Welcome Again!

- Slides and File are as usual at: http://isabelle.in.tum.de/nominal/activities/cas09/
- Did all installation problems with Isabelle resolve?
- Any questions about the last tutorial?

Automatic Proofs

- Remember that I said: Do not expect that Isabelle solves automatically show " $P=N$ ".
- Remember also:
lemma even_twice:
shows "even $(n+n)$ "
by (induct n) (auto)
lemma even_add:
assumes a: "even n"
and b: "even m"
shows "even $(n+m)$ "
using $a b$ by (induct) (auto)

A More Complicated Proof

lemma even_mult:
assumes a: "even n "
shows "even (n * m)"
using a proof (induct)
case eZ
show "even (0 * m)" by auto
next
case (eSS n)
have ih: "even (n * m)" by fac \dagger
have "(Suc (Suc n) * m) $=(m+m)+(n$ * $m)$ " by simp
moreover
have "even $(m+m)$ " using even_twice by simp
ultimately
show "even (Suc (Suc n) * m)" using ih even_add by (simp only:) qed

- This proof cannot be found by the internal tools.

A More Complicated Proof

lemma even_mult:
assumes a: "even n "
shows "even (n * m)"
using a proof (induct)
cnco or
s Sledgehammer:
ne Can be used at any point in the development.
c
r
r
$\begin{array}{cc}n \\ r & \text { Isabelle } \\ \vdots \\ s & \\ q & \end{array}$

A More Complicated Proof

lemma even_mult:

assumes a: "even n "
shows "even (n * m)"
using a proof (induct)
cnco o 7
${ }_{s}$ Sledgehammer:
ne Can be used at any point in the development.
r problem
n
r
n

A More Complicated Proof

lemma even_mult:

assumes a: "even n "
shows "even (n * m)"
using a proof (induct)
cnco o 7
${ }_{s}$ Sledgehammer:
ne Can be used at any point in the development.
c
r
r
n
r
u
s
qe

hints

With Sledgehammer

- It can be started with ctrl-c/ctrl-a/ctrl-s.
lemma even_mult_auto:
assumes a: "even n " shows "even (n * m)"
using a
apply(induct)
apply(metis eZ mult_is_0)
apply(metis even_add even_twice mult_Suc_right nat_add_assoc nat_mult_commute)
done

With Sledgehammer

- It can be started with ctrl-c/ctrl-a/ctrl-s.
lemma even_mult_auto:
assumes a: "even n " shows "even (n * m)"
using a
apply(induct)
apply(metis eZ mult_is_0)
apply(metis even_add even_twice mult_Suc_right nat_add_assoc nat_mult_commute)
done
- The disadvantage of such proofs is that you have no idea why they are true.

Decision Procedures

- You can write your own proof procedures either within Isabelle or feed back certificates like Sledgehammer.
- We have a tutorial explaining the Isabelle interfaces, but this is well beyond this tutorial.

http://isabelle.in.tum.de/nominal/activities/idp/

Functions

- Let us return to function definitions: for example the Fibonnacci function

fun

fib :: "nat \Rightarrow nat"
where
"fib $0=0 "$
| "fib (Suc 0) = 1"
"fib (Suc (Suc $n)$) $=$ fib $n+$ fib (Suc $n) "$

Functions

- Let us return to function definitions: for example the Fibonnacci function

fun

fib :: "nat \Rightarrow nat"
where
"fib 0 = 0"
| "fib (Suc 0) = 1"
"fib (Suc (Suc n)) = fib $n+$ fib (Suc n)"

- We have to make sure every function terminates (this is proved automatically for the Fibonacci function).

$$
\begin{aligned}
f(x) & =f(x)+1 \\
0 & =1
\end{aligned}
$$

Functions

- The Ackermann function is also automatically proved to be terminating:
fun

$$
\text { ack :: "nat } \Rightarrow \text { nat } \Rightarrow \text { nat" }
$$

where

```
    "ack 0m=Suc m"
    | "ack (Suc n) 0 = ack n (Suc 0)"
    | "ack (Suc n) (Suc m)= ack n (ack (Suc n) m)"
```


Functions

- The Ackermann function is also automatically proved to be terminating:
fun

$$
\text { ack :: "nat } \Rightarrow \text { nat } \Rightarrow \text { nat" }
$$

where

```
"ack 0m= Suc m"
| "ack (Suc n) 0 = ack n (Suc 0)"
| "ack (Suc n) (Suc m)= ack n (ack (Suc n)m)"
```

