Welcome!

- Files and Programme at: http://isabelle.in.tum.de/nominal/activities/cas09/
- Have you already installed Isabelle?
- Can you step through Example.thy without getting an error message?

If yes, then very good.
If not, then please ask now!

Nick Benton in "Machine Obstructed Proof":

Automated proving is not just a slightly more fussy version of paper proving...It's a strange new skill, much harder to learn than a new programming language or application, or even many bits of mathematics... Coq is worth the bother and it, or something like it, is the future, if only we could make the initial learning experience a few thousand times less painful.

Same applies to Isabelle. So be prepared.

A Six-Slides
 Crash-Course on How to Use Isabelle

Proof General

Important buttons:

- Next and Undo advance / retract the processed part
- Goto jumps to the current cursor position, same as ctrl-c/ctrl-return

Feedback:

- warning messages are given in yellow
- error messages in red

X-Symbols

- ...provide a nice way to input non-ascii characters; for example:

$$
\forall, \exists, \Downarrow, \#, \wedge, \Gamma, \times, \neq, \in, \ldots
$$

- they need to be input via the combination \<name-of-x-symbol>

X-Symbols

- ...provide a nice way to input non-ascii characters; for example:

$$
\forall, \exists, \Downarrow, \#, \wedge, \Gamma, \times, \neq, \in, \ldots
$$

- they need to be input via the combination \<name-of-x-symbol>
- short-cuts for often used symbols

\[

\]

Isabelle Proof-Scripts

- Every proof-script (theory) is of the form
theory Name imports $\mathrm{T}_{1} \ldots \mathrm{~T}_{n}$
begin
end

Isabelle Proof-Scripts

- Every proof-script (theory) is of the form
theory Name imports $\mathrm{T}_{1} \ldots \mathrm{~T}_{n}$ begin

end

- Normally, one T will be the theory Main.

Types

- Isabelle is typed, has polymorphism and overloading.
- Base types: nat, bool, string, ...
- Type-formers: 'a list, 'a×'b,'c set, 'a \Rightarrow 'b...
- Type-variables: 'a, 'b, 'c, ...
- Isabelle is typed, has polymorphism and overloading.
- Base types: nat, bool, string, ...
- Type-formers: 'a list, 'a×'b,'c set, 'a \Rightarrow 'b...
- Type-variables: 'a, 'b, 'c, ...
- Types can be queried in Isabelle using:
typ nat
typ bool
typ string
typ "('a × 'b)"
typ "'c set"
typ "'a list"
typ "nat \Rightarrow bool"

Terms

- The well-formedness of terms can be queried using:
term c
term "1::nat"
term 1
term "\{1, 2, 3::nat\}"
term "[1, 2, 3]"
term "(True, "c")"
term "Suc 0"
- The well-formedness of terms can be queried using:
term c
term "1::nat"
term 1
term "\{1, 2, 3::nat\}"
term "[1, 2, 3]"
term "(True, "c")"
term "Suc 0"
- Isabelle provides some useful colour feedback
term "True" gives "True" :: "bool"
term "true" gives "true" :: "'a"
term " $\forall x$. P x" gives " $\forall x . P \times$ " :: "bool"

Formulae

- Every formula in Isabelle needs to be of type bool term "True"
term "True \wedge False"
term " $\{1,2,3\}=\{3,2,1\}$ "
term " $\forall x . P \times$ "
term " $A \longrightarrow B$ "

Formulae

- Every formula in Isabelle needs to be of type bool term "True"
term "True \wedge False"
term " $\{1,2,3\}=\{3,2,1\}$ "
term " $\forall \times . \mathrm{P} \times$ "
term " $A \longrightarrow B$ "
- When working with Isabelle, you are confronted with an objet logic (HOL) and a meta-logic (Pure)

$$
\begin{aligned}
& \text { term " } A \longrightarrow B \text { " ' }=\text { ' term " } A \Longrightarrow B^{\prime \prime} \\
& \text { term " } \forall x . P \times \text { " ' }=\text { ' term " } \ x . P \times \text { " }
\end{aligned}
$$

Formulae

- Every formula in Isabelle needs to be of type bool term "True"
term "True \wedge False"
term " $\{1,2,3\}=\{3,2,1\}$ "
term " $\forall \times$. P x"
term " $A \longrightarrow B$ "
- When working with Isabelle, you are confronted with an objet logic (HOL) and a meta-logic (Pure)

$$
\begin{array}{rl}
\operatorname{term} " A & B \text { " } \\
\text { term " } \forall \times \text { ' } P \times \text { " } & \text { term " } A \Longrightarrow B " \\
\text { term " } \wedge \times . P \times "
\end{array}
$$

$$
\text { term " } A \Longrightarrow B \Longrightarrow C "=\operatorname{term} " \llbracket A ; B \rrbracket \Longrightarrow C "
$$

