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LF is a dependent type theory in which many other formal systems can be conveniently embedded.

However, correct use of LF relies on nontrivial metatheoretic developments such as proofs of
correctness of decision procedures for LF’s judgments. Although detailed informal proofs of these

properties have been published, they have not been formally verified in a theorem prover. We have

formalized these properties within Isabelle/HOL using the Nominal Datatype Package, closely
following a recent article by Harper and Pfenning. In the process, we identified and resolved a

gap in one of the proofs and a small number of minor lacunae in others. We also formally derive

a version of the type checking algorithm from which Isabelle/HOL can generate executable code.
Besides its intrinsic interest, our formalization provides a foundation for studying the adequacy

of LF encodings, the correctness of Twelf-style metatheoretic reasoning, and the metatheory of

extensions to LF.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Language]: Ma-

thematical Logic—Lambda calculus and related systems

General Terms: Languages, theorem provers

Additional Key Words and Phrases: Logical frameworks, Nominal Isabelle

1. INTRODUCTION

The (Edinburgh) Logical Framework (LF) is a dependent type theory introduced
by Harper, Honsell and Plotkin [1993] as a framework for specifying and reasoning
about formal systems. It has found many applications, such as proof-carrying co-
de [Necula 1997]. The Twelf system [Pfenning and Schürmann 1999] has been used
to mechanize reasoning about LF specifications.

The cornerstone of LF is the idea of encoding judgments-as-types and proofs-as-
terms whereby judgments of a specified formal system are represented as LF-types
and the LF-terms inhabiting these LF-types correspond to valid deductions for these
judgments. Hence, the validity of a deduction in a specified system is equivalent to
a type checking problem in LF. Therefore correct use of LF to encode other logics
depends on the proofs of correctness of type checking algorithms for LF.

Type checking in LF is decidable, but proving decidability is nontrivial becau-
se types may contain expressions with computational behavior. This means that
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typechecking depends on equality-tests for LF-terms and LF-types. Several algo-
rithms for such equality-tests have been proposed in the literature [Coquand 1991;
Goguen 2005b; Harper and Pfenning 2005]. Harper and Pfenning [2005] present a
type-driven algorithm, which is practical and also has been extended to a variety of
richer languages. The correctness of this algorithm is proved by establishing sound-
ness and completeness with respect to the definitional equality rules of LF. These
proofs are involved: Harper and Pfenning’s detailed pencil-and-paper proof spans
more than 30 pages, yet still omits many cases and lemmas.

We present a formalization of the main results of Harper and Pfenning’s article.
To our knowledge this is the first formalization of these or comparable results. While
most of the formal proofs go through as described by Harper and Pfenning [2005],
we found a few do not go through as described, and there is a gap in the proof of
soundness. Although the problem can be avoided easily by adding to or changing
the rules of Harper and Pfenning [2005], we found that it was still possible to prove
the original results, though the argument was nontrivial. Our formalization was
essential not only to find this gap in Harper and Pfenning’s argument, but also to
find and validate the possible repairs relatively quickly.

We used Isabelle/HOL [Nipkow et al. 2002] and the Nominal Datatype Packa-
ge [Urban et al. 2007; Urban and Tasson 2005; Urban 2008] for our formalization.
The latter provides an infrastructure for reasoning conveniently about datatypes
with a built-in notion of alpha-equivalence: it allows to specify such datatypes,
provides appropriate recursion combinators and derives strong induction principles
that have the usual variable convention already built-in. The Nominal Datatype
Package has already been used to formalize logical relation arguments similar to
(but much simpler than) those in Harper and Pfenning’s completeness proof [Nar-
boux and Urban 2007]; it is worth noting that logical relations proofs are currently
not easy to formalize in Twelf itslef, despite the recent breakthrough by Schürmann
and Sarnat [2008].

Besides proving the correctness of their equivalence algorithm, Harper and Pfen-
ning also sketched a proof of decidability. Unfortunately, since Isabelle/HOL is
based on classical logic, proving decidability results of this kind is not straightfor-
ward. We have formalized the essential parts of the decidability proof by providing
inductive definitions of the complements of the relations we wish to decide. It is
clear by inspection that these relations define recursively enumerable sets, which
implies decidability, but we have not formalized this part of the proof. A complete
proof of decidability would require first developing a substantial amount of com-
putability theory within Isabelle/HOL, a problem of independent interest we leave
for future work.

We were able to follow the arguments in Harper and Pfenning’s article very clo-
sely by using the Nominal Datatype Package for our formalisation, but the current
system does not allow us to generate executable code directly from definitions invol-
ving nominal datatypes. We therefore also implemented a type-checking algorithm
based on the locally nameless approach for representing binders [McKinna and Pol-
lack 1999; Aydemir et al. 2008]. We proved that the nominal datatype formalization
of Harper and Pfenning’s algorithm is equivalent to the locally nameless formula-
tion. Moreover, by making the choice of fresh names explicit, we can generate a
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working ML implementation directly from the verified formalization.

Contributions:. We present a formalization of the soundness and completeness
of the equivalence algorithm presented by Harper and Pfenning [2005]. We discuss
additional lemmas and other complications arising during the formalization, and
discuss the gap in the soundness proof and its solutions in detail. We also discuss our
partial formalization of decidability and other results from [Harper and Pfenning
2005] which were omitted in the conference version of this paper [Urban et al. 2008],
including proving the admissibility of strengthening and strong extensionality rules
for LF, proving the existence and uniqueness of quasicanonical forms, and reasoning
about the adequacy of encodings of object languages in LF. Finally, we derive an
equivalent version of the type checking algorithm from which Isabelle/HOL can
generate executable code.

2. BACKGROUND

We used the Nominal Datatype Package in Isabelle/HOL [Urban et al. 2007; Urban
and Tasson 2005; Urban 2008] to formalize the syntax and judgments of LF. The
key features we rely upon are

(1) support for nominal datatypes with a built-in notion of binding (i.e. α-equivalence
classes),

(2) facilities for defining functions over nominal datatypes (such as substitution)
by (nominal) primitive recursion, and

(3) strong induction principles for datatypes and inductive definitions that build
in Barendregt-style renaming conventions.

Together, these features make it possible to formalize most of the definitions and
proofs following their paper versions closely. We will not review the features of this
system in this article, but will discuss details of the formalization only when they
intrude. The interested reader is referred to previous work on nominal techniques
and the Nominal Datatype Package for further details [Gabbay and Pitts 2002;
Pitts 2006; Urban et al. 2007; Urban and Tasson 2005; Urban 2008].

2.1 Syntax of LF

The logical framework LF [Harper et al. 1993] is a dependent type theory. We
present it here following closely the article by Harper and Pfenning [2005], to which
we refer from now on as HP05. The syntax of LF includes kinds, type families and
objects defined by the grammar:

Kinds K, L ::= type | Πx :A. K
Type families A, B ::= a | Πx :A1. A2 | A M
Objects M, N ::= c | x | λx :A. M | M 1 M 2

where variables x and constants c and a are drawn from countably infinite, disjoint
sets Var and Id of variables and identifiers, respectively. Traditionally, LF has
included λ-abstraction at the level of both types and objects. However, Geuvers
and Barendsen [1999] established that type-level λ-abstraction is superfluous in
LF. Accordingly, HP05 omits type-level λ-abstraction, and so do we.
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We formalize the syntax of LF as nominal datatypes since the constructors λ and
Π bind variables. Substitutions are represented as lists of variable-term pairs and
we define capture avoiding substitution in the standard way as

x [σ] = lookup σ x
c[σ] = c

(M N )[σ] = M [σ] N [σ]
(λy :A. M )[σ] = λy :A[σ]. M [σ] provided y # σ

a[σ] = a
(A M )[σ] = A[σ] M [σ]

(Πy :A. B)[σ] = Πy :A[σ]. B [σ] provided y # σ

type[σ] = type
(Πy :A. K )[σ] = Πy :A[σ]. K [σ] provided y # σ

where the variable case is defined in terms of the auxiliary function lookup:

lookup [] x = x
lookup ((y , M )::σ) x = (if x = y then M else lookup σ x )

The side-conditions y # σ in the above definition are freshness constraints provided
automatically by the Nominal Datatype Package and stand for y not occurring
freely in the substitution σ. Substitution for a single variable is defined as a special
case: (−)[x :=M ] def= (−)[(x ,M )].

LF also includes signatures Σ and contexts Γ , both of which we represent as
lists of pairs. We use ML-like notation [] for the empty list and x :: L for list
construction. The former consist of pairs of the form (c, A) or (a, K ) associating the
constant c with type A and the constant a with kind K respectively, and the latter
consists of pairs (x , A) associating the variable x with type A. Accordingly, we write
(x , A)::Γ for list construction (rather than Γ, x:A), Γ @ Γ ′ for list concatenation
and (x , A) ∈ Γ for list membership (similarly for Σ). List inclusion for contexts is
defined as follows:

Γ 1 ⊆ Γ 2
def= ∀ x A. (x , A) ∈ Γ 1 implies (x , A) ∈ Γ 2

2.2 Validity and Definitional Equivalence

HP05 defines two judgments for identifying valid signatures and contexts, which we
formalize in Fig. 1. In contrast with HP05, we make explicit that the new bindings
do not occur previously in Σ or Γ , using freshness constraints such as x # Γ . We
also make the dependence of all judgments on Σ explicit.

Central in HP05 are the definitions of the validity and definitional equivalence
judgments for LF, and of algorithmic judgments for checking equivalence. The va-
lidity and definitional equivalence rules are shown in Fig. 2 and 3. There are three
judgments for validity and three for equivalence corresponding to objects, type
families and kinds respectively:

Objects Type families Kinds
Validity Γ `Σ M : A Γ `Σ A : K Γ `Σ K : kind

Equivalence Γ `Σ M = N : A Γ `Σ A = B : K Γ `Σ K = L : kind

These six judgments are defined simultaneously with signature validity (` Σ sig )
and context validity (`Σ Γ ctx ) by induction. We added explicit validity hypotheses
ACM Journal Name, Vol. V, No. N, Month 20YY.
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` Σ sig

` [] sig

` Σ sig [] `Σ K : kind a # Σ

` (a, K )::Σ sig

` Σ sig [] `Σ A : type c # Σ

` (c, A)::Σ sig

`Σ Γ ctx

` Σ sig

`Σ [] ctx

`Σ Γ ctx Γ `Σ A : type x # Γ

`Σ (x , A)::Γ ctx

Fig. 1. Validity rules for signatures and contexts

Γ `Σ M : A

`Σ Γ ctx (x , A) ∈ Γ
Γ `Σ x : A

`Σ Γ ctx (c, A) ∈ Σ
Γ `Σ c : A

Γ `Σ M 1 : Πx :A2. A1 Γ `Σ M 2 : A2 x # Γ

Γ `Σ M 1 M 2 : A1[x :=M 2]

Γ `Σ A1 : type (x , A1)::Γ `Σ M 2 : A2 x # (Γ , A1)

Γ `Σ λx :A1. M 2 : Πx :A1. A2

Γ `Σ M : A Γ `Σ A = B : type

Γ `Σ M : B

Γ `Σ A : K

`Σ Γ ctx (a, K ) ∈ Σ
Γ `Σ a : K

Γ `Σ A : Πx :B . K Γ `Σ M : B x # Γ

Γ `Σ A M : K [x :=M ]

Γ `Σ A1 : type (x , A1)::Γ `Σ A2 : type x # (Γ , A1)

Γ `Σ Πx :A1. A2 : type

Γ `Σ A : K Γ `Σ K = L : kind

Γ `Σ A : L

Γ `Σ K : kind

`Σ Γ ctx

Γ `Σ type : kind

Γ `Σ A : type (x , A)::Γ `Σ K : kind x # (Γ , A)

Γ `Σ Πx :A. K : kind

Fig. 2. Validity rules for kinds, type families and objects.

to some of the rules; these are left implicit in HP05. We also added some (redundant)
freshness constraints to some rules in order to be able to use strong induction
principles [Urban et al. 2007].
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Γ `Σ M = N : A

`Σ Γ ctx (x , A) ∈ Γ
Γ `Σ x = x : A

`Σ Γ ctx (c, A) ∈ Σ
Γ `Σ c = c : A

Γ `Σ M 1 = N 1 : Πx :A2. A1 Γ `Σ M 2 = N 2 : A2 x # Γ

Γ `Σ M 1 M 2 = N 1 N 2 : A1[x :=M 2]

Γ `Σ A1
′ = A1 : type

Γ `Σ A1
′′ = A1 : type Γ `Σ A1 : type (x , A1)::Γ `Σ M 2 = N 2 : A2 x # Γ

Γ `Σ λx :A1
′. M 2 = λx :A1

′′. N 2 : Πx :A1. A2

Γ `Σ M : Πx :A1. A2

Γ `Σ N : Πx :A1. A2 Γ `Σ A1 : type (x , A1)::Γ `Σ M x = N x : A2 x # Γ

Γ `Σ M = N : Πx :A1. A2

Γ `Σ A1 : type (x , A1)::Γ `Σ M 2 = N 2 : A2 Γ `Σ M 1 = N 1 : A1 x # Γ

Γ `Σ (λx :A1. M 2) M 1 = N 2[x :=N 1] : A2[x :=M 1]

Γ `Σ M = N : A

Γ `Σ N = M : A

Γ `Σ M = N : A Γ `Σ N = P : A

Γ `Σ M = P : A

Γ `Σ M = N : A Γ `Σ A = B : type

Γ `Σ M = N : B

Γ `Σ A = B : K

`Σ Γ ctx (a, K ) ∈ Σ
Γ `Σ a = a : K

Γ `Σ A = B : Πx :C . K Γ `Σ M = N : C x # Γ

Γ `Σ A M = B N : K [x :=M ]

Γ `Σ A1 = B1 : type Γ `Σ A1 : type (x , A1)::Γ `Σ A2 = B2 : type x # Γ

Γ `Σ Πx :A1. A2 = Πx :B1. B2 : type

Γ `Σ A = B : K

Γ `Σ B = A : K

Γ `Σ A = B : K Γ `Σ B = C : K

Γ `Σ A = C : K

Γ `Σ A = B : K Γ `Σ K = L : kind

Γ `Σ A = B : L

Γ `Σ K = L : kind

`Σ Γ ctx

Γ `Σ type = type : kind

Γ `Σ A = B : type Γ `Σ A : type (x , A)::Γ `Σ K = L : kind x # Γ

Γ `Σ Πx :A. K = Πx :B . L : kind

Γ `Σ K = L : kind

Γ `Σ L = K : kind

Γ `Σ K = L : kind Γ `Σ L = L ′ : kind

Γ `Σ K = L ′ : kind

Fig. 3. Definitional equivalence rules for kinds, type families and objects.
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2.3 Algorithmic Equivalence

The definitional equivalence judgment captures equivalence between LF terms, ty-
pes and kinds declaratively, but it is highly nondeterministic due tothe symmetry,
transitivity and conversion rules. Accordingly, HP05 introduces algorithmic equi-
valence judgments that are type- and syntax-directed, and the main contribution
of that article is the proof that the algorithmic and declarative systems coincide.

