
Teaching Forward-Chaining Planning with JAVAFF

Andrew Coles, Maria Fox, Derek Long and Amanda Smith
Department of Computer and Information Sciences,
University of Strathclyde, Glasgow, G1 1XH, UK

email: firstname.lastname@cis.strath.ac.uk

Abstract

In this paper we present the results of our work looking at
how to provide a hands-on learning experience in AI planning
to an undergraduate audience, complementing a conventional
lecture series. At the core of our approach is a new Java im-
plementation of the well-known planner FF, JAVAFF. By us-
ing object-oriented programming techniques, JAVAFF serves
as a flexible and comprehensible substrate for student plan-
ning exercises. As a proof-of-concept, we present the exer-
cises we constructed for use with the planning part of a final-
year undergraduate AI module. The exercises involve making
modifications to JAVAFF to implement given research ideas,
and culminate in a group-based ‘planning competition’. We
also detail the new directions in which we are taking JAVAFF,
in anticipation of the next academic year.

1 Introduction

When designing a curriculum for an undergraduate AI
course, one key challenge is how to construct practical ex-
ercises to accompany the taught material, bearing in mind
the abilities of the students and the amount of time available
for the practical work. Considering exercises in AI plan-
ning, several possibilities immediately emerge as being vi-
able, and have been used in past AI courses:

• Supply a natural-language description of a planning prob-
lem to the students, and set the task of writing an accurate
PDDL2.1 domain model (Fox & Long 2003) and a prob-
lem file generator.

• Provide a collection of benchmark domains and plan-
ners, giving the students experience in using planners as
problem-solving tools. This can be accompanied with
data collection and analysis tasks, asking students to com-
pare the performance of a selection of planners across a
given selection of domains.

• Set the task of manually drawing a planning graph (Blum
& Furst 1995) for a small example problem, drawing the
action and fact layers and the necessary mutexes (omitted
if a relaxed planning graph is to be drawn).

Whilst these tasks have good potential as part of a toolkit
of practical exercises in planning, they do not always serve
to best complement the emphasis of the lectures. In the first

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

two of these, for instance, by treating planners as ‘black-
box’ problem solving tools, our practical exercises are di-
rectly at odds with the lectures, where the emphasis is on
how planners work in terms of algorithms, heuristics, search
paradigms, and so on. The ideal towards which we strive
is to provide practicals which support and reinforce the ma-
terials covered in the lectures, encouraging a deeper under-
standing of planners, to complement practicals looking at
other areas such as domain modelling.

Due to the scale of modern planning systems, it is infea-
sible to expect students to implement a whole planner: the
task of writing even just a parser, or implementing one of
the popular heuristics (e.g. FF’s Relaxed Planning Graph
(RPG) heuristic) (Hoffmann & Nebel 2001a) is beyond the
scope of an undergraduate degree module. What is practi-
cal, however, is to focus on a subset of the implementation
of a planner, and use this as a substrate for practical exer-
cises. In this work, we present JAVAFF, an implementation
of FF (Hoffmann & Nebel 2001a) written in Java, a lan-
guage with which many students are familiar. By employing
object-oriented programming techniques to encapsulate the
more complex areas of code, JAVAFF serves as an intuitive
basis for student planner development.

There are several possible uses for JAVAFF, ranging from
small exercises to large projects, looking at many or fewer
areas of the planner: different state-space search algorithms;
modifying the heuristic; exploring optimisation approaches;
and many others. In this paper, we will describe the prac-
tical exercises we devised for use in our teaching, with the
focus being on the development and evaluation of search al-
gorithms for forward-chaining planning. These will be fol-
lowed with some remarks on the exciting directions in which
we are now taking JAVAFF, in preparation for a new taught
postgraduate MRes course in ‘Automated Planning for Au-
tonomous Systems’, to begin in September 2008.

2 JavaFF: An Overview

JAVAFF is a Java implementation of the basic structure of
Hoffmann’s FF (Hoffmann & Nebel 2001a), based on the
source code of CRIKEY1 (Coles et al. 2008). In JAVAFF, as
in FF, state-space forward-chaining search is guided by the
RPG heuristic, with a two-phase planning process. First, an

1http://planning.cis.strath.ac.uk/CRIKEY/

17



attempt is made to find a plan using Enforced Hill Climb-
ing (EHC) and considering only the ‘helpful actions’ at each
state. If this fails to find a plan, best-first search is performed
considering all applicable actions in each state. To allow the
code presented to students to remain as clean as possible, we
omitted features from the more recent versions of FF, such as
goal ordering, and focussed on the feature set of FF v1.0. As
such, JAVAFF is not a full rational reconstruction, but pre-
serves the essence of FF and the clarity we afford through
these restrictions allows it to serve as a useful teaching tool.