Inductive Predicates and Theorems

inductive
even :: "nat \Rightarrow bool"
where
eZ[intro]: "even 0"
| eSS[intro]: "even $n \Longrightarrow$ even (Suc (Suc n))"

inductive

even :: "nat \Rightarrow bool"

where
eZ[intro]: "even 0"
| eSS[intro]: "even $n \Longrightarrow \operatorname{even}($ Suc (Suc $n)$)"

- The type of the predicate is always something to bool.
- The attribute [intro] adds the corresponding clause to the hint-theorem base (later more).
- The clauses correspond to the rules
even n
even $0 \quad$ even (Suc (Suc n))

Theorems

- Isabelle's theorem database can be querried using
thm eZ
thm eSS
thm conjI
thm conjunct1

Theorems

- Isabelle's theorem database can be querried using

thm eZ
thm eSS
thm conjI thm conjunct1

```
            eZ: even 0
            eSS: even?n }\Longrightarrow\mathrm{ even(Suc (Suc ?n))
            conjI: [?P; ?Q] \Longrightarrow ?P ^ ?Q
conjunct1: ?P }\wedge ?Q \Longrightarrow ?P
```


Theorems

- Isabelle's theorem database can be querried using

thm eZ
thm eSS
thm conjI thm conjunct1

schematic variables

```
            eZ: even 0
            eSS: even?n }\Longrightarrow\mathrm{ even(Suc (Suc ?n))
            conjI: [?P; ?Q] \Longrightarrow ?P ^ ?Q
conjunct1: ?P }\wedge ?Q \Longrightarrow ?P
```


Theorems

- Isabelle's theorem database can be querried using

```
thm eZ[no_vars]
thm eSS[no_vars]
thm conjI[no_vars]
thm conjunct1[no_vars]
```

```
attributes
```

```
attributes
```

```
            eZ: even 0
            eSS: even n > even (Suc (Suc n))
conjI: \llbracketP;Q\rrbracket\LongrightarrowP}\
conjunct1: P}\wedgeQ\Longrightarrow
```


Generated Theorems

- Most definitions result in automatically generated theorems; for example
thm even.intros[no_vars]
thm even.induct[no_vars]

Generated Theorems

- Most definitions result in automatically generated theorems; for example
thm even.intros[no_vars]
thm even.induct[no_vars]
intr's: even 0
even $n \Longrightarrow \operatorname{even}($ Suc (Suc n))
ind'ct: 【even x; P 0;

$$
\begin{aligned}
& \text { \n. } \llbracket \text { even } n ; P n \rrbracket \Longrightarrow P(\text { Suc }(\text { Suc } n)) \rrbracket \\
& \Longrightarrow P x
\end{aligned}
$$

Theorem / Lemma / Corollary

- ... they are of the form:

theorem theorem_name:

fixes x::"type"
assumes "assm1 " and "assm2"
shows "statement"

- Grey parts are optional.
- Assumptions and the (goal)statement must be of type bool. Assumptions can have labels.

Theorem / Lemma / Corollary

- ... they art lemma even_double: shows "even (2 * n)"
lemma even_add:

$$
\begin{aligned}
& \text { assumes a: "even } n \text { " } \\
& \text { and b: "even } m \text { " } \\
& \text { shows "even }(n+m) \text { " }
\end{aligned}
$$

lemma neutral_element:

- Grey parts fixes x::"nat"
- Assumptia shows " $x+0=x$ "
- Assumptiol

Isar Proofs about Even

An Isar Proof

- The Isar proof language has been conceived by Markus Wenzel, the main developer behind Isabelle.

An Isar Proof

- The Isar proof language has been conceived by Markus Wenzel, the main developer behind Isabelle.