A crucial point of the algorithm in HP05 is that it does not analyze the precise
types or kinds of objects or types, respectively; rather it only uses approximate
simple types τ and simple kinds κ defined as follows:

τ ::= a− | τ → τ ′ κ ::= type− | τ → κ

This simplification is sufficient for obtaining a sound and complete equivalence
checking algorithm, and also simplifies the proof development in a number of places.

Similarly, simple contexts ∆, Θ consist of lists of pairs (x , τ) of variables and
simple types. We write ` ∆ sctx to indicate that ∆ is valid, i.e. has no repeated
variables, and write ∆ ≥ ∆ ′ to indicate that ∆ contains all of the bindings of ∆ ′

and ∆ is a valid simple context.
Finally, we also introduce simple signatures, also written Σ, consisting of lists of

pairs (c, τ) or (a, κ) of constants and simple kinds or types. We write ` Σ ssig
to indicate that Σ is a well-formed simple signature with no repeated type or kind
assignments.

The erasure function translates families and kinds to simple types and simple
kinds:

(a)− = a−

(A M )− = A−

(Πx :A1. A2)− = A1
− → A2

−

(type)− = type−

(Πx :A. K )− = A− → K−

Similarly, we write Γ− for the simple context resulting from replacing each binding
(x , A) in Γ with (x , A−). Likewise, we extend the erasure function to map signatures
Σ− to simple signatures Σ in the natural way.

The rules for the algorithm also employ a weak head reduction relation (−) whr−→ (−)
which performs beta-reductions only at the head of the top-level application of a
term. It is defined as

x # (A1, M 1)

(λx :A1. M 2) M 1
whr−→ M 2[x :=M 1]

M 1
whr−→ M 1

′

M 1 M 2
whr−→ M 1

′ M 2

The rules for the equivalence checking algorithm are given in Fig. 4. There are
five algorithmic equivalence judgments:

Objects Type families Kinds
Algorithmic ∆ `Σ M ⇔ N : τ ∆ `Σ A ⇔ B : κ ∆ `Σ K ⇔ L : kind−

Structural ∆ `Σ M ↔ N : τ ∆ `Σ A ↔ B : κ

Note that the algorithmic rules are type- (or kind-) directed while the structu-
ral rules are syntax-directed. The algorithmic rules make use of several additional
notations which we define next.

The main results of HP05 are soundness and completeness of the algorithmic
judgments relative to the equivalence judgments, namely
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∆ `Σ M ⇔ N : τ

M
whr−→ M ′ ∆ `Σ M ′ ⇔ N : a−

∆ `Σ M ⇔ N : a−

N
whr−→ N ′ ∆ `Σ M ⇔ N ′ : a−

∆ `Σ M ⇔ N : a−

∆ `Σ M ↔ N : a−

∆ `Σ M ⇔ N : a−

(x , τ1)::∆ `Σ M x ⇔ N x : τ2 x # (∆, M , N )

∆ `Σ M ⇔ N : τ1 → τ2

∆ `Σ M ↔ N : τ

(x , τ) ∈ ∆ ` ∆ sctx ` Σ ssig

∆ `Σ x ↔ x : τ

(c, τ) ∈ Σ ` ∆ sctx ` Σ ssig

∆ `Σ c ↔ c : τ

∆ `Σ M 1 ↔ N 1 : τ2 → τ1 ∆ `Σ M 2 ⇔ N 2 : τ2

∆ `Σ M 1 M 2 ↔ N 1 N 2 : τ1

∆ `Σ A ⇔ B : κ

∆ `Σ A ↔ B : type−

∆ `Σ A ⇔ B : type−

(x , τ)::∆ `Σ A x ⇔ B x : κ x # (∆, A, B)

∆ `Σ A ⇔ B : τ → κ

∆ `Σ A1 ⇔ B1 : type− (x , A1
−)::∆ `Σ A2 ⇔ B2 : type− x # (∆, A1, B1)

∆ `Σ Πx :A1. A2 ⇔ Πx :B1. B2 : type−

∆ `Σ A ↔ B : κ

(a, κ) ∈ Σ ` ∆ sctx ` Σ ssig

∆ `Σ a ↔ a : κ

∆ `Σ A ↔ B : τ → κ ∆ `Σ M ⇔ N : τ

∆ `Σ A M ↔ B N : κ

∆ `Σ K ⇔ L : kind−

` ∆ sctx ` Σ ssig

∆ `Σ type ⇔ type : kind−

∆ `Σ A ⇔ B : type− (x , A−)::∆ `Σ K ⇔ L : kind− x # (∆, A, B)

∆ `Σ Πx :A. K ⇔ Πx :B . L : kind−

Fig. 4. Algorithmic equivalence rules
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Theorem 1 (Completeness).
(1 ) If Γ `Σ M = N : A then Γ− `Σ− M ⇔ N : A−.
(2 ) If Γ `Σ A = B : K then Γ− `Σ− A ⇔ B : K−.
(3 ) If Γ `Σ K = L : kind then Γ− `Σ− K ⇔ L : kind−.

Theorem 2 (Soundness).
(1 ) If Γ− `Σ− M ⇔ N : A− and Γ `Σ M : A and Γ `Σ N : A then

Γ `Σ M = N : A.
(2 ) If Γ− `Σ− A ⇔ B : K− and Γ `Σ A : K and Γ `Σ B : K then

Γ `Σ A = B : K .
(3 ) If Γ− `Σ− K ⇔ L : kind− and Γ `Σ K : kind and Γ `Σ L : kind then

Γ `Σ K = L : kind .

In what follows, we outline the proofs of these results and discuss how we have
formalized them, paying particular attention to places where additional lemmas or
different proof techniques were needed. We also discuss the gap in the soundness
proof of HP05, along with several solutions.

3. THE FORMALIZATION

3.1 Syntactic properties

The proof in HP05 starts by developing of a number of useful metatheoretic proper-
ties for the validity and equality judgments (shown in Fig. 2), such as weakening,
substitution, generalizations of the conversion rules and inversion principles. Most
of these properties have multiple parts corresponding to the eight different judg-
ments in the definitional theory of LF. We will list the main properties; however, to
aid readability we will only show the statements of most of these properties for the
object-level judgments, and we omit symmetric cases. The full formal statements
of the syntactic properties can be found in the Appendix.

To prove the main syntactic properties we needed two technical lemmas having
to do with the implicit freshness and validity assumptions that must be handled
explicitly in our formalization. Both are straightforward by induction, and both are
needed frequently.

Lemma 1 (Freshness). If x # Γ and Γ `Σ M : A then x # M and x # A.
Similarly, if x # Γ and Γ `Σ M = N : A then x # M and x # N and x # A.

Lemma 2 (Implicit Validity). If Γ `Σ M : A or Γ `Σ M = N : A then `
Σ sig and `Σ Γ ctx.

Lemma 3 (Weakening). Suppose `Σ Γ 2 ctx and Γ 1 ⊆ Γ 2.
(1 ) If Γ 1 `Σ M : A then Γ 2 `Σ M : A.
(2 ) If Γ 1 `Σ M = N : A then Γ 2 `Σ M = N : A.

Lemma 4 (Substitution). Suppose Γ 2 `Σ P : C and let Γ = Γ 1 @ [(y , C )] @ Γ 2.
(1 ) If `Σ Γ ctx then `Σ Γ 1[y :=P ] @ Γ 2 ctx.
(2 ) If Γ `Σ M : B then Γ 1[y :=P ] @ Γ 2 `Σ M [y :=P ] : B [y :=P ].
(3 ) If Γ `Σ M = N : A then Γ 1[y :=P ] @Γ 2 `Σ M [y :=P ] = N [y :=P ] : A[y :=P ].

Lemma 5 (Context Conversion). Assume that Γ `Σ B : type and Γ `Σ
A = B : type. Then:

ACM Journal Name, Vol. V, No. N, Month 20YY.
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(1 ) If (x , A)::Γ `Σ M : C then (x , B)::Γ `Σ M : C
(2 ) If (x , A)::Γ `Σ C : K then (x , B)::Γ `Σ C : K

Lemma 6 (Functionality for Typing). Assume that Γ `Σ M : C and
Γ `Σ N : C and Γ `Σ M = N : C. Then if Γ ′@ [(y , C )] @ Γ `Σ P : B then
Γ ′[y :=M ] @ Γ `Σ P [y :=M ] = P [y :=N ] : B [y :=M ].

Since our judgements contain explicit validity statements for contexts, the proof of
Lem. 6 relies on the fact that functionality holds also for contexts, namely

Lemma 7 (Functionality for Contexts). If `Σ Γ ′@ [(x , C )] @ Γ ctx
and Γ `Σ M : C then `Σ Γ ′[x :=M ] @ Γ ctx .

This fact can be established by induction on Γ ′.

Lemma 8 (Validity). Objects, types and kinds appearing in derivable judg-
ments are valid, that is
(1 ) If Γ `Σ M : A then Γ `Σ A : type.
(2 ) If Γ `Σ M = N : B then Γ `Σ M : B and Γ `Σ N : B and Γ `Σ B : type.

Lemma 9 (Typing inversion). The validity rules are invertible, up to conver-
sion of types and kinds.
(1 ) If Γ `Σ x : A then ∃B . (x , B) ∈ Γ and Γ `Σ A = B : type.
(2 ) If Γ `Σ c : A then ∃B . (c, B) ∈ Σ and Γ `Σ A = B : type.
(3 ) If Γ `Σ M 1 M 2 : A then ∃ x A1 A2. Γ `Σ M 1 : Πx :A2. A1 and Γ `Σ M 2 :

A2 and Γ `Σ A = A1[x :=M 2] : type.
(4 ) If Γ `Σ λx :A. M : B and x # Γ then ∃A ′. Γ `Σ B = Πx :A. A ′ : type and

Γ `Σ A : type and (x , A)::Γ `Σ M : A ′.

Next HP05 established some inversion and invertibility properties for definitional
equality:

Lemma 10 (Equality inversion).
(1 ) If Γ `Σ type = L : kind then L = type.
(2 ) If Γ `Σ A = Πx :B1. B2 : type and x # Γ then ∃A1 A2. A = Πx :A1. A2 and

Γ `Σ A1 = B1 : type and (x , A1)::Γ `Σ A2 = B2 : type.
(3 ) If Γ `Σ K = Πx :B1. L2 : kind and x # Γ then ∃A1 K 2. K = Πx :A1. K 2

and Γ `Σ A1 = B1 : type and (x , A1)::Γ `Σ K 2 = L2 : kind .

Finally, we can prove that the product type constructor is invertible, which is
needed for soundness:

Lemma 11 (Product injectivity). Suppose x # Γ .
(1 ) If Γ `Σ Πx :A1. A2 = Πx :B1. B2 : type then Γ `Σ A1 = B1 : type and

(x , A1)::Γ `Σ A2 = B2 : type.
(2 ) If Γ `Σ Πx :A. K = Πx :B . L : kind then Γ `Σ A = B : type and

(x , A)::Γ `Σ K = L : kind.

All the metatheoretic properties given above can be proved as stated in HP05
(appealing to Lem. 1 and 2 as necessary); however, since all of the definitional
judgments of LF are interdependent, each inductive proof must consider all 35
cases, making each proof nontrivial as a practical matter (it is one of the biggest
parts of our formalization).
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HP05 organize the proofs of these metatheoretic properties very neatly. For ex-
ample as shown in Lem. 8 the validity judgment of terms implies the validity of
the type. However, in order to establish this a number of auxiliary facts have to
be proved first which depend on this property. In order to get the proof through,
some of HP05’s rules given in Fig. 2 are formulated to explicitly include validity
constraints such as Γ `Σ A : type and Γ `Σ K : kind . After proving the above
properties, however, we can show that these extra hypotheses are not needed, by
establishing stronger forms of the rules:

Lemma 12 (Strong versions of rules). The following rules are admissible:

(1 )
Γ `Σ M 1 : Πx :A2. A1 Γ `Σ M 2 : A2

Γ `Σ M 1 M 2 : A1[x :=M 2]

(2 )
Γ `Σ A : Πx :B . K Γ `Σ M : B

Γ `Σ A M : K [x :=M ]

(3 )
(x , A1)::Γ `Σ M 2 = N 2 : A2 Γ `Σ M 1 = N 1 : A1 x # Γ

Γ `Σ (λx :A1. M 2) M 1 = N 2[x :=N 1] : A2[x :=M 1]

3.2 Algorithmic equivalence

The main metatheoretic properties of algorithmic equivalence proved in Sec. 3 of
HP05 are symmetry and transitivity. Several properties of weak head reduction
and erasure needed later in HP05 are also proved. Most of the proofs were straight-
forward to formalize, given the details in HP05 (where provided). However, there
were a few missing lemmas and other complications. The algorithmic system is less
well-behaved than the definitional system because derivable judgments may have
ill-formed arguments; for example, the judgment [] `Σ (λx :a. c) y ⇔ c : b− is de-
rivable, for any object term y, provided that (c, b) ∈ Σ since (λx :a. c) y whr−→ c.
Thus, analogues of Lem. 1 and 2 do not hold for the algorithmic system, and in
rules involving binding we need to impose additional freshness constraints. Moreo-
ver, proof search in the algorithmic system is not necessarily terminating because
(−) whr−→ (−) may diverge if called on ill-formed terms such as (λx :a. x x ) (λx :a. x
x ).

