Theorem Proving

"I think you should be more
explicit here in step two."

Why Theorem Prooving

- We want to make sure algorithms (and their implementations) are correct.

Why Theorem Prooving

- We want to make sure algorithms (and their implementations) are correct.
- Ideally we develop the algorithm and the proof of its correctness concurrently.
- Nice example about regular expression matching:

> 'Proof-directed debugging' revisited for a first-order version by Kwangkeun Yi.

This is based on an earlier paper by Robert Harper.

Languages

definition

lang_seq :: "string set \Rightarrow string set \Rightarrow string set" ("_ ; _") where

$$
\text { "L1 : L2 = \{s1@s2 | s1 s2. s1 } \in L 1 \wedge s 2 \in L 2\} "
$$

fun
lang_pow :: "string set \Rightarrow nat \Rightarrow string set" ("_ \uparrow _") where

$$
\begin{aligned}
& \text { "L } \uparrow 0=\{[]\} " \\
& \mid " L \uparrow(\text { Suc } i)=L ;(L \uparrow i) "
\end{aligned}
$$

definition

lang_star :: "string set \Rightarrow string set" ("_太")
where

$$
\text { "Lぇ } \equiv \text { Ui. (L } \uparrow i) "
$$

Regular Expressions

datatype rexp =
EMPTY
CHAR char
SEQ rexp rexp
ALT rexp rexp
STAR rexp
fun
$L:: ~ " r e x p ~ \Rightarrow$ string set"
where

$$
\begin{aligned}
& \text { "L(EMPTY })=\{[]\} " \\
& \text { "L(CHAR } c)=\{[c]\} " \\
& \text { "L(SEQ r1 r2) }=(L r 1) ;(L r 2) " \\
& \text { "L(ALTr1 r2) }=(L r 1) \cup(L r 2) " \\
& \text { "L(STAR r) }=(L r) \star \text { " }
\end{aligned}
$$

Dagger

function

dagger :: "rexp \Rightarrow char \Rightarrow rexp set" ("_ † _")

where

r1: "(EMPTY) †c $=\{ \}$ "
r 2: "(CHAR c') $\dagger c=\left(\right.$ if $c=c^{\prime}$ then $\{$ EMPTY\} else $\{ \})$ "
r 3: " (ALTr1r2) †c $=r 1 \dagger c \cup r 2 \dagger c$ "
$r 4: ~ "(S E Q ~ E M P T Y ~ r 2) ~ \dagger c=r 2 \dagger c "$
$r 5: ~ "\left(S E Q\left(C H A R c^{\prime}\right) r 2\right) \dagger c=\left(\right.$ if $c=c^{\prime}$ then $\{r 2\}$ else $\left.\{ \}\right)$ "
$r 6: ~ "(S E Q(S E Q r 11 r 12) r 2) \dagger c=(S E Q r 11(S E Q r 12 r 2)) \dagger c "$
r7: "(SEQ (ALTr11 r12) r2) † c =
(SEQ r11r2) †c $\cup(S E Q r 12 r 2) \dagger c "$
| r8: "(SEQ (STAR r1) r2) †c =
$r 2 \dagger c \cup\left\{S E Q\left(S E Q r^{\prime}(S T A R r 1)\right) r 2 \mid r^{\prime} . r^{\prime} \in r 1 \dagger c\right\} "$
| $\mathrm{r} 9:$ " $(S T A R r) \dagger c=\left\{S E Q r^{\prime}(S T A R r) \mid r^{\prime} . r^{\prime} \in r \dagger c\right\}$ "

Matcher

function matcher :: "rexp \Rightarrow string \Rightarrow bool" ("_! _")
where
s01: "EMPTY! $s=(s=[]) "$
s02: "CHAR c!s = (s = [c])"
s03: "ALTr1r2!s = (r1!s \vee r2!s)"
s04: "STAR r! [] = True"
s05: "STAR r!c\#s =
(False \vee OR \{SEQ (r^{\prime}) (STAR r)!s $\left.\mid r^{\prime} . r^{\prime} \in r \dagger c\right\}$)"
s06: "SEQ r1 r2! [] = (r1! [] ^ r2! [])"
s07: "SEQ EMPTY r2! (c\#s) = (r2!c\#s)"
s08: "SEQ (CHAR c') r2! (c\#s) = (if c'=c then r2!s else False)"
s09: "SEQ (SEQ r11 r12) r2! (c\#s) = (SEQ r11 (SEQ r12 r2)! c\#s)"
s10: "SEQ (ALTr11r12) r2! (c\#s) = ((SEQ r11r2)! (c\#s) V (SEQ r12r2)! (c\#s))"
s11: "SEQ (STAR r1) r2! (c\#s) =
$\left(r 2!(c \# s) \vee O R\left\{S E Q r^{\prime}(S E Q(S T A R r 1) r 2)!s \mid r^{\prime} . r^{\prime} \in r 1 \dagger c\right\}\right)^{\prime \prime}$

Correctness

- Correctness of the matcher:

$$
\begin{aligned}
& r!s \text { implies } s \in L r \\
& \neg r!s \text { implies } s \notin L r
\end{aligned}
$$