An Isar Proof

- A Rough Schema of an Isar Proof:

have "assumption"
have "assumption"
have "statement"
have "statement"

show "statement"
qed

An Isar Proof

- A Rough Schema of an Isar Proof:
have n1: "assumption"
have n2: "assumption"
have n: "statement"
have m: "statement"
show "statement"
qed
- each have-statement can be given a label

An Isar Proof

- A Rough Schema of an Isar Proof:
have n1: "assumption" by justification have n2: "assumption" by justification
have n : "statement" by justification have m: "statement" by justification
show "statement" by justification qed
- each have-statement can be given a label
- obviously, everything needs to have a justifiation

Justifications

- Omitting proofs
sorry
- Assumptions
by fact
- Automated proofs
by simp simplification (equations, definitions)
by auto simplification \& proof search
(many goals)
by force simplification \& proof search (first goal)
by blast proof search

Justifications

- Omitting proofs sorry
- Assumptions
by fact
- Automated proofs
by simp Automatic justifications can also be:
by auto using ... by ...
by force
using ih by ...
using n 1 n 2 n 3 by ...
by blas \dagger
using lemma_name... by ...

First Exercise

- Lets try to prove a simple lemma. Remember we defined

Eveness of a number:

$$
\overline{\text { even } 0}^{\text {eZ }} \frac{\text { even } n}{\text { even (Suc (Suc } n))} \text { eSS }
$$

lemma evan_double:
shows "even (2 * n)"

First Exercise

- Lets try to prove a simple lemma. Remember we defined

Eveness of a number:

$$
\overline{\text { even } 0}^{\text {eZ }} \frac{\text { even } n}{\text { even (Suc (Suc } n))} \text { eSS }
$$

lemma evan_double: shows "even (2 * n)"
proof (induct n)

Proofs by Induction

- Proofs by induction involve cases, which are of the form:
proof (induct)
case (Case-Name $\times \ldots$. $)$
have "assumption" by justification
have "statment" by justification
show "statment" by justification next
case (Another-Case-Name y...)

Your Turn

lemma even_double:

 shows "even (2 * n)" proof (induct n) case 0show "even (2 * 0)" sorry
next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" sorry
have a: "even (Suc (Suc (2 * n)))" sorry
show "even (2 * (Suc n))" sorry
qed

Your Turn

lemma even_double:

 shows "even (2 * n)" proof (induct n)$$
\begin{gathered}
\frac{\text { even } 0}{\text { eZ }} \\
\frac{\text { even } n}{\text { even }(\text { Suc }(\text { Suc } n))} \text { eSS }
\end{gathered}
$$

case 0

show "even (2 * 0)" sorry
next

case (Suc n) have ih: "even (2 * n)" by fact have eq: "2 * (Suc n) = Suc (Suc (2 * n))" sorry have a: "even (Suc (Suc (2 * n)))" sorry show "even (2 * (Suc n))" sorry qed

Your Turn

lemma even_double:

 shows "even (2 * n)" proof (induct n) case 0show "even (2 * 0)" by auto next
case (Suc n) have ih: "even (2 * n)" by fact have eq: "2 * (Suc n) = Suc (Suc (2 * n))" sorry have a: "even (Suc (Suc (2 * n)))" sorry show "even (2 * (Suc n))" sorry qed

Your Turn

lemma even_double:

 shows "even (2 * n)" proof (induct n) case 0show "even (2 * 0)" by auto next
case (Suc n) have ih: "even (2 * n)" by fact have eq: "2 * (Suc n) = Suc (Suc (2 * n))" sorry have a: "even (Suc (Suc (2 * n)))" sorry show "even (2 * (Suc n))" sorry qed

Your Turn

lemma even_double:

 shows "even (2 * n)" proof (induct n) case 0show "even (2 * 0)" by auto next
case (Suc n) have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" by simp have a: "even (Suc (Suc (2 * n)))" sorry show "even (2 * (Suc n))" sorry qed

$$
\begin{gathered}
\frac{\text { even } 0}{\text { eZ }} \\
\frac{\text { even } n}{\operatorname{even}(\text { Suc }(\text { Suc } n))} \text { eSS }
\end{gathered}
$$

Your Turn

lemma even_double:

 shows "even (2 * n)" proof (induct n) case 0show "even (2 * 0)" by auto next
case (Suc n) have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" by simp have a: "even (Suc (Suc (2 * n)))" sorry show "even (2 * (Suc n))" sorry qed

$$
\begin{gathered}
\frac{\text { even } 0}{\text { eZ }} \\
\frac{\text { even } n}{\operatorname{even}(\text { Suc }(\text { Suc } n))} \text { eSS }
\end{gathered}
$$

Your Turn

lemma even_double:

 shows "even (2 * n)" proof (induct n) case 0show "even (2 * 0)" by auto next
case (Suc n) have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" by simp have a: "even (Suc (Suc ($2^{*} n$)))" using ih by auto show "even (2 * (Suc n))" sorry qed

$$
\begin{gathered}
\frac{\text { even } 0}{\text { eZ }} \\
\frac{\text { even } n}{\operatorname{even}(\text { Suc }(\text { Suc } n))} \text { eSS }
\end{gathered}
$$