The erasure preservation lemma establishes basic properties of erasure which are
frequently needed in HP05:

Lemma 13 (Erasure preservation).
(1 ) If Γ `Σ A = B : K then A− = B−.
(2 ) If Γ `Σ K = L : kind then K− = L−.
(3 ) If (x , A)::Γ `Σ B : type then B− = B [x :=M ]−

(4 ) If (x , A)::Γ `Σ K : kind then K− = K [x :=M ]−

However, we found that the hypotheses of parts 3 and 4 are unnecessarily strong.
Indeed, we can easily prove:

Lemma 14 (Erasure cancels substitution). For any type family A, kind
K, and substitution σ, we have
(1 ) A[σ]− = A−

(2 ) K [σ]− = K−
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In the proofs of symmetry and transitivity of the algorithmic judgments (Thm. 3
and Thm. 4), we also needed the following algorithmic erasure preservation lemma
(it is omitted from HP05, but straightforward by induction):

Lemma 15 (Algorithmic erasure preservation).
(1 ) If ∆ `Σ A ⇔ B : κ then A− = B−.
(2 ) If ∆ `Σ A ↔ B : κ then A− = B−.
(3 ) If ∆ `Σ K ⇔ L : kind− then K− = L−.

The determinacy lemma establishes several important properties of weak head
reduction and algorithmic equivalence.

Lemma 16 (Determinacy). Suppose that ` Σ ssig and ` ∆ sctx.
(1 ) If M whr−→ M ′ and M whr−→ M ′′ then M ′ = M ′′.
(2 ) If ∆ `Σ M ↔ N : τ then @ M ′. M whr−→ M ′.

(3 ) If ∆ `Σ M ↔ N : τ then @ N ′. N whr−→ N ′.
(4 ) If ∆ `Σ M ⇔ N : τ and ∆ `Σ M ⇔ N : τ ′ then τ = τ ′.
(5 ) If ∆ `Σ A ⇔ B : κ and ∆ `Σ A ⇔ B : κ ′ then κ = κ ′.

However, we needed generalized forms of parts 4 and 5 in the proof of transitivity
(Thm. 4). These properties are also later used in Thm. 13 in proving decidability
of the algorithmic rules.

Lemma 17 (Generalized determinacy). Suppose that ` Σ sig and ` ∆ sctx.
(1 ) If ∆ `Σ M ⇔ N : τ and ∆ `Σ N ⇔ P : τ ′ then τ = τ ′.
(2 ) If ∆ `Σ A ⇔ B : κ and ∆ `Σ B ⇔ C : κ ′ then κ = κ ′.

Verifying symmetry of the algorithmic judgments is then straightforward, using
properties established so far.

Theorem 3 (Symmetry of algorithmic equivalence).
1. If ∆ `Σ M ⇔ N : τ then ∆ `Σ N ⇔ M : τ .
2. If ∆ `Σ M ↔ N : τ then ∆ `Σ N ↔ M : τ .
3. If ∆ `Σ A ⇔ B : κ then ∆ `Σ B ⇔ A : κ.
4. If ∆ `Σ A ↔ B : κ then ∆ `Σ B ↔ A : κ.
5. If ∆ `Σ K ⇔ L : kind− then ∆ `Σ L ⇔ K : kind−.

However, verifying transitivity required more work.

Theorem 4 (Transitivity of algorithmic equivalence). Suppose that
` Σ ssig and ` ∆ sctx.
(1 ) If ∆ `Σ M ⇔ N : τ and ∆ `Σ N ⇔ P : τ then ∆ `Σ M ⇔ P : τ .
(2 ) If ∆ `Σ M ↔ N : τ and ∆ `Σ N ↔ P : τ then ∆ `Σ M ↔ P : τ .
(3 ) If ∆ `Σ A ⇔ B : κ and ∆ `Σ B ⇔ C : κ then ∆ `Σ A ⇔ C : κ.
(4 ) If ∆ `Σ A ↔ B : κ and ∆ `Σ B ↔ C : κ then ∆ `Σ A ↔ C : κ.
(5 ) If ∆ `Σ K ⇔ L : kind− and ∆ `Σ L⇔ L ′ : kind− then ∆ `Σ K ⇔ L ′ : kind−.

Proof. As described in HP05, the proof is by simultaneous induction on the
two derivations. For types and kinds, this simultaneous induction can be avoided
by performing induction over one derivation and using inversion principles. For the
object-level judgments (cases 1 and 2), we formalize this argument in Isabelle by
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∆ `Σ M = N ∈ [[a−]] = ∆ `Σ M ⇔ N : a−

∆ `Σ M = N ∈ [[τ → τ ′]] = ∀∆ ′ ≥ ∆, M ′, N ′. ∆ ′ `Σ M ′ = N ′ ∈ [[τ ]]

implies ∆ ′ `Σ M M ′ = N N ′ ∈ [[τ ′]]
∆ `Σ A = B ∈ [[type−]] = ∆ `Σ A ⇔ B : type−

∆ `Σ A = B ∈ [[τ → κ]] = ∀∆ ′ ≥ ∆, M ′, N ′. ∆ ′ `Σ M ′ = N ′ ∈ [[τ ]]

implies ∆ ′ `Σ A M ′ = B N ′ ∈ [[κ]]
∆ `Σ K = L ∈ [[kind−]] = ∆ `Σ K ⇔ L : kind−

∆ `Σ [] = [] ∈ [[[]]] = True

∆ `Σ (x , M )::σ = (x , N )::θ ∈ [[(x , τ)::Θ]] = ∆ `Σ σ = θ ∈ [[Θ]] and x # Θ
and ∆ `Σ M = N ∈ [[τ ]]

Fig. 5. Logical relation definition

defining object-level algorithmic judgments instrumented with a height argument,
and prove parts 1 and 2 by well-founded induction on the sum of the heights of the
derivations.

Because of the induction over the height, there are several cases where we need
to perform some explicit α-conversion and renaming steps; these are places in an
informal proof where one usually appeals to renaming principles “without loss of
generality”. The generalized determinacy property (Lem. 17) is needed here in the
case of structural equivalence of applications.

Strengthening. At this point in the development, we can also prove that the algo-
rithmic judgments satisfy strengthening ; that is, unused variables can be removed
from the context without harming derivability of a conclusion. Strengthening is not
discussed in HP05 until later in the article, but we found it helpful in the proof of
soundness. We first need an (easily established) freshness-preservation property of
weak head reduction.

Lemma 18 (Weak head reduction preserves freshness).

If M whr−→ N and x # M then x # N .

With this property in hand, strengthening for algorithmic and structural equiva-
lence can be established by induction on the structure of judgments, making use of
basic properties of freshness, valid contexts, and the previous lemma as necessary.

Lemma 19 (Strengthening of algorithmic equivalence). Suppose that
x # (∆ ′, M , N ). Then:
(1 ) If ∆ ′@ [(x , τ ′)] @ ∆ `Σ M ⇔ N : τ then ∆ ′@ ∆ `Σ M ⇔ N : τ .
(2 ) If ∆ ′@ [(x , τ ′)] @ ∆ `Σ M ↔ N : τ then ∆ ′@ ∆ `Σ M ↔ N : τ .

Proof. Straightforward induction on derivations, using properties of freshness.
Lem. 18 is needed in the cases involving weak head reduction to maintain the
freshness constraints needed for the induction hypothesis.

3.3 Completeness

The proof of completeness involves a Kripke-style logical relations argument. We
can define the logical relation for objects, types, and substitutions, by induction on
the structure of simple types τ and kinds κ and simple contexts Θ, respectively,
as shown in Fig. 5. This kind of logical relation is called Kripke-style because it
is indexed by a variable context ∆ and in the case for function types and kinds,
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we quantify over all valid extensions to ∆ when considering the argument terms
M ′, N ′.

The key steps in proving completeness are showing that logically related terms
are algorithmically equivalent (Thm. 5) and that definitionally equivalent terms are
logically related (Thm. 6). Many properties can be established by an induction on
the structure of types, appealing to the properties of the algorithmic judgments
established in section 3 of HP05 and the definition of the logical relation.

Lemma 20 (Logical relation weakening). Suppose ∆ ′ ≥ ∆.
(1 ) If ∆ `Σ M = N ∈ [[τ ]] then ∆ ′ `Σ M = N ∈ [[τ ]].
(2 ) If ∆ `Σ A = B ∈ [[κ]] then ∆ ′ `Σ A = B ∈ [[κ]].
(3 ) If ∆ `Σ σ = θ ∈ [[Θ]] then ∆ ′ `Σ σ = θ ∈ [[Θ]].

Theorem 5 (Logically related terms are algorithmically equivalent).
Suppose ` ∆ sctx.
(1 ) If ∆ `Σ M = N ∈ [[τ ]] then ∆ `Σ M ⇔ N : τ .
(2 ) If ∆ `Σ M ↔ N : τ then ∆ `Σ M = N ∈ [[τ ]].
(3 ) If ∆ `Σ A = B ∈ [[κ]] then ∆ `Σ A ⇔ B : κ.
(4 ) If ∆ `Σ A ↔ B : κ then ∆ `Σ A = B ∈ [[κ]].

Lemma 21 (Closure under head expansion).

(1 ) If M whr−→ M ′ and ∆ `Σ M ′ = N ∈ [[τ ]] then ∆ `Σ M = N ∈ [[τ ]].
(2 ) If N whr−→ N ′ and ∆ `Σ M = N ′ ∈ [[τ ]] then ∆ `Σ M = N ∈ [[τ ]].

Lemma 22 (Logical relation symmetry).
(1 ) If ∆ `Σ M = N ∈ [[τ ]] then ∆ `Σ N = M ∈ [[τ ]].
(2 ) If ∆ `Σ A = B ∈ [[κ]] then ∆ `Σ B = A ∈ [[κ]].
(3 ) If ∆ `Σ σ = θ ∈ [[Θ]] then ∆ `Σ θ = σ ∈ [[Θ]].

Lemma 23 (Logical relation transitivity).
Suppose that ` Σ sig and ` ∆ sctx.
(1 ) If ∆ `Σ M = N ∈ [[τ ]] and ∆ `Σ N = P ∈ [[τ ]] then ∆ `Σ M = P ∈ [[τ ]].
(2 ) If ∆ `Σ A = B ∈ [[κ]] and ∆ `Σ B = C ∈ [[κ]] then ∆ `Σ A = C ∈ [[κ]].
(3 ) If ∆ `Σ σ = θ ∈ [[Θ]] and ∆ `Σ θ = δ ∈ [[Θ]] then ∆ `Σ σ = δ ∈ [[Θ]].

The proof that definitionally equal terms are logically related required some care to
formalize. The key step is showing that applying logically related substitutions to
definitionally equal terms yields logically related terms. Establishing this (via the
following lemma) required identifying and proving a number of standard proper-
ties of simultaneous substitutions. In contrast, reasoning about single substitutions
sufficed almost everywhere else in the formalization.

Lemma 24. Suppose ` ∆ sctx and ∆ `Σ σ = θ ∈ [[Γ−]].
(1 ) If Γ `Σ M = N : A then ∆ `Σ− M [σ] = N [θ] ∈ [[A−]].
(2 ) If Γ `Σ A = B : K then ∆ `Σ− A[σ] = B [θ] ∈ [[K−]].

The last step needed to establish completeness is to show that the identity substi-
tution over a given context (written idΓ ) is related to itself:

Lemma 25. If `Σ Γ ctx then Γ− `Σ− idΓ = idΓ ∈ [[Γ−]].

Theorem 6 (Definitionally equal terms are logically related).
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(1 ) If Γ `Σ M = N : A then Γ− `Σ− M = N ∈ [[A−]].
(2 ) If Γ `Σ A = B : K then Γ− `Σ− A = B ∈ [[K−]].

Corollary 1 (Completeness).
(1 ) If Γ `Σ M = N : A then Γ− `Σ− M ⇔ N : A−.
(2 ) If Γ `Σ A = B : K then Γ− `Σ− A ⇔ B : K−.
(3 ) If Γ `Σ K = L : kind then Γ− `Σ− K ⇔ L : kind−.

Note that part 3 of Cor. 1 was omitted from HP05, but it is straightforward to
prove by induction given parts 1 and 2, and algorithmic transitivity and symmetry.

3.4 Soundness

Soundness of algorithmic equivalence is proved under the assumption that the terms
being compared are well-formed. This first requires showing that weak head reduc-
tion preserves well-formedness:

Lemma 26 (Subject reduction). Suppose M whr−→M ′ and Γ `Σ M : A. Then
Γ `Σ M ′ : A and Γ `Σ M = M ′ : A.

The soundness theorem then states that if the arguments to a derivable algorithmic
judgment are well-formed, then the corresponding definitional judgment holds; it
however needs to be stated slightly more generally than Thm. 2. In contrast to
completeness, the proof of soundness proceeds by entirely syntactic techniques, by
induction over the structure of algorithmic and structural derivations. Our initial
formalization attempt followed the proofs given by HP05. However, we encountered
two difficulties which were not discussed in the article. Both difficulties arise in the
algorithmic extensionality cases in parts 1 and 3 of Thm. 2.