To aid student understanding, a tutorial booklet was pre-
pared to accompany the code, describing the classes relevant
to the practical exercises we devised. For reasons of space,
we are unable to reproduce the detailed code descriptions
from the booklet here in their entirety, or to go beyond those
and explore other areas of the code. To briefly illustrate the
elegance of the JAVAFF implementation we shall however
highlight two key methods. The source code for JAVAFF
(including comments, again omitted here) and the accompa-
nying booklet is available for download2.

2.1 The Main Search Method

The main search method, presented in Figure 1, constitutes
the outline of the main search process of JAVAFF, and is
the point where we introduce students to the code. In a few
lines of code, it captures the essence of the two-stage search
process of FF:

1. The first stage of performFFSearch, a group of three
lines, attempts to search for a solution plan using En-
forced Hill Climbing, and only using the helpful actions.

2. If EHC with helpful actions fails (if goalState ==

null), best-first search is used. Here, not just the help-
ful actions are used: a NullFilter is used, which pre-
serves all actions applicable in a state.

As can be seen, invoking best-first search is similar
to invoking EHC: both implement a common interface,
Search. The key difference is that a NullFilter is used
rather than a HelpfulFilter, to lift the restriction of
only considering helpful actions, but the HelpfulFilter
could equally well be used with best-first search if so de-
sired. The Filter, which both of these implement, pro-
vides an abstraction over the selection of which states S′ to
consider as successors to a state S. Exploiting an object-
oriented framework in this manner provides much scope for
practical experimentation by making only isolated changes,
as we shall show in our practical exercises.

2.2 The EHC Search Method

The EHC search method, presented in Figure 2 and de-
fined in the class EnforcedHillClimbingSearch,
provides an implementation of FF’s EHC algorithm. The
EHC class has helper methods and member variables (re-
ferred to from the code in Figure 2) that are responsible for
maintaining an open list and memoising visited states. Per-
haps the most interesting thing to observe is that the State
class provides several methods that allow the implementa-
tion of the algorithm to be very clear:

2http://cis.strath.ac.uk/∼ac/JavaFF

• the method getNextStates returns the set of succes-
sors to the state (reached through helpful actions or all
applicable actions, depending on the filter passed);

• the method goalReached ascertains whether or not a
state is a goal state: if it is, we have found a solution;

• the method getHValue returns the RPG heuristic value
of the state.

Note that for getHValue, State objects transparently
cache their RPG heuristic values and actions that are helpful
in that State. In this manner, the performance of the plan-
ner is improved; and, again, through using object-oriented
programming, the low-level details of this are encapsulated.

As an illustration of how a minor change can be demon-
strated using JAVAFF, removing the ‘break’ inside the while
loop in Figure 2 and adding an extra Boolean variable will
change EHC to use steepest descent, rather than taking the
first successor with a better heuristic value than the best seen
so far.

3 Practical Exercises for use with JavaFF

As a novice-friendly introduction to forward-chaining plan-
ning, there are many possibilities for the use of JAVAFF in
teaching. Here, we shall detail how we used it as part of
our teaching of planning, within a varied final-year under-
graduate AI module. The module, as a whole, was 1/8th of
the year’s course load, and the planning exercises were allo-
cated 60% of the practical work time within this. Our key
four learning objectives for the exercises, LO1–LO4, were:

1. An understanding of how planning search algorithms can
be presented in Java code, and how modifications can be
made to explore alternative strategies;

2. The ability to perform basic empirical analyses on the per-
formance data obtained by a planner, in the context of in-
vestigating the efficacy of new algorithms or in changes
to the existing code;

3. The ability to implement pseudocode algorithm descrip-
tions (from textbooks or papers);

4. Evidence of an intrinsic understanding of search, reflected
in an open-ended task, with the three key indicators being
(i) ingenuity, (ii) independent research, and (iii) the appli-
cation of techniques covered in lectures.