Your Turn

lemma even_double:

 shows "even (2 * n)" proof (induct n) case 0show "even (2 * 0)" by auto next
case (Suc n) have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" by simp have a: "even (Suc (Suc ($2^{*} n$)))" using ih by auto show "even (2 * (Suc n))" sorry qed

$$
\begin{gathered}
\frac{\text { even } 0}{\text { eZ }} \\
\frac{\text { even } n}{\operatorname{even}(\text { Suc }(\text { Suc } n))} \text { eSS }
\end{gathered}
$$

Your Turn

lemma even_double: shows "even (2 * n)" proof (induct n) case 0
show "even (2 * 0)" by auto next
case (Suc n) have ih: "even (2 * n)" by fact have eq: "2 * (Suc n) = Suc (Suc (2 * n))" by simp have a: "even (Suc (Suc (2 * n)))" using ih by auto show "even (2 * (Suc n))" using eq a by simp qed

Your Turn

lemma even_twice: shows "even $(n+n)$ " proof (induct n) case 0
show "even $(0+0)$ " sorry
next
case (Suc n)
have ih: "even $(n+n)$ " by fact
have eq: "(Suc $n)+($ Suc $n)=\operatorname{Suc}(\operatorname{Suc}(n+n))$ sorry
have a: "even (Suc $($ Suc $(n+n)))$ " sorry
show "even ((Suc n) + (Suc n))" sorry
qed

Your Turn

lemma even_twice: shows "even $(n+n)$ " proof (induct n) case 0
show "even $(0+0)$ " sorry
next

$$
\begin{gathered}
\overline{\text { even } 0}^{\text {eZ }} \\
\frac{\text { even } n}{\text { even }(\text { Suc }(\text { Suc } n))} \text { eSS }
\end{gathered}
$$

case (Suc n)

 have ih: "even $(n+n)$ " by fact have eq: "(Suc $n)+($ Suc $n)=\operatorname{Suc}(\operatorname{Suc}(n+n))$ " sorry have a: "even (Suc $($ Suc $(n+n)))$ " sorry show "even ((Suc n) + (Suc n))" sorry qed

Your Turn

lemma even_twice: shows "even $(n+n)$ " proof (induct n) case 0
show "even $(0+0)$ " by auto next
case (Suc n) have ih: "even $(n+n)$ " by fact have eq: "(Suc $n)+($ Suc $n)=\operatorname{Suc}(\operatorname{Suc}(n+n))$ " by simp have a: "even (Suc $(\operatorname{Suc}(n+n)))$ " using ih by auto show "even ((Suc n) + (Suc n))" using eq a by simp qed

Your Turn

lemma even_twice: shows "even $(n+n)$ " proof (induct n) case 0
show "even $(0+0)$ " by auto next
case (Suc n) have ih: "even $(n+n)$ " by fact have eq: "(Suc $n)+($ Suc $n)=\operatorname{Suc}(\operatorname{Suc}(n+n))$ " by simp have "even (Suc (Suc $(n+n))$)" using ih by auto then show "even ((Suc n) + (Suc n))" using eq by simp qed

A Chain of Facts

- Isar allows you to build a chain of facts as follows:
have n1: "..."
have n2: "..."
have ni: "..."
have "..." using n1 n2 ...ni
have "..."
moreover have "..."
moreover have "..."
ultimately have "..."
- also works for show

Your Turn

lemma even_twice:
shows "even $(n+n)$ "
proof (induct n)
case 0
show "even $(0+0)$ " by auto
next
case (Suc n)
have ih: "even $(n+n)$ " by fact
have "(Suc $n)+($ Suc $n)=\operatorname{Suc}(\operatorname{Suc}(n+n))$ " by simp
moreover
have "even (Suc (Suc $(n+n))$)" using ih by auto
ultimately show "even ((Suc n) + (Suc n))" by simp qed

Automatic Proofs

- Do not expect Isabelle to be able to solve automatically show "P=NP", but...

lemma
shows "even (2 * n)"
by (induct n) (auto)
lemma
shows "even $(n+n)$ "
by (induct n) (auto)

Rule Inductions

Rule Inductions

- Remember we defined

Eveness of a number:

$$
\overline{\text { even } 0}^{\text {eZ }} \frac{\text { even } n}{\text { even (Suc (Suc } n))} \text { eSS }
$$

Rule Inductions:
1.) Assume the property for the premises. Assume the side-conditions.
2.) Show the property for the conclusion.