First problem. In proving the soundness of algorithmic extensionality for objects
arising in part 1 of Thm. 2, recall that we have a derivation of the form:

(x , τ1)::Γ− `Σ M x ⇔ N x : τ2 x # (Γ−, M , N )
Γ− `Σ M ⇔ N : τ1 → τ2

and we also know that Γ `Σ M : A and Γ `Σ N : A for some A with A− = τ1

→ τ2. In order to apply the induction hypothesis, we need to know that M x and
N x are well-formed in an extended context (x , A1)::Γ . HP05’s proof begins by
assuming that Γ `Σ M : Πx :A1. A2 and Γ `Σ N : Πx :A1. A2, and proceeding
using inversion properties. However, it is not immediately clear that A− = τ1 →
τ2 implies that A = Πx :A1. A2 for some A1 and A2; indeed, this can fail to be the
case if A is not well-formed. Instead, we first need the following inversion principles
for erasure:

Lemma 27 (Erasure inversion).
(1 ) If Γ `Σ A : Πx :B . K then ∃ c. A− = c−.
(2 ) If τ1 → τ2 = A− and Γ `Σ A : type and x # A then
∃A1 A2. A = Πx :A1. A2.

(3 ) If τ → κ = K− and x # K then ∃A L. K = Πx :A. L.

Proof. Part 1 follows by induction on the derivation. Parts 2 and 3 follow by
induction on the structure of A and K respectively. In the case for type applications
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∆ `Σ A 
 B : κ

(a, κ) ∈ Σ ` Σ ssig ` ∆ sctx

∆ `Σ a 
 a : κ

∆ `Σ A 
 B : τ → κ ∆ `Σ M ⇔ N : τ

∆ `Σ A M 
 B N : κ

∆ `Σ A1 
 B1 : type− (x , A1
−)::∆ `Σ A2 
 B2 : type− x # (∆, A1, B1)

∆ `Σ Πx :A1. A2 
 Πx :B1. B2 : type−

Fig. 6. Weak algorithmic type equivalence judgment

A M, clearly A has a Π-kind, but by part 1, A erases to a constant, contradicting
the assumption that A− = τ1 → τ2. So the case is vacuous. The remaining cases
of part 2 are straightforward, as are the cases for part 3.

Using Lem. 27, we can complete the proof of the first part of Thm. 2 as described
in HP05:

Lemma 28 (Soundness of algorithmic object equivalence).
Suppose Γ `Σ M : A and Γ `Σ N : A. Then:
(1 ) If Γ− `Σ− M ⇔ N : A− then Γ `Σ M = N : A.
(2 ) If Γ− `Σ− M ↔ N : τ then Γ `Σ M = N : A and Γ `Σ A = B : type and

A− = τ and B− = τ .

Second problem. The second problem is more serious. It arises in the proof of
soundness for the extensionality rule in the algorithmic type equivalence judgment
(part 3 of Thm. 2). In this case, we have a derivation of the form:

(x , τ)::Γ− `Σ A x ⇔ B x : κ x # (Γ−, A, B)
Γ− `Σ A ⇔ B : τ → κ

We can easily show that the induction hypothesis applies, using the same techni-
que as above, ultimately deriving (x , A ′)::Γ `Σ A x = B x : K for some A ′ and
K. However, we cannot complete the proof of this case in the same way as for
object extensionality, because HP05’s variant of LF does not include a type-level
extensionality rule

Γ `Σ A : Πx :C . K
Γ `Σ B : Πx :C . K Γ `Σ C : type (x , C )::Γ `Σ A x = B x : K x # Γ

Γ `Σ A = B : Πx :C . K

that would permit us to conclude that Γ `Σ A = B : Πx :A ′. K.
There appear to be several ways to fix this problem. One way is to just add the

above extensionality rule for types to the definitional system. Using our formaliza-
tion, we were able to verify that this solves the problem and does not introduce
any new complications (for this we had to make sure that every proof done earlier
is either not affected by this additional rule or can be extended to include it).

A second solution, suggested by Harper1, is to observe that the original algorith-
mic rules were unnecessarily general. In the absence of type-level λ-abstraction, the
weaker, syntax-directed type equivalence rules shown in Fig. 6 suffice. We can easily
prove that these rules are sound with respect to definitional type equivalence:

1personal communication
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Lemma 29 (Soundness of weak type equivalence).
If Γ− `Σ− A 
 B : κ and Γ `Σ A : K and Γ `Σ B : L then Γ `Σ A = B : K,
Γ `Σ K = L : kind, K− = κ and L− = κ.

Proof. Similar to the proof of soundness of algorithmic and structural type
equivalence from HP05. Requires soundness of object equivalence (Lem. 28).

Moreover, we can prove completeness using a slightly modified logical relation:
the type-level logical relation needs to be redefined as

∆ `Σ A = B ∈ [[κ]] = ∆ `Σ A 
 B : κ .

The first two solutions however establish soundness only for variants of the defi-
nitions in HP05. In particular, the first shows that the original algorithmic rules are
sound with respect to a stronger notion of definitional equality, while the second
gives a correct modified algorithm for the original definitional rules. But neither
solution tells us whether the original equivalence algorithm is sound with respect
to the original definitional system in HP05; that is, whether the results in HP05
hold as stated. We resolved this question in the affirmative by finding a third so-
lution that establishes soundness for the original definitions using the weak type
equivalence algorithm introduced above.

Since we already established that weak type equivalence implies definitional equi-
valence (for well-formed terms), it suffices to show that the original algorithmic type
equivalence judgments imply weak type equivalence. To do so, we need to show that
weak type equivalence admits extensionality (Lem. 34 below). This is nontrivial:
we first need to develop some syntactic properties of algorithmic equivalence for
objects, in particular that if ∆ `Σ x ⇔ x : τ then (x , τ) ∈ ∆. This requires several
auxiliary definitions and lemmas.

We say that an object M 0 is an applied variable if it is of the form

M 0 ::= x | M 0 x

that is, it is a variable applied to a sequence of variables. Clearly, applied variables
are weak head normal forms:

Lemma 30. If M 0 is an applied variable then M 0 is in weak head normal form.

We then introduce a weak well-formedness relation ∆ `0 M 0 : τ for applied varia-
bles, defined as follows:

(x , τ) ∈ ∆
∆ `0 x : τ

∆ `0 M 0 : τ1 → τ2 (y , τ1) ∈ ∆
∆ `0 M 0 y : τ2

It is easy to show that that `0 satisfies strengthening:

Lemma 31. If (y , τ ′)::∆ `0 M 0 : τ and y # M 0 then ∆ `0 M 0 : τ .

Furthermore, if an applied variable is algorithmically or structurally equivalent
to itself, then it is weakly well-formed:

Lemma 32. Suppose M 0 is an applied variable and ` ∆ sctx.
(1 ) If ∆ `Σ M 0 ⇔ M 0 : τ then ∆ `0 M 0 : τ .
(2 ) If ∆ `Σ M 0 ↔ M 0 : τ then ∆ `0 M 0 : τ .
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Proof. Induction on derivations. Lem. 30 is needed to show that the cases
involving weak head reduction are vacuous. The only other interesting case is the
case for an extensionality rule

(x , τ1)::∆ `Σ M 0 x ⇔ M 0 x : τ2 x # (∆, M 0, M 0)
∆ `Σ M 0 ⇔ M 0 : τ1 → τ2

By induction, we have that (x , τ1)::∆ `0 M 0 x : τ2. By inversion, we can show
that (x , τ1)::∆ `0 M 0 : τ1 → τ2. To complete the proof, we use Lem. 31 to show
that ∆ `0 M 0 : τ1 → τ2, which follows since x # M 0.

Corollary 2. If ∆ `Σ x ⇔ x : τ and ` ∆ sctx then (x , τ) ∈ ∆.

We also need to establish strengthening for weak algorithmic type equivalence:

Lemma 33 (Strengthening of weak type equivalence).
If ∆ ′@ [(x , τ)] @ ∆ `Σ A 
 B : κ and x # (∆ ′, A, B) then
∆ ′@ ∆ `Σ A 
 B : κ.

Proof. Straightforward induction on derivations. Note that we need Lem. 19
here in the case for structural equivalence of type applications.

We now establish the admissibility of extensionality for weak type equivalence:

Lemma 34 (Extensionality of weak type equivalence).
If (x , τ)::∆ `Σ A x 
 B x : κ and x # (∆, A, B) and ` ∆ sctx then
∆ `Σ A 
 B : τ → κ.

Proof. By inversion, we have subderivations (x , τ)::∆ `Σ A 
 B : τ ′→ κ and
(x , τ)::∆ `Σ x ⇔ x : τ ′ for some τ ′. Using Cor. 2 on the second subderivation we
have that (x , τ ′) ∈ (x , τ)::∆ and using the validity of (x , τ)::∆ we know that τ =
τ ′. Hence, (x , τ)::∆ `Σ A 
 B : τ → κ. Using Lem. 33 we conclude ∆ `Σ A 

B : τ → κ.

Lemma 35. Suppose ` ∆ sctx. Then:
(1 ) If ∆ `Σ A ⇔ B : κ then ∆ `Σ A 
 B : κ.
(2 ) If ∆ `Σ A ↔ B : κ then ∆ `Σ A 
 B : κ.

Proof. By induction on the structure of derivations. The case for the algorith-
mic type extensionality rule requires Lem. 34.

The proof of Thm. 2 is completed as follows.

Lemma 36 (Soundness of algorithmic type equivalence).
(1 ) If Γ− `Σ− A ⇔ B : K− and Γ `Σ A : K and Γ `Σ B : K then

Γ `Σ A = B : K.
(2 ) If Γ− `Σ− A ↔ B : κ and Γ `Σ A : K and Γ `Σ B : L then

Γ `Σ A = B : K, Γ `Σ K = L : kind, K− = κ and L− = κ.

Proof. Immediate using Lem. 35 and 29.

Lemma 37 (Soundness of algorithmic kind equivalence).
If Γ− `Σ− K ⇔ L : kind− and Γ `Σ K : kind and Γ `Σ L : kind then Γ `Σ

K = L : kind .

Proof. As in HP05, using Lem. 36 as necessary.

Thm. 2 follows immediately from Lem. 28, 36 and 37.
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` Σ ⇒ sig

` [] ⇒ sig

` Σ ⇒ sig [] `Σ A ⇒ type c # Σ

` (c, A)::Σ ⇒ sig

` Σ ⇒ sig [] `Σ K ⇒ kind a # Σ

` (a, K )::Σ ⇒ sig

`Σ Γ ⇒ ctx

` Σ ⇒ sig

`Σ [] ⇒ ctx

`Σ Γ ⇒ ctx Γ `Σ A ⇒ type x # Γ

`Σ (x , A)::Γ ⇒ ctx

Γ `Σ M ⇒ A

`Σ Γ ⇒ ctx (x , A) ∈ Γ
Γ `Σ x ⇒ A

`Σ Γ ⇒ ctx (c, A) ∈ Σ
Γ `Σ c ⇒ A

Γ `Σ M 1 ⇒ Πx :A2
′. A1 Γ `Σ M 2 ⇒ A2 Γ− `

Σ− A2 ⇔ A2
′ : type− x # Γ

Γ `Σ M 1 M 2 ⇒ A1[x :=M 2]

Γ `Σ A1 ⇒ type (x , A1)::Γ `Σ M 2 ⇒ A2 x # (Γ , A1)

Γ `Σ λx :A1. M 2 ⇒ Πx :A1. A2

Γ `Σ A ⇒ K

`Σ Γ ⇒ ctx (a, K ) ∈ Σ
Γ `Σ a ⇒ K

Γ `Σ A ⇒ Πx :A2
′. K 1 Γ `Σ M ⇒ A2 Γ− `

Σ− A2 ⇔ A2
′ : type− x # Γ

Γ `Σ A M ⇒ K 1[x :=M ]

Γ `Σ A1 ⇒ type (x , A1)::Γ `Σ A2 ⇒ type x # (Γ , A1)

Γ `Σ Πx :A1. A2 ⇒ type

Γ `Σ K ⇒ kind

`Σ Γ ⇒ ctx

Γ `Σ type ⇒ kind

Γ `Σ A ⇒ type (x , A)::Γ `Σ K ⇒ kind x # (Γ , A)

Γ `Σ Πx :A. K ⇒ kind

Fig. 7. Algorithmic typechecking rules

3.5 Algorithmic typechecking

After the soundness and completeness proof, HP05 introduces an algorithmic versi-
on of the typechecking judgment, proves additional syntactic properties of definitio-
nal equivalence, sketches proofs of decidability, and discusses quasicanonical forms
and adequacy of LF encodings of object languages. We will treat them in turn.

Algorithmic typechecking. The typechecking algorithm in HP05 traverses terms,
types and kinds in a syntax-directed manner, using the algorithmic equivalence
judgment in certain places. The definition of algorithmic typechecking in HP05
omitted explicit definitions of algorithmic signature and context validity. In our
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formalization, we added these (obvious) rules, as shown in Fig. 7. The remaining
rules are the same as in HP05 except for a trivial typographical error in the rule
for type constants. Proving the soundness and completeness of algorithmic type-
checking is a (mostly) straightforward exercise using soundness and completeness
of algorithmic equivalence and various syntactic properties:

Theorem 7 (Soundness of algorithmic typechecking).
(1 ) If ` Σ ⇒ sig then ` Σ sig .
(2 ) If `Σ Γ ⇒ ctx then `Σ Γ ctx .
(3 ) If Γ `Σ M ⇒ A then Γ `Σ M : A.
(4 ) If Γ `Σ A ⇒ K then Γ `Σ A : K .
(5 ) If Γ `Σ K ⇒ kind then Γ `Σ K : kind .

