
Welcome Again!

Slides and File are as usual at:
http://isabelle.in.tum.de/nominal/activities/cas09/

Did all installation problems with Isabelle
resolve?

Any questions about the last tutorial?

Beijing, 1. June 2009 – p. 1/18

http://isabelle.in.tum.de/nominal/activities/cas09/

Automatic Proofs
Remember that I said: Do not expect that
Isabelle solves automatically show "P=NP".
Remember also:

lemma even_twice:
shows "even (n + n)"

by (induct n) (auto)

lemma even_add:
assumes a: "even n"
and b: "even m"
shows "even (n + m)"

using a b by (induct) (auto)

Beijing, 1. June 2009 – p. 2/18

A More Complicated Proof
lemma even_mult:
assumes a: "even n"
shows "even (n * m)"

using a proof (induct)
case eZ
show "even (0 * m)" by auto

next
case (eSS n)
have ih: "even (n * m)" by fact
have "(Suc (Suc n) * m) = (m + m) + (n * m)" by simp
moreover
have "even (m + m)" using even_twice by simp
ultimately
show "even (Suc (Suc n) * m)" using ih even_add by (simp only:)

qed

This proof cannot be found by the internal tools.
Beijing, 1. June 2009 – p. 3/18

A More Complicated Proof
lemma even_mult:
assumes a: "even n"
shows "even (n * m)"

using a proof (induct)
case eZ
show "even (0 * m)" by auto

next
case (eSS n)
have ih: "even (n * m)" by fact
have "(Suc (Suc n) * m) = (m + m) + (n * m)" by simp
moreover
have "even (m + m)" using even_twice by simp
ultimately
show "even (Suc (Suc n) * m)" using ih even_add by (simp only:)

qed

This proof cannot be found by the internal tools.
Beijing, 1. June 2009 – p. 3/18

Sledgehammer:
Can be used at any point in the development.

Isabelle

external
prover

problem

hints

A More Complicated Proof
lemma even_mult:
assumes a: "even n"
shows "even (n * m)"

using a proof (induct)
case eZ
show "even (0 * m)" by auto

next
case (eSS n)
have ih: "even (n * m)" by fact
have "(Suc (Suc n) * m) = (m + m) + (n * m)" by simp
moreover
have "even (m + m)" using even_twice by simp
ultimately
show "even (Suc (Suc n) * m)" using ih even_add by (simp only:)

qed

This proof cannot be found by the internal tools.
Beijing, 1. June 2009 – p. 3/18

Sledgehammer:
Can be used at any point in the development.

Isabelle external
prover

problem

hints

A More Complicated Proof
lemma even_mult:
assumes a: "even n"
shows "even (n * m)"

using a proof (induct)
case eZ
show "even (0 * m)" by auto

next
case (eSS n)
have ih: "even (n * m)" by fact
have "(Suc (Suc n) * m) = (m + m) + (n * m)" by simp
moreover
have "even (m + m)" using even_twice by simp
ultimately
show "even (Suc (Suc n) * m)" using ih even_add by (simp only:)

qed

This proof cannot be found by the internal tools.
Beijing, 1. June 2009 – p. 3/18

Sledgehammer:
Can be used at any point in the development.

Isabelle external
prover

problem

hints

With Sledgehammer
It can be started with ctrl-c/ctrl-a/ctrl-s.

lemma even_mult_auto:
assumes a: "even n"
shows "even (n * m)"

using a
apply(induct)
apply(metis eZ mult_is_0)
apply(metis even_add even_twice mult_Suc_right

nat_add_assoc nat_mult_commute)
done

The disadvantage of such proofs is that you have
no idea why they are true.

Beijing, 1. June 2009 – p. 4/18

With Sledgehammer
It can be started with ctrl-c/ctrl-a/ctrl-s.

lemma even_mult_auto:
assumes a: "even n"
shows "even (n * m)"

using a
apply(induct)
apply(metis eZ mult_is_0)
apply(metis even_add even_twice mult_Suc_right

nat_add_assoc nat_mult_commute)
done

The disadvantage of such proofs is that you have
no idea why they are true.