Your Turn Again

lemma even_add:
assumes a : "even n "
and $b:$ "even m"
shows "even $(n+m)$ "
using $a b$
proof (induct)
case eZ
have as: "even m " by fact
show "even ($0+m$)" sorry
next
case (eSS n)
have ih: "even $m \Longrightarrow$ even $(n+m)$ " by fact
have as: "even m " by fact
show "even (Suc (Suc n) $+m$)" sorry
 qed

Your Turn Again

lemma even_add:
assumes a : "even n "
and $\quad b$: "even m "
shows "even $(n+m)$ "
using $a b$
proof (induct)
case eZ
have "even m " by fact
then show "even $(0+m)$ " by simp
next
case (eSS n)
have ih: "even $m \Longrightarrow$ even $(n+m)$ " by fact
have as: "even m " by fact
have "even $(n+m)$ " using ih as by simp
then have "even (Suc (Suc $(n+m))$)" by auto
then show "even (Suc (Suc n) $+m$)" by simp qed

Rule Inductions

- Whenever a lemma is of the form
lemma
assumes a: "pred"
and b: "somthing"
shows "something_else"
with pred being an inductively defined predicate, then generally rule inductions are appropriate.

Does Not Work

lemma even_add_does_not_work:
assumes a : "even n "
and b : "even m"
shows "even $(n+m)$ "
using $a b$
proof (induct n rule: nat_induct)
case 0
have "even m " by fact
then show "even $(0+m)$ " by simp
next
case (Suc n)
have ih: " \llbracket even n; even $m \rrbracket \Longrightarrow$ even $(n+m)$ " by fact
have as1: "even (Suc n)" by fact
have as2: "even m " by fact
show "even ((Suc $n)+m)$ "
lemma even_mul:
assumes a: "even n "
shows "even (n * m)"
using a
proof (induct)
case eZ
show "even (0 * m)" by auto
next
case (eSS n)
have as: "even n " by fact
have ih: "even (n * m)" by fact
show "even ((Suc (Suc n)) * m)" sorry qed
even_twice: even $(n+n)$
even_add: \quad even n; even $m \rrbracket \Longrightarrow$ even $(n+m)$

Last Lemma about Even?

lemma even_mul:
assumes a: "even n "
shows "even (n * m)"
using a
proof (induct)
case eZ
show "even (0 * m)" by auto
next
case (eSS n)
have as: "even n " by fact
have ih: "even (n * m)" by fact
show "even ((Suc (Suc n)) * m)" sorry
 qed
even_twice: even (?n + ?n)
even_add: $\quad \llbracket$ even ?n; even ?m』 \Longrightarrow even $(? n+? m)$

Last Lemma about Even?

lemma even_mul:
assumes a: "even $n^{1 "}$
shows "even (n * m)"
using a
proof (induct)
case eZ
show "even (0 * m)" by auto
next
case (eSS n)
have ih: "even (n * m)" by fact
have eq: " $(m+m)+(n$ * $m)=($ Suc (Suc $n))$ * m " by simp
have "even $(m+m)$ " using even_twice by simp
then have "even $\left((m+m)+\left(n^{*} m\right)\right)$ " using even_add ih by simp then show "even ((Suc (Suc n)) * m)" using eq by simp qed

```
even_twice: even ( }n+n\mathrm{ )
even_add: }\quad\mathrm{ even n; even m』" even ( }n+m\mathrm{ )
```


Definitions

Definitions

- Often it is useful to define concepts in terms of existsing concepts. For example
definition divide :: "nat \Rightarrow nat \Rightarrow bool" ("_ DVD _" $[100,100]$ 100) where

$$
\text { "m DVD } n=(\exists k \cdot n=m * k) "
$$

- The annotation after the type introduces some more memorable syntax. The numbers are precedences.
- Once this definition is done, you can access it with
thm divide_def
$m \operatorname{DVD} n=(\exists k . n=m * k)$

```
lemma even_divide:
assumes a: "even n" shows "2 DVD n"
```


using a

```
proof (induct)
case eZ
have " \(0=2\) * ( \(0::\) nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)
```