Theorem 8 (Completeness of algorithmic typechecking).
(1 ) If ` Σ sig then ` Σ ⇒ sig .
(2 ) If `Σ Γ ctx then `Σ Γ ⇒ ctx .
(3 ) If Γ `Σ M : A then ∃A ′. Γ `Σ M ⇒ A ′ and Γ `Σ A = A ′ : type.
(4 ) If Γ `Σ A : K then ∃K ′. Γ `Σ A ⇒ K ′ and Γ `Σ K = K ′ : kind .
(5 ) If Γ `Σ K : kind then Γ `Σ K ⇒ kind .

3.6 Strengthening and strong extensionality

The strengthening property states that all of the definitional judgments are pre-
served by removing an unused variable from the context. We already established
strengthening for the algorithmic equivalence judgments (Lem. 19). In order to esta-
blish strengthening for the algorithmic typechecking judgments, we need a stronger
freshness lemma for algorithmic typechecking, which was not discussed in HP05:

Lemma 38 (Strong algorithmic freshness). Let Γ = Γ 1 @ [(x , B)] @ Γ 2.
(1 ) If Γ `Σ M ⇒ A and x # (Γ 1, M ) then x # A.
(2 ) If Γ `Σ A ⇒ K and x # (Γ 1, A) then x # K.

We can now prove strengthening for algorithmic typechecking by induction on
derivations:

Theorem 9 (Strengthening of algorithmic typechecking).
Let Γ = Γ 1 @ [(x , B)] @ Γ 2.
(1 ) If `Σ Γ ⇒ ctx and x # Γ 1 then `Σ Γ 1 @ Γ 2 ⇒ ctx.
(2 ) If Γ `Σ K ⇒ kind and x # (Γ 1, K ) then Γ 1 @ Γ 2 `Σ K ⇒ kind.
(3 ) If Γ `Σ A ⇒ K and x # (Γ 1, A) then Γ 1 @ Γ 2 `Σ A ⇒ K.
(4 ) If Γ `Σ M ⇒ A and x # (Γ 1, M ) then Γ 1 @ Γ 2 `Σ M ⇒ A.

Proof. The proof is straightforward, using strengthening for algorithmic equi-
valence; parts (1–4) need to be proved in the order stated above since we need
strengthening for contexts everywhere, we need strengthening for kinds to prove
strengthening for types, and so on. Lem. 38 is needed in the cases for object and
type application.

Finally, we can prove strengthening for the definitional system.

Theorem 10 (Strengthening). Let Γ = Γ 1 @ [(x , B)] @ Γ 2.
(1 ) If `Σ Γ ctx and x # Γ 1 then `Σ Γ 1 @ Γ 2 ctx.
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(2 ) If Γ `Σ K : kind and x # (Γ 1, K ) then Γ 1 @ Γ 2 `Σ K : kind.
(3 ) If Γ `Σ K = L : kind and x # (Γ 1, K , L) then Γ 1 @ Γ 2 `Σ K = L : kind.
(4 ) If Γ `Σ A : K and x # (Γ 1, A) then Γ 1 @ Γ 2 `Σ A : K.
(5 ) If Γ `Σ A = B : K and x # (Γ 1, A, B) then Γ 1 @ Γ 2 `Σ A = B : K.
(6 ) If Γ `Σ M : A and x # (Γ 1, M ) then Γ 1 @ Γ 2 `Σ M : A.
(7 ) If Γ `Σ M = N : A and x # (Γ 1, M , N ) then Γ 1 @ Γ 2 `Σ M = N : A.

Proof. The proof follows the sketch in the article, using algorithmic strengthe-
ning and soundness and completeness of the algorithmic judgments, but some care
is needed. Part 1 is straightforward, but we must prove the remaining cases in the
specific order listed: first kind validity, then kind equivalence, then type validity,
etc. The reason is that to prove strengthening for the equivalence judgments, we
need strengthening for the corresponding validity judgments because of the validity
side-conditions on Thm. 2. In turn, to prove strengthening for the object and type
validity judgments, we need strengthening for type and kind equivalence respective-
ly, because of the respective type and kind equivalence judgments in the conclusions
of Thm. 8. Lem. 38 is needed in parts (4) and (6).

HP05 also sketched a proof of admissibility of a stronger version of the extensio-
nality rule which omits the well-formedness checks:

(x , A1)::Γ `Σ M x = N x : A2 x # (M , N )
Γ `Σ M = N : Πx :A1. A2

We were also able to verify this property. However, the short proof sketched in the
article actually requires a substantial amount of work to formalize. The first two
steps of their informal proof were as follows:
(1) By validity, we have (x , A1)::Γ `Σ M x : A2.
(2) By inversion, we have (x , A1)::Γ `Σ M : Πx :B1. B2 and (x , A1)::Γ `Σ x : B1

However, step (2) above does not follow immediately from the inversion lemmas
proved earlier. In particular, we only know that M will have a type of the form
Πy :B1. B2 for some y, B1 and B2 such that (x , A1)::Γ `Σ M : Πy :B1. B2 and
(x , A1)::Γ `Σ y : B1 and (x , A1)::Γ `Σ A2 = B2[y :=x ] : type. Moreover, in this
case we cannot use the strong version of the inversion lemma to avoid this problem,
because x is already in use in the context.

Although their proof looks rigorous and detailed, here Harper and Pfenning ap-
pear to be employ implicit “without loss of generality” reasoning about inversion
and renaming that is not easy to formalize directly. Instead we needed to show
carefully that:

Lemma 39 (Strong extensional validity).
If (x , A1)::Γ `Σ M x : A2 and x # M then Γ `Σ M : Πx :A1. A2.

Proof. The proof proceeds by applying validity and inversion principles, as
discussed above. One subtle freshness side-condition is the fact that x is fresh for
Πy :B1. B2, and this is proved by translating to the algorithmic typechecking system
and using Lem. 38.

Strong extensionality then follows essentially as in HP05, using strong extensional
validity to fill the gap identified above:
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Theorem 11 (Strong extensionality).
If (x , A1)::Γ `Σ M x = N x : A2 and x # (M , N ) then
Γ `Σ M = N : Πx :A1. A2.

3.7 Decidability

HP05 also sketches proofs of the decidability of the algorithmic judgments (and
hence also the definitional system). Reasoning about decidability within Isabel-
le/HOL is not straightforward because Isabelle/HOL is based on classical logic.
Thus, unlike Coq or other constructive systems, we cannot infer decidability of P
simply by proving P ∨ ¬ P. Furthermore, given a relation R definable in Isabel-
le/HOL, it is non-obvious how to formalize the informal statement “R is decidable”.

As a sanity check, we have shown that weak head reduction is strongly normali-
zing for well-formed terms. We write M⇓ to indicate that M is strongly normalizing
under weak head reduction. This proof uses techniques and definitions from the ex-
ample formalization of strong normalization for the simply-typed lambda calculus
in the Nominal Datatype Package.

Theorem 12. If Γ `Σ M : A then M⇓.

Proof. We first show the (standard) property that if M N⇓ then M⇓. We then
show that if ∆ `Σ M ⇔ N : τ then M⇓ by induction on derivations. The main
result follows by reflexivity and Thm. 1.

Turning now to the issue of formalizing decidability properties in Isabelle/HOL,
we considered the following options:

Formalizing computability theory. It should be possible to define Turing machines
(or some other universal model of computation) within Isabelle/HOL and derive
enough of the theory of computation to be able to prove that the algorithmic equi-
valence and typechecking relations are decidable. It appears to be an open question
how to formalize proofs of decidability in Isabelle/HOL, especially for algorithms
over complex data structures such as nominal datatypes. Although this would pro-
bably be the most satisfying solution, it would also require a major additional
formalization effort, including a great deal of work that is orthogonal to the issu-
es addressed here. We therefore view fully formalizing decidability in this way as
beyond the scope of this article. Instead, we consider other techniques that fall short
of full formalization while providing some convincing evidence for decidability.

Bounded-height derivations. We could define height-bounded versions of the al-
gorithmic typechecking relations and prove that there is a computable bound on
the height needed to derive any derivable judgment in the system. That is, there
exists a computable h such that for any inputs x1, . . . , xn, there is a derivation of
J(x1, . . . , xn) if and only if there is a derivation of height at most h(x1, . . . , xn).

This seems reasonable intuitively, but there are several problems. First, it is not
obvious how to obtain a closed-form, recursively defined height bound for the num-
ber of steps needed for algorithmic equivalence for the same reason it is difficult to
give an explicit termination measure for weak head normalization. Second, even if
we could find such an h, this approach begs the question of how to prove that h is
computable. It is clearly not enough to simply require that some h exists, because
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the Axiom of Choice can be used to define h nonconstructively. Finally, induc-
tively defined judgments in Isabelle/HOL may themselves involve nonconstructive
features, including equality at or quantification over infinite types, negation of unde-
cidable properties, and choice operators. Although the definitions we have in mind
do not use these facilities, there is no easy way to certify this within Isabelle/HOL.

Inductive definability. We have formalized what we believe is the essence of the
decidability proof using the following methodology. For each inductively defined
relation R we wish to prove decidable, possibly under some constraints P :
(1) Inductively define a complement relation R ′.
(2) (Exclusion) Prove that ¬ (R and R ′).
(3) (Exhaustion) Prove that P implies R ∨ R ′.
(4) Observe (informally) that R and R ′ are recursively enumerable since they are

defined inductively by rules without recourse to nonconstructive features such
as negation or universal quantification in the hypotheses. Conclude (informally)
that P implies R is both r.e. and co-r.e., hence decidable.

This approach exploits an intuitive connection between inductively definable pre-
dicates and recursively enumerable sets in step (4). It is important to note that this
intuition is not rigorously formalized. We argue that this approach does force us
to perform all of the case analysis that would be necessary in a proper decidabili-
ty proof, but the only way to be certain of this is to fully formalize a substantial
amount of computability theory in Isabelle/HOL, which as we have discussed above
would be a major research contribution in its own right. Although we believe that
this approach provides greater confidence in the decidability results compared to
the proof sketches in HP05, there is still room for improvement. However, reasoning
about decidability in Isabelle/HOL seems to be an open problem, involving several
orthogonal issues. We leave the question of fully formalizing decidability to future
work.

In the rest of this section, we describe the inductive definability argument for
decidability in detail. We have introduced inductively defined complements for the
algorithmic equivalence and typechecking judgments and verified exhaustivity and
exclisivity for each of them. We have not verified step (4).

We call a formula R quasidecidable if both R and its negation are equivalent to
inductively defined relations, as described above. This is an informal (and inten-
sional) property; we have not defined quasidecidability explicitly in Isabelle/HOL.
We were able to prove the following lemma, analogous to HP05’s Lemma 6.1:

Theorem 13 (Quasidecidability of algorithmic equivalence).
(1 ) If ∆ `Σ M ⇔ M ′ : τ and ∆ `Σ N ⇔ N ′ : τ then ∆ `Σ M ⇔ N : τ is

quasidecidable.
(2 ) If ∆ `Σ M ↔ M ′ : τ1 and ∆ `Σ N ↔ N ′ : τ2 then ∃ τ3. ∆ `Σ M ↔ N :

τ3 is quasidecidable.
(3 ) If ∆ `Σ A ⇔ A ′ : κ and ∆ `Σ B ⇔ B ′ : κ then ∆ `Σ A ⇔ B : κ is

quasidecidable.
(4 ) If ∆ `Σ A ↔ A ′ : κ1 and ∆ `Σ B ↔ B ′ : κ2 then ∃κ3. ∆ `Σ A ↔ B : κ3

is quasidecidable.
(5 ) If ∆ `Σ K ⇔ K ′ : kind− and ∆ `Σ L ⇔ L ′ : kind− then ∆ `Σ K ⇔ L :

kind− is quasidecidable.
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∆ `Σ M ⇔ N : τ ⇑ ¯̄O

M
whr−→ M ′ ∆ `Σ M ′ ⇔ N : a− ⇑ ¯̄O

∆ `Σ M ⇔ N : a− ⇑ ¯̄O

N
whr−→ N ′ ∆ `Σ M ⇔ N ′ : a− ⇑ ¯̄O

∆ `Σ M ⇔ N : a− ⇑ ¯̄O

∆ `Σ M ↔ N : a− ↓ Ō
∆ `Σ M ⇔ N : a− ⇑ Ō

(x , τ)::∆ `Σ M x ⇔ N x : τ ′ ⇑ ¯̄O x # (∆, M , N )

∆ `Σ M ⇔ N : τ → τ ′ ⇑ λx . ¯̄O

∆ `Σ M ↔ N : τ ↓ Ō

(x , τ) ∈ ∆ ` Σ ssig ` ∆ sctx

∆ `Σ x ↔ x : τ ↓ x

(c, κ) ∈ Σ ` Σ ssig ` ∆ sctx

∆ `Σ c ↔ c : κ ↓ c

∆ `Σ M 1 ↔ N 1 : τ2 → τ1 ↓ Ō1 ∆ `Σ M 2 ⇔ N 2 : τ2 ⇑ ¯̄O2

∆ `Σ M 1 M 2 ↔ N 1 N 2 : τ1 ↓ Ō1
¯̄O2

Fig. 8. Algorithmic equivalence rules instrumented to produce quasicanonical forms.

We were also able to prove that the algorithmic typechecking judgments are
quasidecidable, which is the key step in HP05’s Theorem 6.5. Proving exclusivity
required establishing uniqueness of algorithmic typechecking.

Lemma 40 (Uniqueness of algorithmic types).
(1 ) If Γ `Σ M ⇒ A and Γ `Σ M ⇒ A ′ then A = A ′.
(2 ) If Γ `Σ A ⇒ K and Γ `Σ A ⇒ K ′ then K = K ′.