- For others you might have to show explicitly that they are terminating (for example by a decreasing measure).
- For example a generalised version of the Fibonacci function to integers cannot be automatically shown terminating.
function

$$
\text { fib' :: "int } \Rightarrow \text { int" }
$$

where

$$
\begin{aligned}
& \text { " } n<-1 \Longrightarrow \text { fib' } n=\text { fib' }(n+2)-\text { fib' }^{\prime}(n+1) \text { " } \\
& \mid \text { "fib' }-1=(1:: i n t) " \\
& \text { " } \text { fib' }^{\prime} 0=(0:: i n t) " \\
& \text { "fib' } 1=(1:: i n t) " \\
& \text { " } n>1 \Longrightarrow \text { fib' } n=\text { fib' }(n-1)+\text { fib' }^{\prime}(n-2) \text { " } \\
& \text { by (atomize_elim, presburger) (auto) }
\end{aligned}
$$

termination
by (relation "measure $(\lambda \times$. nat $(|x|))$ ") (simp_all add: zabs_def)

Datatypes

- You can introduce new datatypes. For example "my"-lists:
datatype 'a mylist = MyNil ("[]")
| MyCons "'a" "'a mylist" ("_ ::: _" 65)

Datatypes

- You can introduce new datatypes. For example "my"-lists:
datatype 'a mylist = MyNil
| MyCons "'a" "'a mylist" ("_ ::: _" 65)
fun myappend :: "'a mylist \Rightarrow 'a mylist \Rightarrow 'a mylist" ("_ @@ _" 65) where

```
"[] @@ xs = xs"
| "(y:::ys) @@ xs = y:::(ys @@ xs)"
```

fun myrev :: "'a mylist \Rightarrow 'a mylist"

where

$$
\begin{aligned}
& \text { "myrev [] = []" } \\
& \text { | "myrev (x:::xs) = (myrev xs) @@ (x:::[])" }
\end{aligned}
$$

Your Turn

lemma myrev_append:
shows "myrev (xs @@ys) = (myrev ys) @@ (myrev xs)"
proof (induct $x s$)
case MyNil
show "myrev ([] @@ ys) = myrev ys @@ myrev []" sorry
next
case (MyCons $\times \times s$)
have ih: "myrev (xs @@ys) = myrev ys @@ myrev xs" by fact
show "myrev ((x:::xs) @@ys)= myrev ys @@ myrev (x:::xs)" sorry
qed

A WHILE Language

- The memory is a function from nat to nat.
types memory $=$ "nat \Rightarrow nat"

A WHILE Language

- The memory is a function from nat to nat.
types memory $=$ "nat \Rightarrow nat"
- Arithmetical expressions are defined as:
datatype aexp =
C nat
X nat
Op1 "nat \Rightarrow nat" aexp
\mid Op2 "nat \Rightarrow nat \Rightarrow nat" $\operatorname{aexp} \operatorname{aexp}$
- Arithmetical expressions are defined as:
datatype bexp =
TRUE | FALSE
ROp "nat \Rightarrow nat \Rightarrow bool" aexp aexp
NOT bexp | AND bexp bexp | OR bexp bexp

Commands

- Commands are defined also as datatype:
datatype $\mathrm{cmd}=$ SKIP
ASSIGN nat aexp ("_ ::= _ " 60)
SEQ cmd cmd ("_i _" $[60,60] 10)$
COND bexp cmd cmd ("IF _ THEN _ ELSE _" 60)
WHILE bexp cmd ("WHILE _DO _" 60)
- We use $::=$, because $:=$ is already used for function update.

Commands

- Commands are defined also as datatype:
datatype $\mathrm{cmd}=$ SKIP
ASSIGN nat aexp ("_ ::= _ " 60)
SEQ cmd cmd ("_i _" $[60,60] 10)$
COND bexp cmd cmd ("IF _ THEN_ELSE _" 60)
WHILE bexp cmd ("WHILE _DO _" 60)
- We use $::=$, because $:=$ is already used for function update.
- We have to define a semantics for the WHILE programs...

An Abstract Machine

- The instruction set
datatype instr =
JPFZ "nat"
| JPB "nat"
FETCH "nat"
STORE "nat"
PUSH "nat"
OPU "nat \Rightarrow nat"
OPB "nat \Rightarrow nat \Rightarrow nat"
jump forward n steps, if stack is 0 jump backward n steps move memory to top of stack pop top from stack to memory push to stack
pop one from stack and apply f
pop two from stack and apply f
- A machine program is a list of instructions.
- Representation of booleans is 0 and 1