next

```
case (eSS n)
have "2 DVD n" by fact
then have " \(\exists \mathrm{k} . \mathrm{n}=2\) * k " by (simp add: divide_def)
then obtain \(k\) where eq: " \(n=2\) * \(k\) " by (auto)
have "Suc (Suc \(n\) ) \(=2\) * (Suc \(k\) )" using eq by simp
then have " \(\exists\) k. Suc (Suc \(n\) ) \(=2\) * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def) qed
```


lemma even_divide:

assumes a: "even n"
shows "2 DVD n"

using a

proof (induct)
case eZ
have " $0=2$ * ($0::$ nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)
case (eSS n)
have "2 DVD n" by fact
then have " $\exists \mathrm{k} . \mathrm{n}=2$ * k" by (simp add: divide_def)
then obtain k where eq: " $n=2$ * k " by (auto)
have "Suc (Suc n) $=2$ * (Suc k)" using eq by simp
then have " \exists k. Suc (Suc n) = 2 * k" by blas \dagger
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def) qed
lemma even_divide:
assumes a: "even n"
shows "2 DVD n"
using a
proof (induct)
case eZ
have " $0=2$ * ($0::$ nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)
next
case (eSS n)
have "2 DVD n" by fact
then have " $\exists \mathrm{k} . \mathrm{n}=2^{\text {* }}$ k" by (simp add: divide_def)
then obtain k where eq: " $n=2$ * k " by (auto)
have "Suc (Suc n) $=2$ * (Suc k)" using eq by simp
then have " \exists k. Suc (Suc n) $=2$ * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def) qed
lemma even_divide:

assumes a: "even n"

shows "2 DVD n"
using a
proof (induct)
case eZ
have " $0=2$ * ($0::$ nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)
next
case (eSS n)
have "2 DVD n" by fact
then have " $\exists \mathrm{k} . \mathrm{n}=2$ * k " by (simp add: divide_def)
have "Suc (Suc n) $=2$ * (Suc k)" using eq by simp
then have " \exists k. Suc (Suc n) $=2$ * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def) qed
lemma even_divide:

assumes a: "even n"

shows "2 DVD n"
using a
proof (induct)
case eZ
have " $0=2$ * ($0::$ nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)
next
case (eSS n)
have "2 DVD n" by fact
then have " $\exists \mathrm{k} . \mathrm{n}=2$ * k " by (simp add: divide_def)
then obtain k where eq: " $n=2$ * k " by (auto)
have "Suc (Suc n) $=2$ * (Suc k)" using eq by simp
then have " \exists k. Suc (Suc n) $=2$ * k " by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def) qed
lemma even_divide:

assumes a: "even n"

shows "2 DVD n"
using a
proof (induct)
case eZ
have " $0=2$ * ($0::$ nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)
next
case (eSS n)
have "2 DVD n" by fact
then have " $\exists \mathrm{k} . \mathrm{n}=2$ * k " by (simp add: divide_def)
then obtain k where eq: " $n=2$ * k " by (auto)
have "Suc (Suc n) $=2$ * (Suc k)" using eq by simp
then have " \exists k. Suc (Suc n) $=2$ * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def) qed
lemma even_divide:

assumes a: "even n"

shows "2 DVD n"
using a
proof (induct)
case eZ
have " $0=2$ * ($0::$ nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)
next
case (eSS n)
have "2 DVD n" by fact
then have " $\exists \mathrm{k} . \mathrm{n}=2$ * k " by (simp add: divide_def)
then obtain k where eq: " $n=2$ * k " by (auto)
have "Suc (Suc n) $=2$ * (Suc k)" using eq by simp
then have " $\exists \mathrm{k}$. Suc (Suc n) $=2$ * k " by blast
qed
lemma even_divide:

assumes a: "even n"

shows "2 DVD n"
using a
proof (induct)
case eZ
have " $0=2$ * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)
next
case (eSS n)
have "2 DVD n" by fact
then have " $\exists \mathrm{k} . \mathrm{n}=2$ * k " by (simp add: divide_def)
then obtain k where eq: " $n=2$ * k " by (auto)
have "Suc (Suc n) $=2$ * (Suc k)" using eq by simp
then have " $\exists \mathrm{k}$. Suc (Suc n) $=2$ * k " by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def) qed

Function Definitions and the Simplifier

Function Definitions

- Iterating a function n times can be defined by
fun

$$
\text { iter :: "('a } \Rightarrow \text { ' } a) \Rightarrow \text { nat } \Rightarrow\left({ }^{\prime} a \Rightarrow\right. \text { 'a)" ("_ !! _") }
$$

where

$$
\begin{aligned}
& \text { "f!! } 0=(\lambda \times . x) " \\
& \mid \text { "f!! (Suc n) }=(f!!n) \circ f "
\end{aligned}
$$

