi^{\bullet} \dagger\right)\right)$ " by simp
\}
then have " $\forall\left(\pi::\right.$ name prm) c. P c (Lam $\left.\left[\left(\pi^{\bullet} x\right)\right] .\left(\pi^{\bullet} \dagger\right)\right)$ " by simp
then show " $\forall(\pi::$ name prm $)$ c. P c $(\pi \bullet(\operatorname{Lam}[x] . t))$ " by simp qed (auto intro: $h_{1} h_{2}$)

Some Examples

$$
\frac{x \# \Gamma \quad\left(x, \mathrm{~T}_{1}\right):: \Gamma \vdash \dagger: \mathrm{T}_{2}}{\Gamma \vdash \operatorname{Lam}[x] . t: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}}
$$

Some Examples

$$
\frac{x \# \Gamma \quad\left(x, \mathrm{~T}_{1}\right):: \Gamma \vdash \uparrow: \mathrm{T}_{2}}{\Gamma \vdash \operatorname{Lam}[x] . t: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}}
$$

$$
\frac{t \mapsto \dagger^{\prime}}{\operatorname{Lam}[x] . t \mapsto \dagger^{\prime}}
$$

Some Examples

$$
\frac{x \# \Gamma \quad\left(x, \mathrm{~T}_{1}\right):: \Gamma \vdash \dagger: \mathrm{T}_{2}}{\Gamma \vdash \operatorname{Lam}[x] . t: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}}
$$

$$
\frac{t \mapsto t^{\prime}}{\operatorname{Lam}[x] . t \mapsto t^{\prime}}
$$

Some Examples

$$
\frac{x \# \Gamma \quad\left(x, T_{1}\right):: \Gamma \vdash \dagger: T_{2}}{\Gamma \vdash \operatorname{Lam}[x] \cdot t: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}}
$$

$$
\frac{\dagger \mapsto \dagger^{\prime}}{\operatorname{Lam}[x] \cdot t \mapsto \dagger^{\prime}}
$$

$$
\frac{\Gamma \vdash_{\Sigma} A_{1}: \text { Type }\left(x, A_{1}\right):: \Gamma \vdash_{\Sigma} M_{2}: A_{2} \quad x \#\left(\Gamma, A_{1}\right)}{\Gamma \vdash_{\Sigma} \operatorname{Lam}\left[x: A_{1}\right] \cdot M_{2}: \Pi\left[x: A_{1}\right] \cdot A_{2}}
$$

Some Examples

$$
\frac{x \# \Gamma \quad\left(x, T_{1}\right):: \Gamma \vdash \dagger: T_{2}}{\Gamma \vdash \operatorname{Lam}[x] \cdot t: T_{1} \rightarrow T_{2}}
$$

$$
\frac{\Gamma \vdash_{\Sigma} A_{1}: \text { Type }\left(x, A_{1}\right):: \Gamma \vdash_{\Sigma} M_{2}: A_{2} \quad x \#\left(\Gamma, A_{1}\right)}{\Gamma \vdash_{\Sigma} \operatorname{Lam}\left[x: A_{1}\right] \cdot M_{2}: \Pi\left[x: A_{1}\right] \cdot A_{2}}
$$

bound

Some Examples

$$
\frac{x \# \Gamma \quad\left(x, \mathrm{~T}_{1}\right):: \Gamma \vdash \dagger: \mathrm{T}_{2}}{\Gamma \vdash \operatorname{Lam}[x] \cdot \mathrm{t}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}}
$$

$$
\frac{\dagger \mapsto \dagger^{\prime}}{\operatorname{Lam}[x] . t \mapsto \dagger^{\prime}}
$$

$\Gamma \vdash A_{1}:$ Type $\left(x, A_{1}\right): \Gamma \vdash M_{2}: A_{2} \quad x \#\left(\Gamma, A_{1}\right)$
free $\Gamma \vdash_{\Sigma} \operatorname{Lam}\left[x\right.$ free $I\left[x: A_{1}\right]$. free
$\left(x, \tau_{1}\right):: \Delta \vdash_{\Sigma}$ App $M(\operatorname{Var} x) \Leftrightarrow$ App $N(\operatorname{Var} x): \tau_{2}$ x \# (Δ, M, N)
$\Delta \vdash_{\Sigma} M \Leftrightarrow N: \tau_{1} \rightarrow \tau_{2}$