As with the code, we encourage the reader to follow the
footnote link to the course website to obtain a full copy of the
practical materials; what follows is an abridged description
of the practicals, relating them to our learning objectives,
and indicating how JAVAFF allowed us to achieve these. We
will then present a pedagogical evaluation drawn from the
performance of the students and their feedback.

3.1 Beginning with JavaFF

The purpose of this practical exercise is to ensure the stu-
dents have a working copy of JAVAFF; are comfortable
with parts of the source code; and are able to run the plan-
ner, gather data, and analyse results obtained. The book-
let begins with explaining how to download a tar.gz bun-
dle containing the source code of JAVAFF and some IPC3

18



public static State performFFSearch(State initialState) {

EnforcedHillClimbingSearch EHCS = new EnforcedHillClimbingSearch(initialState);

EHCS.setFilter(HelpfulFilter.getInstance());

State goalState = EHCS.search();

if (goalState == null) {

BestFirstSearch BFS = new BestFirstSearch(initialState);

BFS.setFilter(NullFilter.getInstance());

goalState = BFS.search();

}

return goalState;

}

Figure 1: The Main Search Method, performFFSearch

public State search() {

if (start.goalReached()) return start;

needToVisit(start); // dummy call (adds start to the list of ’closed’ states)

open.add(start);

bestHValue = start.getHValue();

while (!open.isEmpty()) {

State s = removeNext();

Set<State> successors = s.getNextStates(filter.getActions(s));

Iterator<State> succItr = successors.iterator();

while (succItr.hasNext()) {

State succ = succItr.next();

if (needToVisit(succ)) {

if (succ.goalReached()) {

return succ;

} else if (succ.getHValue().compareTo(bestHValue) < 0) {

bestHValue = succ.getHValue();

open = new LinkedList<State>();

open.add(succ);

break; // and skip looking at the other successors

} else {

open.add(succ); // otherwise, add to the open list

}

}

}

}

return null;

}

Figure 2: The EHC Search Method

19



benchmark problems domains (Rovers, Driverlog and De-
pots) (Long & Fox 2003). To ensure the students are able
to run the planner, their first task is to run JAVAFF on the
first ten problems from two benchmark domains (Rovers and
Driverlog) and to record the time taken to find a plan in each
of these.

Once this task has been completed, an overview of
the code is provided, covering the performFFSearch

method (Figure 1) and the role of Filters. From here,
the students are set two implementation tasks (supporting
LO1):

1. Change performFFSearch so that the NullFilter
is used in place of the HelpfulFilter when using
EHC search. (This change was chosen to support stu-
dents’ reading of the paper What Makes the Difference
Between HSP and FF? (Hoffmann & Nebel 2001b).)

2. Change performFFSearch so that search is per-
formed in three stages: EHC with helpful action prun-
ing; EHC without helpful action pruning; best-first search
without helpful action pruning.

With each of these two configurations, the students gather
data on the same benchmark problems used with the stock
JAVAFF implementation, and conclude the practical by
drawing comparisons between the performance of the three
configurations tested. Drawing comparisons at this early
stage was related to LO2: that students would have a grasp
of planning research as an empirical discipline.

3.2 Local Search with Restarts

The main purpose of this practical exercise is to satisfy LO3.
The students are set the task of implementing a stochastic
hill-climbing search algorithm for use within JAVAFF, sim-
ilar to that employed in HSP (Bonet & Geffner 1998). The
booklet first takes the students through the JAVAFF imple-
mentation of EHC search (Figure 2) before presenting the
pseudo-code of a new algorithm to be implemented (Algo-
rithm 1). Once implemented, the exercise requires two fur-
ther changes: the ability to specify a depth bound; and the
use of restarts when the depth bound is reached, rather than
aborting when no solution plan is returned.

Whilst the students could have prepared this algorithm in
isolation, the use of JAVAFF allowed us to use the search
algorithm within a planner rather than on a simple canoni-
cal search problem (e.g. a domain-specific 15-puzzle solver,
with the Manhattan distance heuristic). Due to the sub-
stantial implementation task prescribed for this practical, an
analysis phase was omitted, but we will return to this in the
next practical.