Function Definitions

- Iterating a function n times can be defined by

iter :: "('a \Rightarrow ' $a) \Rightarrow$ nat $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right)$ " ("_!! _")
where

$$
\begin{aligned}
& \text { "f !! } 0=(\lambda x \cdot x) " \\
& \mid \text { |" }!!(\text { Suc } n)=(f!!n) \circ f "
\end{aligned}
$$

Function Definitions

- Iterating a function n times can be defined by

iter :: "('a \Rightarrow ' $a) \Rightarrow$ nat $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ 'a)" ("_!! _")
where

$$
\begin{aligned}
& \text { "f !! } 0=(\lambda x \cdot x) " \\
& \mid \text { |" ! ! (Suc n) }=(f!!n) \circ f "
\end{aligned}
$$

Function Definitions

- Iterating a function n times can be defined by pretty syntax
fun
iter :: "(' $a \Rightarrow$ ' $a) \Rightarrow$ nat $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ 'a)" ("_!! _")
where

$$
\begin{aligned}
& \text { "f!! } 0=(\lambda x \cdot x) " \\
& \mid \text { " } f!!(\text { Suc } n)=(f!!n) \circ f "
\end{aligned}
$$

Function Definitions

- Iterating a function n times can be defined by

fun

iter :: "(' $a \Rightarrow$ ' $a) \Rightarrow$ nat $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ 'a)" ("_!! _")
where

$$
\begin{aligned}
& \text { "f!! } 0=(\lambda x . x) " \\
& \mid \text { " } f!!(\text { Suc } n)=(f!!n) \circ f "
\end{aligned}
$$

Function Definitions

- Iterating a function n times can be defined by
fun
iter :: "(' $a \Rightarrow$ ' a) \Rightarrow nat $\Rightarrow(' a \Rightarrow$ 'a)" ("_!! _")
where

$$
\begin{aligned}
& \text { "f !! } 0=(\lambda \times . x) " \\
& \mid \text { "f!! (Suc n) }=(f!!n) \circ f "
\end{aligned}
$$

- Once a function is defined, the simplifier will be able to solve equations like
lemma
shows "f !! (Suc (Suc 0)) = fof"
by (simp add: comp_def)

Your Turn
lemma shows "f!! $(m+n)=(f!!m) \circ(f!!n)$ " sorry
A textbook proof: By induction on n :

- Case 0: Trivial.
- Case (Suc n): We have to show

$$
f!!(m+(\text { Suc } n))=f!!m \circ(f!!(\text { Suc } n))
$$

The induction hypothesis is

$$
f!!(m+n)=(f!!m) \circ(f!!n)
$$

The justification

$$
\begin{array}{rlll}
f!!(m+(\text { Suc } n)) & =f!!(\text { Suc }(m+n)) & \\
& =f!!(m+n) \circ f & \\
& =(f!!m) \circ(f!!n) \circ f & \text { (by ih) } \\
& =(f!!m) \circ((f!!n) \circ f) & \text { (by o_assoc) }) \\
& =(f!!m) \circ(f!!(\text { Suc } n)) &
\end{array}
$$

Your Turn

lemma

shows " f !! $(m+n)=(f!!m) \circ(f!!n)$ "
proof (induct n)

case 0

show " $f!$! $(m+0)=(f!!m) \circ(f!!0)$ " sorry
next
case (Suc n)
have ih: " f !! $(m+n)=(f$!! $m)$ o (f !! n " by fact
show "f!! $(m+($ Suc $n))=f!!m o(f!!($ Suc $n))$ " sorry qed

Your Turn

lemma

$$
\text { shows " } f!!(m+n)=(f!!m) \circ(f!!n) "
$$

proof (induct n)

case 0

show "f!! $(m+0)=(f!!m) \circ(f!!0)$ " by (simp add: comp_def)

next

case (Suc n)

have ih: "f!! $(m+n)=(f!!m)$ o (f !! n)" by fact
have eq1: "f!! $(m+($ Suc $n))=f!!($ Suc $(m+n))$ " by simp
have eq2: " f !! (Suc $(m+n))=f!!(m+n)$ of" by simp
have eq3: "f!! $(m+n)$ of $=(f!!m)$ o $(f!!n)$ o f " using in by simp
have eq4: "(f!!m) o (f!! n) of $=(f!!m) \circ((f!!n) \circ f)$ "
by (simp add: o_assoc)
have eq5: "(f!! m) ○ ((f !! n) ○f) = (f!! m) o (f!! (Suc n))" by simp
show "f!! $(m+($ Suc $n))=f!!m \circ(f!!(S u c n)) "$ using eq1 eq2 eq3 eq4 eq5 by (simp only:) qed