Equipped with Thm. 13 and the uniqueness lemma above, we can show a form
of HP05’s Theorem 6.2. Note that uses of Thm. 13 are safe because we always call
the algorithmic equivalence judgments on terms that are well-formed, and hence
(by Thm. 2) algorithmically equivalent to themselves.

Theorem 14 (Quasidecidability of algorithmic typechecking).
(1 ) For any Σ, ` Σ ⇒ sig is quasidecidable.
(2 ) For any Σ,Γ , if ` Σ ⇒ sig holds then `Σ Γ ⇒ ctx is quasidecidable.
(3 ) For any Σ,Γ ,M, if `Σ Γ ⇒ ctx holds then ∃A. Γ `Σ M ⇒ A is quasidecidable.
(4 ) For any Σ,Γ ,A, if `Σ Γ ⇒ ctx holds then ∃K . Γ `Σ A⇒ K is quasidecidable.
(5 ) For any Σ,Γ ,K, if `Σ Γ ⇒ ctx holds then Γ `Σ K ⇒ kind is quasidecidable.

3.8 Quasicanonical forms

Section 7 of HP05 discusses quasicanonical forms which can be used to study the
adequacy, or correctness, of LF encodings. Quasicanonical forms are untyped λ-
terms that correspond to the β-normal, η-long forms of well-typed LF terms. Qua-
sicanonical forms ¯̄O and quasiatomic forms Ō are given by the grammar rules:

¯̄O ::= Ō | λx . ¯̄O Ō ::= x | c | Ō ¯̄O

HP05 introduces instrumented algorithmic equivalence judgments that construct
quasicanonical forms for algorithmically and structurally equivalent terms, respec-
tively. The rules are shown in Fig. 8.

It is straightforward to show that quasi-canonical and quasi-atomic forms exist
and are unique (provided that Σ and ∆ are valid).
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Lemma 41 Properties of quasicanonical forms.
(1 ) If ∆ `Σ M ⇔ N : τ then ∃QC . ∆ `Σ M ⇔ N : τ ⇑ QC .
(2 ) If ∆ `Σ M ↔ N : τ then ∃QA. ∆ `Σ M ↔ N : τ ↓ QA.
(3 ) If ∆ `Σ M ⇔ N : τ ⇑ ¯̄O then ∆ `Σ M ⇔ N : τ .
(4 ) If ∆ `Σ M ↔ N : τ ↓ Ō then ∆ `Σ M ↔ N : τ .
(5 ) If ∆ `Σ M ⇔ N : τ ⇑ ¯̄O and M whr−→ M ′ then ∆ `Σ M ′⇔ N : τ ⇑ ¯̄O.
(6 ) If ∆ `Σ M ⇔ N : τ ⇑ ¯̄O and N whr−→ N ′ then ∆ `Σ M ⇔ N ′ : τ ⇑ ¯̄O.

Theorem 15 Uniqueness of quasicanonical forms.
(1 ) If ` ∆ sctx and ` Σ ssig and ∆ `Σ M ⇔ N : τ ⇑ ¯̄O1 and ∆ `Σ M ⇔ N

: τ ⇑ ¯̄O2 then ¯̄O1 = ¯̄O2.
(2 ) If ` ∆ sctx and ` Σ ssig and ∆ `Σ M ↔ N : τ ↓ Ō1 and ∆ `Σ M ↔ N :

τ ′ ↓ Ō2 then τ = τ ′ and Ō1 = Ō2.

Proof. By induction on derivations, using Lem. 41(5,6) in the cases involving
weak head reduction.

The main result about these forms in HP05 is that well-formed LF terms can be
recovered from quasicanonical forms and type information. To show this, we write
N ⇑ ¯̄O or N ↓ Ō for the relations that relate objects N with their quasicanonical
forms ¯̄O or quasiatomic forms Ō, respectively, where the type-labels have been
erased. (HP05 defined this notion as a partial function, which would be difficult to
define with the Nominal Datatype Package at the time of writing.) These relations
are defined as follows:

x ↓ x c ↓ c
M ↓ Ō N ⇑ ¯̄O

(M N ) ↓ Ō ¯̄O

M ⇑ ¯̄O

(λx :A. M ) ⇑ λx . ¯̄O

M ↓ Ō
M ⇑ Ō

In the proof of the Quasicanonical Forms theorem (Theorem 7.1 of HP05) we
found it necessary to prove several nontrivial auxiliary lemmas such as the admis-
sibility of η-equivalence (which was not discussed in HP05):

Lemma 42 (Eta-equivalence). If x # Γ and Γ `Σ M : Πx :A1. A2 then Γ
`Σ M = λx :A1. M x : Πx :A1. A2.

The following theorem is stated slightly differently than the corresponding theo-
rem in HP05 (Theorem 7.1), but their version follows immediately from this version.

Theorem 16 (Quasicanonical forms).

(1 ) If Γ− `Σ− M 1 ⇔ M 2 : A− ⇑ ¯̄O and Γ `Σ M 1 : A and Γ `Σ M 2 : A then
∃N . N ⇑ ¯̄O and Γ `Σ N : A and Γ `Σ M 1 = N : A and Γ `Σ M 2 = N : A.

(2 ) If Γ− `Σ− M 1 ↔ M 2 : τ ↓ Ō and Γ `Σ M 1 : A1 and Γ `Σ M 2 : A2

then Γ `Σ A1 = A2 : type and A1
− = τ and A2

− = τ and (∃N . N ↓ Ō and
Γ `Σ N : A1 and Γ `Σ M 1 = N : A1 and Γ `Σ M 2 = N : A2).

3.9 Adequacy

Conventionally, adequacy is the property that the terms of the object language
are in a bijective correspondence with the well-formed LF terms of a given type,
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Γ ` t ! ¯̄M : ι

(x , ι) ∈ Γ
Γ ` x ! x : ι

Γ ` t1 ! ¯̄M1 : ι Γ ` t2 ! ¯̄M2 : ι

Γ ` f (t1,t2) ! cf
¯̄M1

¯̄M2 : ι

Γ ` ϕ! ¯̄M : o

Γ ` t1 ! ¯̄M1 : ι Γ ` t2 ! ¯̄M2 : ι

Γ ` t1 = t2 ! c=
¯̄M1

¯̄M2 : o

Γ ` ϕ1 ! ¯̄M1 : o Γ ` ϕ2 ! ¯̄M2 : o

Γ ` ϕ1 ∧ ϕ2 ! c∧
¯̄M1

¯̄M2 : o

(x , ι)::Γ ` ϕ! ¯̄M : o x # Γ

Γ ` ∀ x .ϕ! c∀ λx . ¯̄M : o

Fig. 9. Adequacy translation

modulo LF equality. Moreover, the bijection should be compositional2 in the sense
that substitution for the object language is preserved and reflected by substitution
in LF. The exact statement of the adequacy theorem for a given language depends
on the language and its definition of substitution. To illustrate how quasicanonical
forms could be used for reasoning about adequacy, HP05 introduces a small example
language of first-order terms t and formulas ϕ, similar to the following:

t ,u ::= x | f (t ,u) ϕ,ψ ::= t = u | ϕ ∧ ψ | ∀ x .ϕ

along with an appropriate LF signature ΣFO with types ι for first-order terms, o
for first-order formulas, and constants

cf : ι → ι → ι c= : ι → ι → o
c∧ : o → o → o c∀ : (ι → o) → o .

HP05 then defines translation judgments Γ ` t ! M : ι and Γ ` ϕ ! M :
o relating LF terms M with first-order terms and formulas t : ι and ϕ : o. Note
that unlike most other judgments in this article, the translations are not implicitly
parametrized by a signature Σ since they only refer to constants from the fixed
signature ΣFO. The rules for the translation are shown in Fig. 9.

Harper and Pfenning then formulate the adequacy property for this language in
their Theorem 7.2 as follows:

Theorem 17 (Adequacy for syntax of first-order logic). Let Γ be a
context of the form x1 : ι, . . . , xn : ι for some n ≥ 0.
(1 ) The relation Γ ` t ! ¯̄M : ι is a compositional bijection between terms t of

first-order logic over variables x1, . . . , xn and quasi-canonical forms ¯̄M of type
ι relative to Γ .

(2 ) The relation Γ ` ϕ ! ¯̄M : o is a compositional bijection between formulas
t of first-order logic over variables x1, . . . , xn and quasi-canonical forms ¯̄M of
type o relative to Γ .

Their proof sketch involves first showing that (for all appropriate Γ ) the trans-
lations are bijections, and then proving compositionality by induction over the

2This term is used in HP05 without being defined, but this is the definition used in other papers
which discuss adequacy [Harper et al. 1993; Pfenning 2001].
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structure of terms and formulas.
Unfortunately, the statement of this theorem is ambiguous or at least incom-

plete. The reason is that Harper and Pfenning do not explicitly define what it
means for a bijection to be compositional. Even assuming the standard definition
of compositionality as substitution preservation, HP05 did not provide a definition
of substitution for quasicanonical forms.

If we wish to substitute a quasicanonical form for a variable y in another quasica-
nonical form, the result is not always quasicanonical. For example, if we substitute
λx.M for y in y N , we get (λx.M) N , which is not quasicanonical. This illustra-
tes that quasicanonical forms are not closed under substitution of quasicanonical
forms for variables, because variables are quasiatomic forms and substituting a
λ-expression for a variable may introduce β-redexes.

It has been observed elsewhere (apparently first by Watkins et al. [2003]) that
substitution can be defined for well-formed quasicanonical expressions in a heredi-
tary way that recursively renormalizes any β-redexes introduced by substitution.
Harper and Licata [2007] have shown how this idea can be used as the basis for
a variant of LF called Canonical LF in which all expressions are maintained in
canonical form.

In our initial formalization (reported in [Urban et al. 2008]) we misinterpreted the
definition of the translation slightly by defining the adequacy translations to relate
first-order terms and formulas to quasiatomic forms. It is easy to define substitution
of quasiatomic forms for variables since no reduction can be introduced in doing so.
Consequently, we were able to prove Theorem 7.2 with the word “quasicanonical”
replaced by “quasiatomic”. However, even with this modification, the formal proof
is not as easy as the sketch in HP05 suggests; for example, we needed to prove
weakening, exchange, and substitution lemmas for the translation judgment in order
to establish compositionality.

After we discovered and corrected the mismatch between our definition and the
original translation, we were still able to prove that the translations are bijections.
To establish compositionality, we also formalized hereditary substitution (using a
simple form of Harper and Licata’s definition) and showed that the translation
maps object-language substitution to hereditary substitution.

Formalizing HP05’s Theorem 7.2 thus appears to require either changing their
translation or introducing hereditary substitution, a nontrivial concept that was not
mentioned in HP05. The Canonical LF approach now appears to be the preferred
starting point for research on extensions to LF. Developing a full and satisfying for-
malization of hereditary substitutions and adequacy properties (and relating HP05’s
version of LF to Harper and Licata’s development of Canonical LF [2007]) would be
a significant independent undertaking. Therefore, we prefer to leave further study
of adequacy based on hereditary substitution for future work.

4. CODE GENERATION

Since type checking in LF can be part of the trusted code base of proof-carrying
code, Appel et al. [2003] were very careful to implement it as cleanly as possible
and in as few lines of code as possible. Their motivation was that a small and clean
implementation can be manually inspected and hence can be made robust against,
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for example, Thompson-style attacks [Thompson 1984]. For this they explicitly set
out to minimize the number of library functions they have to trust in order for
their implementation to be correct. However, Appel mentioned3 also that he had
to trust the correctness of the type-checking algorithm itself, since he was unable
to ascertain whether the algorithm is sound and complete w.r.t. its specification.
In this paper we have formally proved that both the equivalence checking and
type-checking algorithms from HP05 are sound and complete. Consequently, we can
remove this aspect from our “trusted code base”. In this section we like to show that
our formalisation is also helpful for producing an executable ML-implementation of
the type-checking algorithm.

Isabelle/HOL contains a code generator implemented by Berghofer and Nipkow
[2002] which can translate automatically inductive definitions into executable pure
ML-code. To be able to use this code generator, however, we need to invest some
further work. The present version of this code generator can only deal with rules
involving datatypes, not nominal datatypes. To surmount this problem we trans-
late our nominal representation of kinds, types and terms into a locally nameless
representation [McKinna and Pollack 1999; Aydemir et al. 2008], which can be
implemented in Isabelle/HOL as datatype. For the LF-syntax this gives rise to the
definition:

Kinds ::= type | ΠA. K
Types ::= a | ΠA1. A2 | A M
Objects ::= c | x | n | λA. M | M 1 M 2

where terms contain de Bruijn indices n for bound variables [de Bruijn 1972]. In
comparison with “pure” de Bruijn representations, in the locally nameless repre-
sentation free variables still have names. This means we can continue using our
implementation of signatures and contexts in judgments. With a “pure” de Bruijn
representation, contexts would need to be referenced by numbers and positions.

While the locally nameless representation is straightforward to implement in
Isabelle/HOL, the translations between the nominal and locally nameless repre-
sentation involve quite a lot of formalisation work. First we have to define a well-
formedness predicate that ensures that there are no loose de Bruijn indices. We
also need three substitution operations, namely substituting (well-formed) terms
for free variables, written (−)[x := M ], substituting terms for de Bruijn indices,
written (−)[n := M ], and substituting de Bruijn indices for variables, written (−)[x
:= n]. In the latter we have to increase the de Bruijn index whenever the substi-
tution moves under a binder. Also the translation functions between the nominal
and locally nameless representations turned out to be non-trivial to work with. In
one direction the translation is a partial function and only total over well-formed
locally nameless terms. In the other direction we use a translation depending on
an explicit list of variables. The idea is to push a variable onto the list whenever
the translation goes under a λ- or a Π-abstraction. Now the de Bruijn index for
a variable occurrence is the position of the variable in this list. The translation,
written |−|xs, can be formally defined as

3personal communication
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|type|xs = type
|Πx :A. K |xs = Π|A|xs. |K |(x::xs) provided x # xs

|a|xs = a
|A M |xs = |A|xs |M |xs

|Πx :A1. A2|xs = Π|A1|xs. |A2|(x::xs) provided x # xs
|c|xs = c
|x |xs = index x xs 0

|M N |xs = |M |xs |N |xs
|λx :A. M |xs = λ|A|xs. |M |(x::xs) provided x # xs

where the variable case is defined in terms of the auxiliary function index x xs n:

index x [] n = x
index x (y ::ys) n = (if x = y then n else index x ys (Suc n))

The problem with this definition arises from the fact that inductions need to be
appropriately generalised in order to take the potentially growing list of variables
into account. This is sometimes easy to do, but sometimes we needed a lot of
ingenuity to find the right lemmas to get inductions through.