Beijing, 1. June 2009 – p. 4/18

Decision Procedures
You can write your own proof procedures either
within Isabelle or feed back certificates like
Sledgehammer.

We have a tutorial explaining the Isabelle
interfaces, but this is well beyond this tutorial.

The Isabelle Programming Tutorial (draft)

by Christian Urban with contributions from:

Stefan Berghofer
Jasmin Blanchette
Sascha Böhme
Jeremy Dawson

Alexander Krauss

May 31, 2009

http://isabelle.in.tum.de/nominal/activities/idp/

Beijing, 1. June 2009 – p. 5/18

http://isabelle.in.tum.de/nominal/activities/idp/

Functions
Let us return to function definitions: for example
the Fibonnacci function

fun
fib :: "nat⇒ nat"

where
"fib 0 = 0"
| "fib (Suc 0) = 1"
| "fib (Suc (Suc n)) = fib n + fib (Suc n)"

We have to make sure every function terminates
(this is proved automatically for the Fibonacci
function).

f(x) = f(x) + 1
0 = 1

Beijing, 1. June 2009 – p. 6/18

Functions
Let us return to function definitions: for example
the Fibonnacci function

fun
fib :: "nat⇒ nat"

where
"fib 0 = 0"
| "fib (Suc 0) = 1"
| "fib (Suc (Suc n)) = fib n + fib (Suc n)"

We have to make sure every function terminates
(this is proved automatically for the Fibonacci
function).

f(x) = f(x) + 1
0 = 1

Beijing, 1. June 2009 – p. 6/18

Functions

The Ackermann function is also automatically
proved to be terminating:

fun
ack :: "nat⇒ nat⇒ nat"

where
"ack 0 m = Suc m"
| "ack (Suc n) 0 = ack n (Suc 0)"
| "ack (Suc n) (Suc m) = ack n (ack (Suc n) m)"

For others you might have to show explicitly that
they are terminating (for example by a
decreasing measure).

Beijing, 1. June 2009 – p. 7/18

Functions

The Ackermann function is also automatically
proved to be terminating:

fun
ack :: "nat⇒ nat⇒ nat"

where
"ack 0 m = Suc m"
| "ack (Suc n) 0 = ack n (Suc 0)"
| "ack (Suc n) (Suc m) = ack n (ack (Suc n) m)"

For others you might have to show explicitly that
they are terminating (for example by a
decreasing measure).

Beijing, 1. June 2009 – p. 7/18

For example a generalised version of the
Fibonacci function to integers cannot be
automatically shown terminating.
function

fib’ :: "int⇒ int"
where

"n< -1 =⇒ fib’ n = fib’ (n + 2) - fib’ (n + 1)"
| "fib’ -1 = (1::int)"
| "fib’ 0 = (0::int)"
| "fib’ 1 = (1::int)"
| "n > 1 =⇒ fib’ n = fib’ (n - 1) + fib’ (n - 2)"
by (atomize_elim, presburger) (auto)

termination
by (relation "measure (λx. nat (|x|))")

(simp_all add: zabs_def)
Beijing, 1. June 2009 – p. 8/18

Datatypes
You can introduce new datatypes. For example
“my”-lists:

datatype ’a mylist =
MyNil ("[]")
| MyCons "’a" "’a mylist" ("_ ::: _" 65)

fun myappend :: "’a mylist⇒ ’a mylist⇒ ’a mylist" ("_ @@ _" 65)
where
"[] @@ xs = xs"
| "(y:::ys) @@ xs = y:::(ys @@ xs)"

fun myrev :: "’a mylist⇒ ’a mylist"
where
"myrev [] = []"
| "myrev (x:::xs) = (myrev xs) @@ (x:::[])"