Equational Reasoning in Isar

- One frequently wants to prove an equation $t_{1}=t_{n}$ by means of a chain of equations, like

$$
t_{1}=t_{2}=t_{3}=t_{4}=\ldots=t_{n}
$$

Equational Reasoning in Isar

- One frequently wants to prove an equation $t_{1}=t_{n}$ by means of a chain of equations, like

$$
t_{1}=t_{2}=t_{3}=t_{4}=\ldots=t_{n}
$$

- This kind of reasoning is supported in Isar as:
have " $\dagger_{1}=\dagger_{2}$ " by just.
also have "... $=\dagger_{3}$ " by just.
also have "... = \dagger_{4} " by just.
also have "... = \dagger_{n} " by just.
finally have " $\dagger_{1}=t_{n}$ " by simp

Chains of Equations

lemma

shows " $f!!(m+n)=(f!!m) \circ(f!!n)$ "
proof (induct n)
case 0
show "f !! $(m+0)=(f!!m)$ o (f !! 0)" by (simp add: comp_def)
next
case (Suc n)
have ih: "f !! $(m+n)=(f!!m) \circ(f!!n)$ " by fact
have "f !! $(m+($ Suc $n))=f!!($ Suc $(m+n))$ " by simp
also have "... = f!! (m+n) of" by simp
also have "... = (f!! m) ○ (f !! n) o f" using ih by simp
also have "... = (f!! m) ○ ((f!! n) of)" by (simp add: o_assoc)
also have "... = (f !! m) o (f !! (Suc n))" by simp
finally show "f !! $(m+($ Suc $n))=f!!m \circ(f!!($ Suc $n))$ " by simp qed

Chains Involving Relations

- This type of reasoning also extends to relations.
fun
pow :: "nat \Rightarrow nat \Rightarrow nat" ("_ \uparrow _")
where
" $m \uparrow 0=1$ "
| " $m \uparrow($ Suc $n)=m^{*}(m \uparrow n) "$
lemma aux:
fixes abc::"nat"
assumes $\mathrm{a}: \mathrm{"a} \leq \mathrm{b}$ "
shows " (c * $a) \leq(c$ * $b)$ "
using a by (auto)

Chains Involving Relations

lemma
shows "1 + n * $x \leq(1+x) \uparrow n "$
proof (induct n)
case 0
show "1 + 0 * $x \leq(1+x) \uparrow 0$ " by simp
next
case (Suc n)
have ih: "1 $+n$ * $x \leq(1+x) \uparrow n$ " by fact
have "1 + (Suc $n)^{*} x \leq 1+x+\left(n^{*} x\right)+\left(n^{*} x^{*} x\right)$ " by simp
also have "... $=(1+x)^{*}(1+n$ * $x)$ " by simp
also have "... $\leq(1+x)^{*}((1+x) \uparrow n)$ " using ih aux by blast
also have "... = ($1+x$) \uparrow (Suc n)" by simp
finally show " $1+($ Suc $n)$ * $x \leq(1+x) \uparrow$ (Suc n)" by simp qed
lemma
shows " n * $x<(1+x) \uparrow n^{\prime}$
proof -
have " $1+n$ * $x \leq(1+x) \uparrow n "$
proof (induct n)
case 0
show " $1+0$ * $x \leq(1+x) \uparrow 0$ " by simp

next

case (Suc n)
have ih: "1 + n * $x \leq(1+x) \uparrow n$ " by fact
have " $1+(\text { Suc } n)^{*} x \leq 1+x+\left(n^{*} x\right)+\left(n^{*} x^{*} x\right)$ " by (simp)
also have "... $=(1+x)^{*}(1+n$ * $x)$ " by simp
also have "... $\leq(1+x)^{*}((1+x) \uparrow n)$ " using ih aux by blas \dagger
also have "... $=(1+x) \uparrow$ (Suc n)" by simp
finally show " $1+(\text { Suc } n)^{*} x \leq(1+x) \uparrow$ (Suc n)" by simp qed
then show " n * $x<(1+x) \uparrow n$ " by simp qed

Isabelle Tutorial

I hope you want to do the whole proof about the compiler lemma for WHILE

- 9:00-11:00, Monday, 1 June
- 9:30-11:30, Tuesday, 2 June