3.3 Successor Selection and Filters

This practical continues the line of exploring the use of
hill-climbing techniques in forward-chaining planning, fol-
lowing the ideas of the planner IDENTIDEM (Coles, Fox,
& Smith 2007). First, the concept of an explicit succes-
sor selection function is introduced, using a new Java in-
terface, (SuccessorSelector). As a starting point a
BestSuccessorSelector is provided, which takes a
set of States and returns the state with the best heuristic

Algorithm 1: Hill Climbing Algorithm

Data: I - initial state
Result: S - a goal state
S ← I;1

while S do2

successors← successor states to S;3

bestsuccessors← ∅;4

bestheuristic←∞;5

foreach S′ ∈ successors do6

if need to visit S′ then7

if S′ is a goal then return S;8

if h(S′) < bestheuristic then9

bestheuristic← h(S′);10

bestsuccessors← {S′};11

else if h(S′) = bestheuristic then12

add S′ to bestsuccessors;13

if bestsuccessors = ∅ then14

S ← null;15

else16

S ← random choice from bestsuccessors;17

return failed18

value (breaking ties randomly). The first practical task is to
modify the search algorithm class constructed in the previ-
ous practical to be able to use a SuccessorSelector

object to select successors.
At this point, the students now have a stochastic hill-

climbing algorithm, which they implemented starting from
pseudocode, and which supports interchangeable successor
selectors and filters. Before making any further changes, the
students are set the task of collecting data concerning the
performance of the planner on the same benchmark prob-
lems used in Practical 1 (the first 10 problems from Driver-
log and Rovers). After this, two implementation tasks were
set, following further the ideas of IDENTIDEM:

1. Writing a new filter, RandomThreeFilter, based on
a code outline provided in the booklet (LO1). This filter
serves as a wrapper around the HelpfulFilter, and
chooses just three of the helpful actions at random.

2. Writing RouletteSuccessorSelector, a new suc-
cessor selector, that performs roulette selection over the
successors based on their heuristic values (the fitness of a
state S is 1/h(S)). For this, students were provided with a
link to the Wikipedia article3, which provides an abstract
description of the technique (LO3).

After these implementation tasks, the students col-
lect data on two planner configurations and compare
to the data obtained earlier in this practical. The first
configuration employs the RandomThreeFilter

rather than HelpfulFilter. The second em-
ploys RouletteSuccessorSelector rather than
BestSuccessorSelector. Again, this empirical

3http://en.wikipedia.org/wiki/

Fitness proportionate selection

20



enquiry reinforces the role of data analysis in planning
research (LO2). Further, the object-orientated nature of
JAVAFF allows us to cleanly interchange system compo-
nents, reducing the overhead of setting up comparative
tests and increasing the reliability of results: apart from the
component changed, the remainder of the implementation
remains the same.

3.4 The Planning Competition

The culmination of the practical exercises is set up as a com-
petition, with the aim being to satisfy all four learning objec-
tives. The inspiration for this comes from the International
Planning Competition series, an important biennial event in
the planning community’s calendar. Our competition has
two tracks: satisficing, the aim being to find a plan quickly;
and quality, the evaluation criterion being the plan length
(number of actions) after ten minutes. The students are di-
vided into teams and submit a modified version of JAVAFF
to each track, along with a short description of what changes
they made to the code beyond the first three exercises. Some
suggestions are made as to possible modifications that could
be made (LO1), and a suggested reading list is provided
(LO3), but the exercise is designed to be as open-ended as
possible (LO4) and the students were encouraged to con-
sider several possibilities and run their own empirical anal-
yses before submitting their final team entry (LO2).

To evaluate the competition entries, the students planners
are run on a selection of benchmark domains: two of the do-
mains which were provided to the students at the start of the
course; and a further, unseen, domain. This follows the pro-
cess of this year’s planning competition, where the planners
entering the competition will be required to submit source
code and an executable to be ran by the competition organis-
ers on unseen problems. Once the data have been collected,
and a winner has been decided for each track, the results and
prizes are presented to students.

4 Pedagogical Evaluation

We shall evaluate our pedagogy in two stages: the individual
performance of students on practical exercises 1 to 3, along
with feedback on their learning experience; and the range
of approaches taken in the competition entries received for
exercise 4. Whilst exercise 4 was designed to assess all four
of our learning outcomes, the scrutiny of the performance
of individual students on the other practicals allows us to
build a good overall picture. 16 students took the course in
total, and student feedback was obtained through informal
discussion at a weekly two-hour lab session.