Having translated all our terms in to the locally nameless representation, we
solved th technical problem with the code generator in Isabelle/HOL. However,
there is a further problem that needs to solved: the algorithms specified so far are
not yet concrete enough to be translated directly into runnable ML-code. For this
consider again the algorithmic equivalence rule

(x , τ1)::∆ `Σ M x ⇔ N x : τ2 x # (∆, M , N )
∆ `Σ M ⇔ N : τ1 → τ2

from Fig. 4. This rule decides the equivalence between the terms M and N having
function type. When read bottom-up, it states that we need to introduce a variable
x (any will do) that is fresh for ∆, M and N. ML does not have any built-in facilities
for choosing such a fresh name (unlike, for example, FreshML by Shinwell et al.
[2003]). This means for an ML-implementation of type and equivalence checking
that we need to make explicit which fresh name should be chosen. An obvious
choice is to inspect all free variables occurring in ∆, M and N, and produce a
variable with a higher index. In our case, it suffices to compute the maximum index
of all variables in scope and increase by one to obtain a fresh variable index. We are
able to compute this index because variables in the Nominal Datatype Package have
a natural number as index and thus can be ordered. This allows us to formulate
algorithmic equivalence rules as follows

(x , τ1)::∆ ln`Σ M x ⇔ N x : τ2 x = maxi (fv ∆ @ fv M @ fv N )
∆ ln`Σ M ⇔ N : τ1 → τ2

where fv is a polymorphic function producing a list of free variables of a term or
context, and the function maxi scans through a list of variables and returns the
highest variable increased by one.

In Fig. 10 we show the rules for type checking in the locally nameless representa-
tion and with the explicit choice of fresh variables. The locally nameless variants of
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these judgments are marked by the subscript ln. We omit the locally nameless ver-
sions of the algorithmic equivalence rules but they are similar. The functions fi (−)
and fv (−) calculate the free identifiers and free variables of their arguments, re-
spectively.

It is important to note that it would be extremely inconvenient to build the
concrete choice for a fresh variable into the rules that are used in the soundness
and completeness proofs described in the earlier sections. The reason is that several
of the proofs would not go through as stated in HP05 since the choice is not fresh
enough for all entities considered in some lemmas (an example is the weakening
property, where the variable x is assumed to be not just fresh for ∆, M and N,
but also for a larger context ∆ ′). It is however relatively straightforward to show
the equivalence (i.e., they derive the same judgments, modulo translation) between
the original rules and the rules with the concrete choice for fresh variables. We can
show:

Lemma 43 Equivalence.
(1 ) ` Σ ⇒ sig if and only if ln` |Σ|[] ⇒ sig.
(2 ) `Σ Γ ⇒ ctx if and only if ln`|Σ|[] |Γ |[] ⇒ ctx.
(3 ) Γ `Σ M ⇒ A if and only if |Γ |[] ln`|Σ|[] |M |[] ⇒ |A|[].
(4 ) Γ `Σ A ⇒ K if and only if |Γ |[] ln`|Σ|[] |A|[] ⇒ |K |[].
(5 ) Γ `Σ K ⇒ kind if and only if |Γ |[] ln`|Σ|[] |K |[] ⇒ kind.

From the rules in Fig. 10 the code generator of Isabelle/HOL can generate ML-code.
Of course the correctness of this code depends on the correctness of the generator.
However it is relatively easy to inspect the generated ML-code and we are confident
that it implements correctly the inductive definitions that have been proved to be
sound and complete w.r.t. specification. We have used the extracted ML-code to
type-check several LF example signatures.

5. DISCUSSION

Methodological observations. The formalization was performed by two of the aut-
hors; one is a developer of the Nominal Datatype Package and expert Isabelle/HOL
user and the other had roughly three months’ experience with these tools prior to
starting the formalization. We estimate that the total effort involved in conducting
the formalizations in Sec. 3 was at most three person-months. We worked on the
code generation part intermittently therefore de not have any information about
timing. Although there is still room for improvement in both Isabelle/HOL and the
Nominal Datatype Package, our experience suggests that these tools can now be
used to perform significant formalizations within reasonable time-frames, at least
by experienced users.

It took approximately six person-weeks to formalize everything up to the so-
undness proof (including pondering why the omitted case for type extensionality
did not go through). However, once Harper and Pfenning confirmed that this case
was indeed not handled correctly in their proof, one of the authors was able to
check within 2 hours that adding a type-extensionality rule solves the problem. Re-
checking the proof on paper would have meant reviewing approximately 31 pages
of proofs. Subsequently we checked the validity of a solution suggested by Harper
and found another solution for the problem. As a practical matter, the ability to
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ln` Σ ⇒ sig

ln` [] ⇒ sig

ln` Σ ⇒ sig [] ln`Σ A ⇒ type c /∈ fi Σ

ln` (c, A)::Σ ⇒ sig

ln` Σ ⇒ sig [] ln`Σ K ⇒ kind a /∈ fi Σ

ln` (a, K )::Σ ⇒ sig

ln`Σ Γ ⇒ ctx

ln` Σ ⇒ sig

ln`Σ [] ⇒ ctx

ln`Σ Γ ⇒ ctx Γ ln`Σ A ⇒ type x /∈ fv Γ

ln`Σ (x , A)::Γ ⇒ ctx

Γ ln`Σ M ⇒ A

ln`Σ Γ ⇒ ctx (x , A) ∈ Γ
Γ ln`Σ x ⇒ A

ln`Σ Γ ⇒ ctx (c, A) ∈ Σ
Γ ln`Σ c ⇒ A

Γ ln`Σ M 1 ⇒ ΠA2
′. A1 Γ ln`Σ M 2 ⇒ A2 Γ− ln`Σ− A2 ⇔ A2

′ : type−

Γ ln`Σ M 1 M 2 ⇒ A1[0 := M 2]

Γ ln`Σ A1 ⇒ type

(x , A1)::Γ ln`Σ M 2[0 := x ] ⇒ A2 x = maxi (fv Γ @ fv M 2 @ fv A1) A2
′ = A2[x := 0 ]

Γ ln`Σ λA1. M 2 ⇒ ΠA1. A2
′

Γ ln`Σ A ⇒ K

ln`Σ Γ ⇒ ctx (a, K ) ∈ Σ
Γ ln`Σ a ⇒ K

Γ ln`Σ A ⇒ ΠA2
′. K 1 Γ ln`Σ M ⇒ A2 Γ− ln`Σ− A2 ⇔ A2

′ : type−

Γ ln`Σ A M ⇒ K 1[0 := M ]

Γ ln`Σ A1 ⇒ type (x , A1)::Γ ln`Σ A2[0 := x ] ⇒ type x = maxi (fv Γ @ fv A1 @ fv A2)

Γ ln`Σ ΠA1. A2 ⇒ type

Γ ln`Σ K ⇒ kind

ln`Σ Γ ⇒ ctx

Γ ln`Σ type ⇒ kind

Γ ln`Σ A ⇒ type (x , A)::Γ ln`Σ K [0 := x ] ⇒ kind x = maxi (fv Γ @ fv A @ fv K )

Γ ln`Σ ΠA. K ⇒ kind

Fig. 10. Algorithmic typechecking rules used for generating executable code.

rapidly evaluate the effects of changes to the system was essential for finding these
solutions and evaluating other possibilities. In a similar formalization project, the
first author showed that a central lemma in the informal proof in his PhD-thesis
can be repaired [Urban and Zhu 2008].

Our formalization using nominal datatypes follows that given in HP05 very close-
ly. Our experience suggests that nominal techniques can be used to both state and
prove results almost exactly as they are presented on paper—no other currently
available technique appears able to do this. To illustrate this point, we have prepa-
red this paper using Isabelle’s documentation facilities [Nipkow et al. 2002]. Most
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Table I. Summary of the formalization

Theory Description Size (bytes) Lines Lemmas

LF Syntax and definitional
judgments of LF

125,975 2,631 103

Erasure Simple types and kinds, era-
sure

14,860 463 35

PairOrdering Pair ordering used for tran-
sitivity

962 29 3

EquivAlg Algorithmic equivalence
judgments and properties

47,480 1,015 46

Completeness Logical relation, completen-
ess proof

54,575 778 22

WeakEquivAlg Weak algorithmic type-
checking

9,373 219 7

Soundness Subject reduction, sound-
ness proofs

31,235 562 8

TypeAlg Algorithmic typechecking 13,139 244 5
Decidability Quasidecidability 104,939 2,087 50
Strengthening Strengthening and strong

extensionality
28,940 591 15

Canonical Quasicanonical forms 27,702 556 13
Adequacy Adequacy example 29,777 736 45
LocallyN Translation to locally name-

less syntax
179,148 4,674 223

Total 668,105 14585 575

lemmas, theorems, and definitions have been generated directly from the formaliza-
tion (the main exceptions are the quasidecidability and adequacy properties, which
are paraphrased).

In Table I, we report some simple metrics about our formalization such as the
sizes, number of lines of text, and number of lemmas in each theory in the main
formalization. As Table I shows, the core LF theory accounts for about 20% of
the development. These syntactic properties are mostly straightforward, and their
proofs merit only cursory discussion in HP05, but some lemmas have many cases
which must each be handled individually. The Decidability theory accounts for
another 15%; the quasidecidability proofs are verbose but largely straightforward.
The LocallyN theory proves that the nominal datatypes version of LF is equivalent
to a locally nameless formulation; this accounts for about 25% of the development.
The efort involved in this part was therefore quite substantial: it can be explained
by the lack of automatic infrastructure for the locally nameless representation of
binders in Isabelle/HOL. But also by the inherent subtleties when working with this
represenation. A number of lemmas need to be carfully stated, and in a few cases
in rather non-intuitive ways. The remaining theories account for at most 5–10%
of the formalization each; the WeakAlgorithm theory defines the weak algorithmic
equivalence judgment and proves the additional properties needed for the third
solution, and accounts for only around 2% of the total development.

The merit of metrics such as proof size or number of lemmas is debatable. We
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have not attempted to distinguish between meaningful lines of proof vs. blank or
comment lines; nor have we distinguished between significant and trivial lemmas.
Nevertheless, this information should at least convey an idea of the relative effort
involved in each part of the proof.

Correctness of the representation. The facilities for defining and reasoning about
languages with binding provided by the Nominal Datatype Package are convenient,
but their use may not be persuasive to readers unfamiliar with nominal logic and
abstract syntax. Thus, a skeptical reader might ask whether these representations,
definitions and reasoning principles are really correct ; that is, whether they are
equivalent to the definitions in HP05, as formalized using some more conventional
approach to binding syntax. For higher-order abstract syntax representations, this
property is often called adequacy ; this term appears to have been coined in the
context of LF [Harper et al. 1993], due to the potential problems involved in
reasoning about higher-order terms modulo alpha, beta and eta-equivalence.

Adequacy is also important for nominal techniques and deserves further study. We
believe that the techniques explored in existing work on the semantics of nominal
abstract syntax and its implementation in the Nominal Datatype Package [Gab-
bay and Pitts 2002; Pitts 2003; Cheney 2006; Pitts 2006; Urban 2008] suffices for
informally judging the correctness of our formalization. There has also been some
prior work on formalizing adequacy results for nominal datatypes via isomorphisms.
Urban [2008] proves a bijective correspondence between nominal datatypes and a
conventional named implementation of the λ-calculus modulo α-equivalence. Nor-
rish and Vestergaard [2007] have formalized isomorphisms between nominal and
de Bruijn representations, and they provide further citations to several other iso-
morphism results. Our proof of equivalence to a locally nameless representation
described in Sec. 4 also gives evidence for the correctness of the nominal datatype
representation.

In any case, whether or not nominal datatypes in Isabelle/HOL really capture
our informal intuitions about abstract syntax with binding, our formalization has
exposed some subtle issues which make sense in the context of LF.

6. RELATED AND FUTURE WORK

McKinna and Pollack [1999]’s LEGO formalization of Pure Type Systems is pro-
bably the most extensive formalization of a dependent type theory in a theorem
prover. Their formalization introduced the locally nameless variant of de Bruijn’s
name-free approach [de Bruijn 1972] and considered primarily syntactic properties
of pure type systems with β-equivalence, including a proof of strengthening. Pollack
[1995] subsequently verified the partial correctness of typechecking algorithms for
certain classes of Pure Type Systems including LF.

Aydemir et al. [2008] have developed a methodology for formalizing metatheo-
ry in Coq using the locally nameless representation to manage binding, and using
cofinite quantification to handle fresh names. Chlipala’s parametric higher-order ab-
stract syntax is another recently developed technique for reasoning about abstract
syntax in Coq, and has been applied to good effect in reasoning about compiler
transformations [Chlipala 2008]. Westbrook et al. [2009] are developing CINIC, a
variant of Coq that provides built-in support for nominal abstract syntax (gene-
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ralizing a simple nominal type theory developed by Cheney [2009]). Using these
methodologies to formalize the results in this article would provide a useful compa-
rison of these approaches, particularly concerning decidability proofs, which ought
to be easier in constructive logics.