Beijing, 1. June 2009 – p. 9/18

Datatypes
You can introduce new datatypes. For example
“my”-lists:

datatype ’a mylist =
MyNil ("[]")
| MyCons "’a" "’a mylist" ("_ ::: _" 65)

fun myappend :: "’a mylist⇒ ’a mylist⇒ ’a mylist" ("_ @@ _" 65)
where
"[] @@ xs = xs"
| "(y:::ys) @@ xs = y:::(ys @@ xs)"

fun myrev :: "’a mylist⇒ ’a mylist"
where
"myrev [] = []"
| "myrev (x:::xs) = (myrev xs) @@ (x:::[])"

Beijing, 1. June 2009 – p. 9/18

Your Turn

lemma myrev_append:
shows "myrev (xs @@ ys) = (myrev ys) @@ (myrev xs)"

proof (induct xs)
case MyNil
show "myrev ([] @@ ys) = myrev ys @@ myrev []" sorry

next
case (MyCons x xs)
have ih: "myrev (xs @@ ys) = myrev ys @@ myrev xs" by fact

show "myrev ((x:::xs) @@ ys) = myrev ys @@ myrev (x:::xs)"
sorry

qed

Beijing, 1. June 2009 – p. 10/18

a

a

A WHILE Language
The memory is a function from nat to nat.

types memory = "nat⇒ nat"

Arithmetical expressions are defined as:
datatype aexp =
C nat
| X nat
| Op1 "nat⇒ nat" aexp
| Op2 "nat⇒ nat⇒ nat" aexp aexp

Arithmetical expressions are defined as:
datatype bexp =
TRUE | FALSE
| ROp "nat⇒ nat⇒ bool" aexp aexp
| NOT bexp | AND bexp bexp | OR bexp bexp

Beijing, 1. June 2009 – p. 11/18

A WHILE Language
The memory is a function from nat to nat.

types memory = "nat⇒ nat"

Arithmetical expressions are defined as:
datatype aexp =
C nat
| X nat
| Op1 "nat⇒ nat" aexp
| Op2 "nat⇒ nat⇒ nat" aexp aexp

Arithmetical expressions are defined as:
datatype bexp =
TRUE | FALSE
| ROp "nat⇒ nat⇒ bool" aexp aexp
| NOT bexp | AND bexp bexp | OR bexp bexp

Beijing, 1. June 2009 – p. 11/18

Commands
Commands are defined also as datatype:

datatype cmd =
SKIP
| ASSIGN nat aexp ("_ ::= _ " 60)
| SEQ cmd cmd ("_; _" [60, 60] 10)
| COND bexp cmd cmd ("IF _ THEN _ ELSE _" 60)
|WHILE bexp cmd ("WHILE _ DO _" 60)

We use ::=, because := is already used for
function update.

We have to define a semantics for the WHILE
programs. . .

Beijing, 1. June 2009 – p. 12/18

Commands
Commands are defined also as datatype:

datatype cmd =
SKIP
| ASSIGN nat aexp ("_ ::= _ " 60)
| SEQ cmd cmd ("_; _" [60, 60] 10)
| COND bexp cmd cmd ("IF _ THEN _ ELSE _" 60)
|WHILE bexp cmd ("WHILE _ DO _" 60)

We use ::=, because := is already used for
function update.
We have to define a semantics for the WHILE
programs. . .

Beijing, 1. June 2009 – p. 12/18

An Abstract Machine
The instruction set

datatype instr =
JPFZ "nat" jump forward n steps, if stack is 0
| JPB "nat" jump backward n steps
| FETCH "nat" move memory to top of stack
| STORE "nat" pop top from stack to memory
| PUSH "nat" push to stack
| OPU "nat⇒ nat" pop one from stack and apply f
| OPB "nat⇒ nat⇒ nat" pop two from stack and apply f

A machine program is a list of instructions.
Representation of booleans is 0 and 1