4.1 Individual Evaluation

Exercise 1: All but one student received full marks: this
was a positive early sign, as it indicated that the students
were able to make at least small changes and perform empir-
ical analyses. Student feedback at this stage indicated they
were comfortable with the practical work, and felt that the
JAVAFF code had been adequately explained.

Exercise 2: The first task (implementation of a pseudocode
hill-climbing algorithm) was reported to be challenging, but

the students were well motivated and the majority completed
this task well; the most common error was taking the first
joint-best successor without randomly tie-breaking between
them. This was a pleasing outcome, as the ability to imple-
ment pseudocode is an important research skill, and mod-
ulo minor errors the students were able to do this within
JAVAFF. Not all students had time to complete the remain-
ing tasks in the exercise (implementation of a depth bound),
so a model answer was provided at this point.

Exercise 3: This exercise was split into three tasks. The
first (supporting SuccessorSelectors in their answer
to exercise 2) was completed well by most students; the
most common error was only passing the joint-best succes-
sors to the SuccessorSelector object, rather than all
of them. The second task (finish the outline of the code for
RandomThreeFilter) was better received, as the con-
cept of a Filterwas already well understood by this point.

The third task, implementing roulette selection, was de-
signed to be the most challenging stage of this practi-
cal. No pseudo-code was provided, only a reference to the
Wikipedia article and the hint to use 1/h(S) as the propor-
tion of the roulette wheel to give to a state S. Nonetheless,
nearly all the students submitted an answer, and most were
correct. In discussions with students, it transpires the key
obstacle to success was being short of time: the deadline
for exercise 3 was close to that for their final-year project
dissertations.

4.2 Group Evaluation: The Planning
Competition

The competition submissions are perhaps the most impor-
tant tool for evaluating our pedagogy. The exercise was
designed to be as open-ended as possible: a few sugges-
tions were made in the booklet as to which directions to
pursue, but students were encouraged to read around the lit-
erature, experiment with their own ideas, and perform their
own analyses to come up with what they considered to be
effective search strategies. Looking at the wide-range of ap-
proaches submitted by the four teams, we consider our prac-
tical series to be a resounding success. Some ideas submit-
ted to the competition include:

An extension of hill climbing (satisficing track), where the
states along the path to the current local minimum were
maintained in a set P . Then, when expanding a state S and
obtaining a successor set S′, roulette selection was used to
choose from the set P ∪ S′. In doing so, the algorithm em-
ploys stochastic backjumping: occasionally jumping back to
an earlier higher-heuristic state from which it might be eas-
ier to reach the goal.

A hybrid of EHC with best-first search (satisficing track).
First, EHC is called, starting from the initial state. If it fails
to find a solution then best-first search is called, its open list
primed with the initial state and the best state seen during
EHC. If at any point best-first search finds a state S with a
lower heuristic than that found by EHC, best-first search is
terminated and EHC restarts from S. This cycle continues
until a plan is found.

21



Phased SuccessorSelector usage (quality track).
The planner repeatedly used a hill-climbing algorithm, ter-
minating when plan length exceeds that of the best plan seen
so far. This was called 300 times, employing a cheap suc-
cessor selector (best- or roulette-selection), and a further
200 times employing a novel successor selector that leads
to shorter plans, but requires the evaluation of the heuristic
values of two random successors of each state. The team
provided data indicating that this 300/200 mix of successor
selector usage was more effective than a 0/500 or 500/0 mix.

A portfolio system (quality track), with six in-built stochas-
tic search algorithms, with different filters and successor se-
lectors, each with strengths and weaknesses in certain do-
mains or on certain problems. Prior to the competition en-
try, the students ran each of the six on a range of problems
from a range of domains and the algorithms were ranked in
the order 1–6 (with 1 being the best and 6 the worst) based
on the average plan length they returned. The planner sub-
mitted to the competition then repeatedly chooses one of the
algorithms at random, and if it returns a shorter plan than
the best seen so far, stores it. To bias towards choosing the
better algorithms, roulette selection was used to choose be-
tween them, with fitness(A) = 13− 2 ∗ rank(A).