Some Examples

$$
\frac{x \# \Gamma \quad\left(x, T_{1}\right):: \Gamma \vdash \dagger: T_{2}}{\Gamma \vdash \operatorname{Lam}[x] \cdot t: T_{1} \rightarrow T_{2}}
$$

$$
\frac{\dagger \mapsto \dagger^{\prime}}{\operatorname{Lam}[x] \cdot t \mapsto \dagger^{\prime}}
$$

$$
\frac{\Gamma \vdash_{\Sigma} A_{1}: \text { Type }\left(x, A_{1}\right):: \Gamma \vdash_{\Sigma} M_{2}: A_{2} \quad x \#\left(\Gamma, A_{1}\right)}{\Gamma \vdash_{\Sigma} \operatorname{Lam}\left[x: A_{1}\right] \cdot M_{2}: \Pi\left[x: A_{1}\right] \cdot A_{2}}
$$

$$
\begin{gathered}
\left(x, \tau_{1}\right):: \Delta \vdash_{\Sigma} \operatorname{App} M(\operatorname{Var} x) \Leftrightarrow \operatorname{App} N(\operatorname{Var} x): \tau_{2} \\
x \#(\Delta, M, N)
\end{gathered}
$$

Formalisation of LF

nominal_datatype
kind $=$ Type
| KPi "ty" "«name»kind"
and $\mathrm{ty}=$ TConst "id"
TApp "ty" "trm"
TPi "ty" "«name»ty"
and trm = Const "id"
| Var "name"
| App "trm" "trm"
| Lam "ty" "«name»trm"
abbreviation KPi_syn :: "name \Rightarrow ty \Rightarrow kind \Rightarrow kind" ("П[_:_]._")
where " $\Pi[x: A] . K \equiv K P i A \times K$ "
abbreviation TPi_syn :: "name \Rightarrow ty \Rightarrow ty \Rightarrow ty" ("П[_:_]._")
where " $\Pi\left[x: A_{1}\right] \cdot A_{2} \equiv \operatorname{TPi} A_{1} \times A_{2}$ "
abbreviation Lam_syn :: "name \Rightarrow †y \Rightarrow trm \Rightarrow trm" ("Lam [_:_]._") where "Lam $[x: A] . M \equiv \operatorname{Lam} A \times M$ "

Formalisation of LF

(joint work with Cheney and Berghofer)

$$
\stackrel{\text { def }}{=} \text { Proof Alg. }
$$

Formalisation of LF

(joint work with Cheney and Berghofer)

$$
\text { def } \quad \text { Priof } A
$$

Formalisation of LF

 (joint work with Cheney and Berghofer)
(each time one needs to check ~ 31 pp of informal paper proofs)

Formalisation of LF

 (joint work with Cheney and Berghofer)
(each time one needs to check $\sim 31 p p$ of informal paper proofs)

Formalisation of LF

 (joint work with Cheney and Berghofer)
$2 h$
1st Solution

$$
\text { detfex } \subset \text { Proof } \Rightarrow \text { Alg. }
$$

2nd Solution
$\stackrel{\text { def }}{=} \quad$ Proof Alg:-ex

3rd Solution $\stackrel{\text { def }}{=} \subset$ Proof Alg.
(each time one needs to check ~ 31 pp of informal paper proofs)

In My PhD

- A SN-result for cut-elimination in CL: reviewed by Henk Barendregt and Andy Pitts, and reviewers of conference and journal paper. Still, I found errors in central lemmas; fortunately the main claim was correct :0)

Two Health Warnings ;o)

Theorem provers should come with two health warnings:

Two Health Warnings ;o)
Theorem provers should come with two health warnings:

- Theorem provers are addictive!
(Xavier Leroy: "Building [proof] scripts is surprisingly addictive, in a videogame kind of way...")

Two Health Warnings ;o)
Theorem provers should come with two health warnings:

- Theorem provers are addictive!
(Xavier Leroy: "Building [proof] scripts is surprisingly addictive, in a videogame kind of way...")
- Theorem provers cause you to lose faith in your proofs done by hand!
(Michael Norrish, Mike Gordon, me, very possibly others)
- The Nominal Isabelle automatically derives the strong structural induction principle for all nominal datatypes (not just the lambda-calculus);
- also for rule inductions (though they have to satisfy a vc-condition).
- They are easy to use: you just have to think carefully what the variable convention should be.
- We can explore the dark corners of the variable convention: when and where it can actually be used.

Conclusions

- The Nominal Isabelle automatically derives the strong structural induction principle for all nominal datatypes (not just the lambda-calculus);
- also for rule inductions (though they have to satisfy a vc-condition).
- They are easy to use: you just have to think carefully what the variable convention should be.
- We can explore the dark corners of the variable convention: when and where it can actually be used.
- Main Point: Actually these proofs using the variable convention are all trivial / obvious / routine. . provided you use Nominal Isabelle. ;0)

Thank you very much!