The Compiler Functions

fun compa

where

"compa (Cn) = [PUSH n]"
| "compa (XI) = [FETCH I]"
"compa (Op1 fe) = (compa e) @ [OPU f]"
"compa (Op2 f $e_{1} e_{2}$) = (compa e_{1}) @ (compa e_{2}) @ [OPB f]"
fun compb
where
"compb (TRUE) $=[$ PUSH 1]"
"compb (FALSE) = [PUSH O]"
"compb (ROpf $\left.e_{1} e_{2}\right)=\left(\operatorname{compa} e_{1}\right)$ @ (compa $\left.e_{2}\right)$
@ [OPB $(\lambda \times y . \operatorname{WRAP}(f x y))]^{\prime \prime}$
| "compb (NOT e) = (compb e) @ [OPU MNo†]"
"compb (AND $\left.e_{1} e_{2}\right)=\left(c o m p b e_{1}\right)$ @ (compb $\left.e_{2}\right)$ @ [OPB MAnd]"
"compb $\left(O R e_{1} e_{2}\right)=\left(c o m p b e_{1}\right)$ @ $\left(c o m p b e_{2}\right)$ @ [OPB MOr]"

The Compiler Functions

fun

compc :: "cmd \Rightarrow instr list"
where
"compc SKIP = []"
| "compc ($x::=a$) = (compa a) @ [STORE x]"
"compc $\left(c_{1} ; c_{2}\right)=$ compc c_{1} @ compc $c_{2} "$
"compc (IF b THEN c_{1} ELSE c_{2}) =
(compb b) @ [JPFZ (length $\left(\right.$ compc $\left.\left.\left.c_{1}\right)+2\right)\right]$ @ compc c_{1} @ [PUSH 0, JPFZ (length $\left(\right.$ compc $\left.c_{2}\right)$)] @ compc $c_{2}{ }^{\prime \prime}$
| "compc (WHILE b DO c) =
(compb b) @
[JPFZ (length(compc c) + 1)] @ compc c @
[JPB (length $($ compc $c)+$ length $(c o m p b ~ b)+1)] "$

The Compiler Functions

fun
compc :: "cmd \Rightarrow instr list"
where
"compc SKIP = []"
| "compc ($x::=a$) = (compa a) @ [STORE x]"
"compc $\left(c_{1} ; c_{2}\right)=$ compc c_{1} @ compc $c_{2} "$
"compc (IF b THEN c_{1} ELSE c_{2}) =
(compb b) @ [JPFZ (length $\left(\right.$ compc $\left.\left.\left.c_{1}\right)+2\right)\right]$ @ compc c_{1} @ [PUSH 0, JPFZ (length $\left(\right.$ compc $\left.c_{2}\right)$)] @ compc $c_{2}{ }^{\prime \prime}$
| "compc (WHILE b DO c) =
(compb b) @
[JPFZ (length (compc c) + 1)] @ compc c @
[JPB (length $($ compc $c)+$ length $(c o m p b ~ b)+1)] "$

- We now have to specify how the machine behaves.

Compiler Lemmas

- We like to prove:

lemma compa:
assumes $a:$ " $(e, m) \longrightarrow a n "$
shows "(compa e,[],[],m) $\longrightarrow m^{*}([], r e v(c o m p a ~ e),[n], m) "$
lemma compb:
assumes $a:$ " $(e, m) \longrightarrow b b "$ shows "(compb e,[],[],m) $\longrightarrow m^{*}([], r e v(c o m p b ~ e),[W R A P ~ b], m) " ~$
lemma compc:
assumes $a:$ " $(c, m) \longrightarrow c m^{\prime \prime}$
shows "(compc c,[],[],m) $\longrightarrow m^{*}\left([], r e v(c o m p c ~ c),[], m^{\prime}\right) "$

Compiler Lemmas

- They can be found automatically:
lemma compa_aux_cheating:
assumes a : " $(e, m) \longrightarrow a n$ "
shows "(compa e@p,q,s,m) $\longrightarrow m^{*}(p, r e v(c o m p a ~ e) @ q, n \# s, m) "$
using a
by (induct arbitrary: p q s)
(force intro: steps_trans simp add: steps_simp exec_simp)+

Compiler Lemmas

- They can be found automatically:
lemma compa_aux_cheating:
assumes $a:$ " $(e, m) \longrightarrow a n$ "
shows "(compa e@p,q,s,m) $\longrightarrow m^{*}(p, r e v(c o m p a ~ e) @ q, n \# s, m) "$ using a
by (induct arbitrary: p q s)
(force intro: steps_trans simp add: steps_simp exec_simp)+
- But that is cheating!!! It is like playing chess with the help of Kasparov.

Isabelle Tutorial

Please also come tomorrow.

- 9:30-11:30, Tuesday, 2 June
- If Isabelle still does not run, maybe I can help.
- Please ask any question.