Algorithms for equivalence and canonicalization for dependent type theories ha-
ve been studied by several authors. Prior work on equivalence checking for LF has
focused on first checking well-formedness with respect to simple types, then β-
or βη-normalizing; these approaches are discussed in detail by Harper and Pfen-
ning [2005]. Coquand’s algorithm [1991] is similar to Harper and Pfenning’s but
operates on untyped terms. Goguen’s approach [2005b] involves first type-directed
η-expansion and then β-normalization, and relies on standard properties such as
the Church-Rosser theorem, strong normalization of β-reduction and strengthening.
Goguen [2005a] extends this proof technique to show termination of Coquand’s and
Harper and Pfenning’s algorithms, and gives a terminating type-directed algorithm
for checking βη-equivalence in System F. It may be interesting to verify these al-
gorithms and proofs and compare with Harper and Pfenning’s proof.

We chose to formalize the approach taken by Harper and Pfenning [2005] because
it is the most recent and most detailed among the above developments. Another
reason is that the quality standards in the LF-community are very high, and peer-
reviewed work is generally trusted. Appel, for example, told us4 that he trusts the
implementation of a type-checker for LF presented by Appel et al. [2003], because
first the code is very small and second the theoretical underpinnings have been
studied thoroughly by Harper and Pfenning. For such follow-up work it is crucial
that we were able to formalize the soundness and completeness results in HP05.

Our formalization provides a foundation for several possible future investigations.
We are interested in extending our formalization to include verifying Twelf-style
meta-reasoning about LF specifications, following Harper and Licata’s detailed in-
formal development of Canonical LF [2007]. Doing so could make it possible to
extract Isabelle/HOL theorems from Twelf proofs, but as discussed earlier, forma-
lizing Canonical LF, hereditary substitutions, and the rest of Harper and Licata’s
work appears to be a substantial challenge.

It would also be interesting to extend our formalization to accommodate ex-
tensions to LF involving (ordered) linear logic, concurrency, proof-irrelevance, or
singleton kinds, as discussed by Harper and Pfenning [2005, Sec. 8]. We hope that
anyone who proposes an extension to LF will be able to use our formalization as a
starting point for verifying its metatheory.

7. CONCLUSIONS

LF is an extremely convenient tool for defining logics and other calculi involving bin-
ding syntax. It has many compelling applications and underlies the system Twelf,
which has a proven record in formalizing many programming language calculi.
Hence, it is of intrinsic interest to verify key properties of LF’s metatheory, such as
the correctness and decidability of the typechecking algorithms. We have done so,
using the Nominal Datatype Package for Isabelle/HOL. The infrastructure provided
by this package allowed us to follow the proof of Harper and Pfenning closely.

4personal communication
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For our formalization we had the advantage of working from Harper and Pfen-
ning’s carefully-written informal proof, which withstood rigorous mechanical for-
malization rather well. Still we found in this informal proof one gap and nume-
rous minor complications. We have shown that they can be repaired. We have also
partially verified the decidability of the equivalence and typechecking algorithms,
although some work remains to formally prove decidability per se. Formalizing de-
cidability proofs of any kind in Isabelle/HOL appears to be an open problem, so
we leave this for future work.

While verifying correctness of proofs is a central motivation for doing formali-
zations, it is not the only one. There is a second important benefit—they can be
used to experiment with changes to the system rapidly. By replaying a modified
formalization in a theorem prover one can immediately focus on places where the
proof fails and attempt to repair them rather than re-checking the many cases that
are unchanged. This capability was essential in fixing the soundness proof, and it
illustrates one of the distinctive advantages of performing such a formalization. Had
we attempted to repair the gap using only the paper proof, experimenting with dif-
ferent solutions would have required manually re-checking the roughly 31 pages of
paper proofs for each change.

Our formalization is not an end in itself but also provides a foundation for fur-
ther study in several directions. Researchers developing extensions to LF may find
our formalization useful as a starting point for verifying the metatheory of such
extensions. We plan to further investigate hereditary substitutions and adequacy
proofs in LF and Canonical LF. More ambitiously, we contemplate formalizing the
meaning and correctness of metatheoretic reasoning about LF specifications (as
provided by the Twelf system) inside Isabelle/HOL, and extracting Isabelle/HOL
theorems from Twelf proofs.

Acknowledgments. We are extremely grateful to Bob Harper for discussions about
LF and the proof. Benjamin Pierce and Stephanie Weirich have also made helpful
comments on drafts of this paper.

APPENDIX

2. FULL STATEMENTS OF SYNTACTIC RESULTS

Lemma 44 (Freshness).
(1 ) If ` Σ sig then x # Σ.
(2 ) If `Σ Γ ctx then x # Σ.
(3 ) If Γ `Σ M : A and x # Γ then x # M and x # A.
(4 ) If Γ `Σ A : K and x # Γ then x # A and x # K .
(5 ) If Γ `Σ K : kind and x # Γ then x # K .
(6 ) If Γ `Σ M = N : A and x # Γ then x # M and x # N and x # A.
(7 ) If Γ `Σ A = B : K and x # Γ then x # A and x # B and x # K .
(8 ) If Γ `Σ K = L : kind and x # Γ then x # K and x # L.

Lemma 45 (Implicit Validity).
(1 ) If `Σ Γ ctx then ` Σ sig .
(2 ) If Γ `Σ M : A then `Σ Γ ctx and ` Σ sig .
(3 ) If Γ `Σ A : K then `Σ Γ ctx and ` Σ sig .
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(4 ) If Γ `Σ K : kind then `Σ Γ ctx and ` Σ sig .
(5 ) If Γ `Σ M = N : A then `Σ Γ ctx and ` Σ sig .
(6 ) If Γ `Σ A = B : K then `Σ Γ ctx and ` Σ sig .
(7 ) If Γ `Σ K = L : kind then `Σ Γ ctx and ` Σ sig .

Lemma 46 (Implicit Validity). If Γ `Σ M : A then ` Σ sig and `Σ Γ ctx.

Lemma 47 (Weakening). Suppose `Σ Γ 2 ctx and Γ 1 ⊆ Γ 2.
(1 ) If Γ 1 `Σ M : A then Γ 2 `Σ M : A.
(2 ) If Γ 1 `Σ A : K then Γ 2 `Σ A : K.
(3 ) If Γ 1 `Σ K : kind then Γ 2 `Σ K : kind.
(4 ) If Γ 1 `Σ M = N : A then Γ 2 `Σ M = N : A.
(5 ) If Γ 1 `Σ A = B : K then Γ 2 `Σ A = B : K.
(6 ) If Γ 1 `Σ K = L : kind then Γ 2 `Σ K = L : kind.

Lemma 48 (Substitution). Suppose Γ 2 `Σ P : C and let Γ = Γ 1 @ [(y , C )] @ Γ 2.
(1 ) If `Σ Γ ctx then `Σ Γ 1[y :=P ] @ Γ 2 ctx.
(2 ) If Γ `Σ M : B then Γ 1[y :=P ] @ Γ 2 `Σ M [y :=P ] : B [y :=P ].
(3 ) If Γ `Σ B : K then Γ 1[y :=P ] @ Γ 2 `Σ B [y :=P ] : K [y :=P ].
(4 ) If Γ `Σ K : kind then Γ 1[y :=P ] @ Γ 2 `Σ K [y :=P ] : kind.
(5 ) If Γ `Σ M = N : A then Γ 1[y :=P ] @Γ 2 `Σ M [y :=P ] = N [y :=P ] : A[y :=P ].
(6 ) If Γ `Σ A = B : K then Γ 1[y :=P ] @Γ 2 `Σ A[y :=P ] = B [y :=P ] : K [y :=P ].
(7 ) If Γ `Σ K = L : kind then Γ 1[y :=P ] @ Γ 2 `Σ K [y :=P ] = L[y :=P ] : kind.

Lemma 49 (Context Conversion). Assume that Γ `Σ B : type and Γ `Σ
A = B : type. Then:
(1 ) If (x , A)::Γ `Σ M : C then (x , B)::Γ `Σ M : C
(2 ) If (x , A)::Γ `Σ C : K then (x , B)::Γ `Σ C : K
(3 ) If (x , A)::Γ `Σ K : kind then (x , B)::Γ `Σ K : kind
(4 ) If (x , A)::Γ `Σ C = D : K then (x , B)::Γ `Σ C = D : K
(5 ) If (x , A)::Γ `Σ K = L : kind then (x , B)::Γ `Σ K = L : kind

Lemma 50 (Functionality for Typing). Assume that Γ `Σ M : C and Γ
`Σ N : C and Γ `Σ M = N : C. Then:
(1 ) If Γ ′@ [(y , C )] @Γ `Σ P : B then Γ ′[y :=M ] @Γ `Σ P [y :=M ] = P [y :=N ] :

B [y :=M ]
(2 ) If Γ ′@ [(y , C )] @Γ `Σ B : K then Γ ′[y :=M ] @Γ `Σ B [y :=M ] = B [y :=N ] :

K [y :=M ]
(3 ) If Γ ′@ [(y , C )] @ Γ `Σ K : kind then Γ ′[y :=M ] @ Γ `Σ K [y :=M ] =

K [y :=N ] : kind

Lemma 51 (Validity). Objects, types and kinds appearing in derivable judg-
ments are valid, that is
(1 ) If Γ `Σ M : A then Γ `Σ A : type.
(2 ) If Γ `Σ A : K then Γ `Σ K : kind .
(3 ) If Γ `Σ M = N : B then Γ `Σ M : B and Γ `Σ N : B and Γ `Σ B : type.
(4 ) If Γ `Σ A = B : K then Γ `Σ A : K and Γ `Σ B : K and Γ `Σ K : kind .
(5 ) If Γ `Σ K = L : kind then Γ `Σ K : kind and Γ `Σ L : kind .

Lemma 52 (Typing inversion). The validity rules are invertible, up to con-
version of types and kinds.
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(1 ) If Γ `Σ x : A then ∃B . (x , B) ∈ Γ and Γ `Σ A = B : type.
(2 ) If Γ `Σ c : A then ∃B . (c, B) ∈ Σ and Γ `Σ A = B : type.
(3 ) If Γ `Σ M 1 M 2 : A then ∃ x A1 A2. Γ `Σ M 1 : Πx :A2. A1 and Γ `Σ M 2 :

A2 and Γ `Σ A = A1[x :=M 2] : type.
(4 ) If Γ `Σ λx :A. M : B and x # Γ then ∃A ′. Γ `Σ B = Πx :A. A ′ : type and

Γ `Σ A : type and (x , A)::Γ `Σ M : A ′.
(5 ) If Γ `Σ Πx :A1. A2 : K and x # Γ then Γ `Σ K = type : kind and Γ `Σ

A1 : type and (x , A1)::Γ `Σ A2 : type.
(6 ) If Γ `Σ c : K then ∃L. (c, L) ∈ Σ and Γ `Σ K = L : kind .
(7 ) If Γ `Σ A M : K then ∃ x A1 K2 . Γ `Σ A : Πx :A1 . K2 and Γ `Σ M : A1

and Γ `Σ K = K2 [x :=M ] : kind .
(8 ) If Γ `Σ Πx :A1. K 2 : kind and x # Γ then Γ `Σ A1 : type and (x , A1)::Γ
`Σ K 2 : kind .

Lemma 53 (Equality inversion).
(1 ) If Γ `Σ type = L : kind then L = type.
(2 ) If Γ `Σ L = type : kind then L = type.
(3 ) If Γ `Σ A = Πx :B1. B2 : type and x # Γ then ∃A1 A2. A = Πx :A1. A2 and

Γ `Σ A1 = B1 : type and (x , A1)::Γ `Σ A2 = B2 : type.
(4 ) If Γ `Σ Πx :B1. B2 = B : type and x # Γ then ∃A1 A2. B = Πx :A1. A2 and

Γ `Σ A1 = B1 : type and (x , A1)::Γ `Σ A2 = B2 : type.
(5 ) If Γ `Σ K = Πx :B1. L2 : kind and x # Γ then ∃A1 K 2. K = Πx :A1. K 2

and Γ `Σ A1 = B1 : type and (x , A1)::Γ `Σ K 2 = L2 : kind .
(6 ) If Γ `Σ Πx :B1. L2 = L : kind and x # Γ then ∃A1 K 2. L = Πx :A1. K 2 and

Γ `Σ A1 = B1 : type and (x , A1)::Γ `Σ K 2 = L2 : kind .

Lemma 54 (Product injectivity). Suppose x # Γ .
(1 ) If Γ `Σ Πx :A1. A2 = Πx :B1. B2 : type then Γ `Σ A1 = B1 : type and (x ,

A1)::Γ `Σ A2 = B2 : type.
(2 ) If Γ `Σ Πx :A. K = Πx :B . L : kind then Γ `Σ A = B : type and (x , A)::Γ
`Σ K = L : kind.

Lemma 55 Strong versions of rules. The following rules are admissible:

(1 )
Γ `Σ M 1 : Πx :A2. A1 Γ `Σ M 2 : A2

Γ `Σ M 1 M 2 : A1[x :=M 2]

(2 )
Γ `Σ A : Πx :B . K Γ `Σ M : B

Γ `Σ A M : K [x :=M ]

(3 )
(x , A1)::Γ `Σ M 2 = N 2 : A2 Γ `Σ M 1 = N 1 : A1 x # Γ

Γ `Σ (λx :A1. M 2) M 1 = N 2[x :=N 1] : A2[x :=M 1]

(4 )
Γ `Σ A1 = B1 : type (x , A1)::Γ `Σ A2 = B2 : type x # Γ

Γ `Σ Πx :A1. A2 = Πx :B1. B2 : type

(5 )
Γ `Σ A = B : type (x , A)::Γ `Σ K = L : kind x # Γ

Γ `Σ Πx :A. K = Πx :B . L : kind
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