4.3 Overall Evaluation

As demonstrated by the individual and group performance,
JAVAFF has proved to be an excellent tool for achieving our
learning outcomes. Performance on the first three practicals
indicates that the implementation barrier for planner devel-
opment was lowered enough for students to complete the
practical exercises we prescribed; from minor two- or three-
line changes, to the implementation of whole sections of
pseudocode. The competition is evidence that these three
practicals gave the students the understanding needed to
prosper in an open-ended task, developing new algorithms
and evaluating their efficacy to build a competitive plan-
ner. Further, the vast range of approaches submitted indi-
cates that the JAVAFF framework is not overly restrictive,
and manages to be a useful substrate for student planner de-
velopment without stifling innovation and student potential.

5 The Future Direction of JavaFF
As can be seen in this document, JAVAFF has a great po-
tential for use as a basis for student practical exercises. At
present, we are pursuing two interesting directions. First, we
are developing an extended set of JAVAFF practicals for use
by postgraduate students following a new MRes course in
‘Automated Planning for Autonomous Systems’4, beginning
in September 2008. Working with postgraduate students,
over a longer time period, the practicals will be extended to
cover more ground. In particular, as JAVAFF is based on
the source code of CRIKEY (Coles et al. 2008), we plan to
devise practical exercises working on interesting aspects of
temporal planning.

Second, we are developing a collection of larger disser-
tation project outlines for use with two cohorts of students:

4http://www.strath.ac.uk/cis/courses/

mresautomatedplanningforautonomoussystems/

final year undergraduates, as the basis of their undergrad-
uate dissertation; and the postgraduate MRes students, as
part of the planning systems project. Possible directions for
projects of this scale include extending JAVAFF to handle
the language features of PDDL3 (Gerevini & Long 2006),
exploring the exploitation of domain-specific control knowl-
edge in a hybrid domain-specific–domain-independent man-
ner, and an investigation into plan optimisation techniques
based around plan refinement using state-to-state search
within candidate solution plans.

6 Conclusions

In this paper, we outlined JAVAFF, a well-crafted Java im-
plementation of the planner FF, designed to be as accessible
as possible by a student audience. As a proof-of-concept,
we presented an overview of the practical exercises we con-
structed to complement the planning component of an un-
dergraduate final-year AI degree module, and an a posteri-
ori evaluation of these indicates that JAVAFF serves as an
excellent vehicle for student planner development.

We welcome any feedback on JAVAFF, including further
suggested practicals for use with it. We aim to make JAVAFF
available as a community resource before September 2008,
and would welcome any additions to the repository of asso-
ciated literature we intend to assemble for use with it.

Acknowledgements

The authors would like to thank Keith Halsey for his work on
the planner CRIKEY, from which several components were
taken in the construction of JAVAFF, and the University of
Strathclyde course 52426 undergraduates for their feedback
on the JAVAFF practical exercises.

References
Blum, A., and Furst, M. 1995. Fast Planning through Planning
Graph Analysis. In Proceedings of the International Joint Con-
ference on Artificial Inteligence (IJCAI-95).

Bonet, B., and Geffner, H. 1998. HSP: Heuristic Search Planner.
Entry at the AIPS-98 Planning Competition, Pittsburgh.

Coles, A. I.; Fox, M.; Halsey, K.; Long, D. P.; and Smith,
A. J. 2008. Managing Coordination in Temporal Planning using
Planner-Scheduler Interaction. To appear, Artificial Intelligence.

Coles, A. I.; Fox, M.; and Smith, A. J. 2007. A New Local-
Search Algorithm for Forward-Chaining Planning. In Proceed-
ings of ICAPS 07.

Fox, M., and Long, D. 2003. PDDL2.1: An extension of PDDL
for expressing temporal planning domains. Journal of Artificial
Intelligence Research 20:61–124.

Gerevini, A., and Long, D. 2006. Preferences and Soft Con-
straints in PDDL3. In Proceedings of ICAPS-06 workshop on
Planning with Preferences and Soft Constraints, 46–53.

Hoffmann, J., and Nebel, B. 2001a. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of Arti-
ficial Intelligence Research 14:253–302.

Hoffmann, J., and Nebel, B. 2001b. What Makes the Difference
Between HSP and FF? In Proceedings IJCAI-01 Workshop on
Empirical Methods in Artificial Intelligence.

Long, D., and Fox, M. 2003. The 3rd International Planning
Competition: Results and Analysis. Journal of Artificial Intelli-
gence Research 20:1–59.

22

View publication stats