Beijing, 1. June 2009 – p. 13/18

The Compiler Functions
fun compa
where
"compa (C n) = [PUSH n]"
| "compa (X l) = [FETCH l]"
| "compa (Op1 f e) = (compa e) @ [OPU f]"
| "compa (Op2 f e1 e2) = (compa e1) @ (compa e2) @ [OPB f]"

fun compb
where
"compb (TRUE) = [PUSH 1]"
| "compb (FALSE) = [PUSH 0]"
| "compb (ROp f e1 e2) = (compa e1) @ (compa e2)

@ [OPB (λx y. WRAP (f x y))]"
| "compb (NOT e) = (compb e) @ [OPU MNot]"
| "compb (AND e1 e2) = (compb e1) @ (compb e2) @ [OPB MAnd]"
| "compb (OR e1 e2) = (compb e1) @ (compb e2) @ [OPB MOr]"

Beijing, 1. June 2009 – p. 14/18

The Compiler Functions
fun
compc :: "cmd⇒ instr list"

where
"compc SKIP = []"
| "compc (x::=a) = (compa a) @ [STORE x]"
| "compc (c1;c2) = compc c1 @ compc c2"
| "compc (IF b THEN c1 ELSE c2) =

(compb b) @ [JPFZ (length(compc c1) + 2)] @ compc c1 @
[PUSH 0, JPFZ (length(compc c2))] @ compc c2"
| "compc (WHILE b DO c) =

(compb b) @
[JPFZ (length(compc c) + 1)] @ compc c @
[JPB (length(compc c) + length(compb b)+1)]"

We now have to specify how the machine behaves.

Beijing, 1. June 2009 – p. 15/18

The Compiler Functions
fun
compc :: "cmd⇒ instr list"

where
"compc SKIP = []"
| "compc (x::=a) = (compa a) @ [STORE x]"
| "compc (c1;c2) = compc c1 @ compc c2"
| "compc (IF b THEN c1 ELSE c2) =

(compb b) @ [JPFZ (length(compc c1) + 2)] @ compc c1 @
[PUSH 0, JPFZ (length(compc c2))] @ compc c2"
| "compc (WHILE b DO c) =

(compb b) @
[JPFZ (length(compc c) + 1)] @ compc c @
[JPB (length(compc c) + length(compb b)+1)]"

We now have to specify how the machine behaves.

Beijing, 1. June 2009 – p. 15/18

Compiler Lemmas
We like to prove:

lemma compa:
assumes a: "(e, m)−→a n"
shows "(compa e,[],[],m)−→m* ([],rev (compa e),[n], m)"

lemma compb:
assumes a: "(e, m)−→b b"
shows "(compb e,[],[],m)−→m* ([],rev (compb e),[WRAP b], m)"

lemma compc:
assumes a: "(c, m)−→c m’"
shows "(compc c,[],[],m)−→m* ([],rev (compc c),[], m’)"

Beijing, 1. June 2009 – p. 16/18

Compiler Lemmas
They can be found automatically:

lemma compa_aux_cheating:
assumes a: "(e,m)−→a n"
shows "(compa e@p,q,s,m)−→m* (p,rev (compa e)@q,n#s,m)"

using a
by (induct arbitrary: p q s)

(force intro: steps_trans simp add: steps_simp exec_simp)+

But that is cheating!!! It is like playing chess with
the help of Kasparov.

Beijing, 1. June 2009 – p. 17/18

Compiler Lemmas
They can be found automatically:

lemma compa_aux_cheating:
assumes a: "(e,m)−→a n"
shows "(compa e@p,q,s,m)−→m* (p,rev (compa e)@q,n#s,m)"

using a
by (induct arbitrary: p q s)

(force intro: steps_trans simp add: steps_simp exec_simp)+

But that is cheating!!! It is like playing chess with
the help of Kasparov.

Beijing, 1. June 2009 – p. 17/18

Isabelle Tutorial

Please also come tomorrow.

9:30 - 11:30, Tuesday, 2 June

If Isabelle still does not run, maybe I can help.
Please ask any question.

Beijing, 1. June 2009 – p. 18/18

